1
|
Tsizin S, Ban L, Chasovskikh E, Yoder BL, Signorell R. Valence photoelectron imaging of molecular oxybenzone. Phys Chem Chem Phys 2024; 26:19236-19246. [PMID: 38957915 PMCID: PMC11253247 DOI: 10.1039/d3cp06224d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/18/2024] [Indexed: 07/04/2024]
Abstract
An oxybenzone molecule in the gas phase was characterized by mass spectrometry and angle-resolved photoelectron spectroscopy, using both single and multiphoton ionization schemes. A tabletop high harmonic generation source with a monochromator was used for single-photon ionization of oxybenzone with photon energies of up to 35.7 eV. From this, vertical ionization and appearance energies, as well as energy-dependent anisotropy parameters were retrieved and compared with the results from DFT calculations. For two-photon ionization using 4.7 eV light, we found a higher appearance energy than in the extreme ultraviolet (EUV) case, highlighting the possible influence of an intermediate state on the photoionization process. We found no differences in the mass spectra when ionizing oxybenzone by single-photons between 17.2 and 35.7 eV. However, for the multiphoton ionization, the fragmentation process was found to be sensitive to the photoionization order and laser intensity. The "softest" method was found to be two-photon ionization using 4.7 eV light, which led to no measurable fragmentation up to an intensity of 5 × 1012 W cm-2.
Collapse
Affiliation(s)
- Svetlana Tsizin
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2., CH-8093 Zürich, Switzerland.
| | - Loren Ban
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2., CH-8093 Zürich, Switzerland.
| | - Egor Chasovskikh
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2., CH-8093 Zürich, Switzerland.
| | - Bruce L Yoder
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2., CH-8093 Zürich, Switzerland.
| | - Ruth Signorell
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2., CH-8093 Zürich, Switzerland.
| |
Collapse
|
2
|
Zhi J, Liu X, Xu Y, Wang D, Kim YR, Luo K. Metal ion-mediated modulation of morphology, physicochemical properties, and digestibility of type 3 resistant starch microparticle. Carbohydr Polym 2023; 316:121027. [PMID: 37321725 DOI: 10.1016/j.carbpol.2023.121027] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/02/2023] [Accepted: 05/12/2023] [Indexed: 06/17/2023]
Abstract
Short-chain glucan (SCG) derived from debranched amylopectin has emerged as a promising candidate for the production of resistant starch particle (RSP) due to its controllable self-assembly features. Here, we investigated the effect of metal cations with different valencies and concentrations on the morphology, physicochemical properties, and digestibility of RSP formed by the self-assembly of SCG. The effect of cations on the formation of RSP followed the valency in the following order: Na+, Ka+, Mg2+, Ca2+, Fe3+, and Al3+, of which 10 mM trivalent cations increased the particle size of RSP over 2 μm and considerably decreased the crystallinity by 49.5 % ~ 50.9 %, which were significantly different from that of mono- and divalent ones. Importantly, RSP formed with divalent cations switched the surface charge from -18.6 mV to 12.9 mV, which significantly increased the RS level, indicating that metal cations would be useful for regulating physicochemical properties and digestibility of RSP.
Collapse
Affiliation(s)
- Jinglei Zhi
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Xinling Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Ying Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Dongfeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China
| | - Young-Rok Kim
- Institute of Life Science and Resources & Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea.
| | - Ke Luo
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266003, China.
| |
Collapse
|
3
|
Whittock AL, Ding X, Ramirez Barker XE, Auckloo N, Sellers RA, Woolley JM, Tamareselvy K, Vincendet M, Corre C, Pickwell-MacPherson E, Stavros VG. Spectroscopic insight on impact of environment on natural photoprotectants. Chem Sci 2023; 14:6763-6769. [PMID: 37350813 PMCID: PMC10284146 DOI: 10.1039/d3sc01875j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/25/2023] [Indexed: 06/24/2023] Open
Abstract
Biomimicry has become a key player in researching new materials for a whole range of applications. In this study, we have taken a crude extract from the red algae Palmaria palmata containing mycosporine-like amino acids - a photoprotective family of molecules. We have applied the crude extract onto a surface to assess if photoprotection, and more broadly, light-to-heat conversion, is retained; we found it is. Considering sunscreens as a specific application, we have performed transmission and reflection terahertz spectroscopy of the extract and glycerol to demonstrate how one can monitor stability in real-world applications.
Collapse
Affiliation(s)
- Abigail L Whittock
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
- Analytical Science Centre for Doctoral Training, Senate House, University of Warwick Coventry CV4 7AL UK
| | - Xuefei Ding
- Department of Physics, University of Warwick Coventry CV4 7AL UK
| | | | - Nazia Auckloo
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
- Warwick Intergrative Synthetic Biology Centre, School of Life Sciences, University of Warwick Coventry CV4 7AL UK
| | | | - Jack M Woolley
- Department of Physics, University of Warwick Coventry CV4 7AL UK
| | - Krishnan Tamareselvy
- Lubrizol Advanced Materials Inc. 377 Hoes Lane, Suite 210 Piscataway New Jersey 08854 USA
| | - Marine Vincendet
- Lubrizol Life Science Beauty Calle Isaac Peral, 17 Pol. Ind. Camí Ral 08850 Barcelona Spain
| | - Christophe Corre
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
- Warwick Intergrative Synthetic Biology Centre, School of Life Sciences, University of Warwick Coventry CV4 7AL UK
| | | | - Vasilios G Stavros
- Department of Chemistry, University of Warwick Coventry CV4 7AL UK
- School of Chemistry, University of Birmingham Edgbaston Birmingham B15 2TT UK
| |
Collapse
|
4
|
Tzeli D, Gerontitis IE, Petsalakis ID, Tsoungas PG, Varvounis G. Self Cycloaddition of o-Naphthoquinone Nitrosomethide to (±) Spiro{naphthalene(naphthopyranofurazan)}-one Oxide: An Insight into its Formation. Chempluschem 2022; 87:e202200313. [PMID: 36479609 DOI: 10.1002/cplu.202200313] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/22/2022] [Indexed: 11/25/2022]
Abstract
2-Hydroxy-1-naphthaldehyde oxime was oxidized by AgO (or Ag2O), in presence of N-methyl morpholine N-oxide (NMMO), to the title spiro adduct-dimer (±)-Spiro{naphthalene-1(2H),4'-(naphtho[2',1':2,3]pyrano[4,5-c]furazan)}-2-one-11'-oxide by a Diels-Alder(D-A) type self-cycloaddition, through the agency of an o-naphthoquinone nitrosomethide (o-NQM). Moreover, 2-hydroxy-8-methoxy-1-naphthaldehyde oxime was prepared and subjected to the same oxidation conditions. Its sterically guided result, 9-methoxynaphtho[1,2-d]isoxazole, was isolated, instead of the expected spiro adduct. The peri intramolecular H bonding in the oxime is considered to have a key contribution to the outcome. Geometry and energy features of the oxidant- and stereo-guided selectivity of both oxidation outcomes have been explored by DFT, perturbation theory and coupled cluster calculations. The reaction free energy of the D-A intermolecular cycloaddition is calculated at -82.0 kcal/mol, indicating its predominance over the intramolecular cyclization of ca. -37.6 kcal/mol. The cycloaddition is facilitated by NMMO through dipolar interactions and hydrogen bonding with both metal complexes and o-NQM. The 8(peri)-OMe substitution of the reactant oxime sterically impedes formation of the spiro adduct, instead it undergoes a more facile cyclodehydration to the isoxazole structure by ca. 4.9 kcal/mol.
Collapse
Affiliation(s)
- Demeter Tzeli
- Laboratory of Physical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou Athens, 157 84, Athens, Greece
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., Athens, 116 35, Greece
| | - Ioannis E Gerontitis
- Section of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 451 10, Ioannina, Greece
| | - Ioannis D Petsalakis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., Athens, 116 35, Greece
| | - Petros G Tsoungas
- Department of Biochemistry, Hellenic Pasteur Institute, 127 Vas. Sofias Ave., 115 21, Athens, Greece
| | - George Varvounis
- Section of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 451 10, Ioannina, Greece
| |
Collapse
|
5
|
Chang XP, Yu L, Zhang TS, Cui G. Quantum mechanics/molecular mechanics studies on the mechanistic photophysics of sunscreen oxybenzone in methanol solution. Phys Chem Chem Phys 2022; 24:13293-13304. [PMID: 35607908 DOI: 10.1039/d2cp01263d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we have employed the QM(CASPT2//CASSCF)/MM method to explore the photophysical and photochemical mechanism of oxybenzone (OB) in methanol solution. Based on the optimized minima, conical intersections and crossing points, and minimum-energy reaction paths related to excited-state intramolecular proton transfer (ESIPT) and excited-state decay paths in the 1ππ*, 1nπ*, 3ππ*, 3nπ*, and S0 states, we have identified several feasible excited-state relaxation pathways for the initially populated S2(1ππ*) state to decay to the initial enol isomer' S0 state. The major one is the singlet-mediated and stretch-torsion coupled ESIPT pathway, in which the system first undergoes an essentially barrierless 1ππ* ESIPT process to generate the 1ππ* keto species, and finally realizes its ground state recovery through the subsequent carbonyl stretch-torsion facilitating S1 → S0 internal conversion (IC) and the reverse ground-state intramolecular proton transfer (GSIPT) process. The minor ones are related to intersystem crossing (ISC) processes. At the S2(1ππ*) minimum, an S2(1ππ*)/S1(1nπ*)/T2(3nπ*) three-state intersection region helps the S2 system branch into the T1 state through a S2 → S1 → T1 or S2 → T2 → T1 process. Once it has reached the T1 state, the system may relax to the S0 state via direct ISC or via subsequent nearly barrierless 3ππ* ESIPT to yield the T1 keto tautomer and ISC. The resultant S0 keto species significantly undergoes reverse GSIPT and only a small fraction yields the trans-keto form that relaxes back more slowly. However, due to small spin-orbit couplings at T1/S0 crossing points, the ISC to S0 state occurs very slowly. The present work rationalizes not only the ultrafast excited-state decay dynamics of OB but also its phosphorescence emission at low temperature.
Collapse
Affiliation(s)
- Xue-Ping Chang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China.
| | - Li Yu
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China.
| | - Teng-Shuo Zhang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
6
|
Wong NGK, Dessent CEH. Illuminating the Effect of the Local Environment on the Performance of Organic Sunscreens: Insights From Laser Spectroscopy of Isolated Molecules and Complexes. Front Chem 2022; 9:812098. [PMID: 35096773 PMCID: PMC8789676 DOI: 10.3389/fchem.2021.812098] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/20/2021] [Indexed: 12/11/2022] Open
Abstract
Sunscreens are essential for protecting the skin from UV radiation, but significant questions remain about the fundamental molecular-level processes by which they operate. In this mini review, we provide an overview of recent advanced laser spectroscopic studies that have probed how the local, chemical environment of an organic sunscreen affects its performance. We highlight experiments where UV laser spectroscopy has been performed on isolated gas-phase sunscreen molecules and complexes. These experiments reveal how pH, alkali metal cation binding, and solvation perturb the geometric and hence electronic structures of sunscreen molecules, and hence their non-radiative decay pathways. A better understanding of how these interactions impact on the performance of individual sunscreens will inform the rational design of future sunscreens and their optimum formulations.
Collapse
Affiliation(s)
- Natalie G K Wong
- Department of Chemistry, University of York, York, United Kingdom
| | | |
Collapse
|
7
|
Marlton SJP, Trevitt A. Laser Photodissocation, Action Spectroscopy and Mass Spectrometry Unite to Detect and Separate Isomers. Chem Commun (Camb) 2022; 58:9451-9467. [DOI: 10.1039/d2cc02101c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The separation and detection of isomers remains a challenge for many areas of mass spectrometry. This article highlights laser photodissociation and ion mobility strategies that have been deployed to tackle...
Collapse
|
8
|
Wong NGK, Rhodes C, Dessent CEH. Photodegradation of Riboflavin under Alkaline Conditions: What Can Gas-Phase Photolysis Tell Us about What Happens in Solution? Molecules 2021; 26:6009. [PMID: 34641554 PMCID: PMC8512791 DOI: 10.3390/molecules26196009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/25/2021] [Accepted: 09/30/2021] [Indexed: 11/16/2022] Open
Abstract
The application of electrospray ionisation mass spectrometry (ESI-MS) as a direct method for detecting reactive intermediates is a technique of developing importance in the routine monitoring of solution-phase reaction pathways. Here, we utilise a novel on-line photolysis ESI-MS approach to detect the photoproducts of riboflavin in aqueous solution under mildly alkaline conditions. Riboflavin is a constituent of many food products, so its breakdown processes are of wide interest. Our on-line photolysis setup allows for solution-phase photolysis to occur within a syringe using UVA LEDs, immediately prior to being introduced into the mass spectrometer via ESI. Gas-phase photofragmentation studies via laser-interfaced mass spectrometry of deprotonated riboflavin, [RF - H]-, the dominant solution-phase species under the conditions of our study, are presented alongside the solution-phase photolysis. The results obtained illustrate the extent to which gas-phase photolysis methods can inform our understanding of the corresponding solution-phase photochemistry. We determine that the solution-phase photofragmentation observed for [RF - H]- closely mirrors the gas-phase photochemistry, with the dominant m/z 241 condensed-phase photoproduct also being observed in gas-phase photodissociation. Further gas-phase photoproducts are observed at m/z 255, 212, and 145. The value of exploring both the gas- and solution-phase photochemistry to characterise photochemical reactions is discussed.
Collapse
Affiliation(s)
| | | | - Caroline E. H. Dessent
- Department of Chemistry, University of York, Heslington YO10 5DD, UK; (N.G.K.W.); (C.R.)
| |
Collapse
|
9
|
Wong NK, Rankine CD, Dessent CEH. Linking Electronic Relaxation Dynamics and Ionic Photofragmentation Patterns for the Deprotonated UV Filter Benzophenone-4. J Phys Chem Lett 2021; 12:2831-2836. [PMID: 33719458 PMCID: PMC8041369 DOI: 10.1021/acs.jpclett.1c00423] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Understanding how deprotonation impacts the photophysics of UV filters is critical to better characterize how they behave in key alkaline environments including surface waters and coral reefs. Using anion photodissociation spectroscopy, we have measured the intrinsic absorption electronic spectroscopy (400-214 nm) and numerous accompanying ionic photofragmentation pathways of the benzophenone-4 anion ([BP4-H]-). Relative ion yield plots reveal the locations of the bright S1 and S3 excited states. For the first time for an ionic UV filter, ab initio potential energy surfaces are presented to provide new insight into how the photofragment identity maps the relaxation pathways. These calculations reveal that [BP4-H]- undergoes excited-state decay consistent with a statistical fragmentation process where the anion breaks down on the ground state after nonradiative relaxation. The broader relevance of the results in providing a basis for interpreting the relaxation dynamics of a wide range of gas-phase ionic systems is discussed.
Collapse
Affiliation(s)
- Natalie
G. K. Wong
- Department
of Chemistry, University of York, Heslington, York, YO10 5DD, U.K.
| | - Conor D. Rankine
- School
of Natural and Environmental Sciences, Newcastle
University, Newcastle-upon-Tyne, NE1 7RU, U.K.
| | | |
Collapse
|