1
|
Ryzhako AS, Tuma AA, Otlyotov AA, Minenkov Y. An influence of electronic structure theory method, thermodynamic and implicit solvation corrections on the organic carbonates conformational and binding energies. J Comput Chem 2024; 45:3004-3016. [PMID: 39286905 DOI: 10.1002/jcc.27471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/28/2024] [Accepted: 07/24/2024] [Indexed: 09/19/2024]
Abstract
An impact of an electronic structure or force field method, gas-phase thermodynamic correction, and continuum solvation model on organic carbonate clusters (S)n conformational and binding energies is explored. None of the tested force field (GFN-FF, GAFF, MMFF94) and standard semiempirical methods (PM3, AM1, RM1, PM6, PM6-D3, PM6-D3H4, PM7) can reproduce reference RI-SCS-MP2 conformational energies. Tight-binding GFNn-xTB methods provide more realistic conformational energies which are accurate enough to discard the least stable conformers. The effect of thermodynamic correction is moderate and can be ignored if the gas phase conformational stability ranking is a goal. The influence of continuum solvation is stronger, especially if reinforced with the Gibbs free energy thermodynamic correction, and results in the reduced spread of conformational energies. The cluster formation binding energies strongly depend on a particular approach to vibrational thermochemistry with the difference between traditional harmonic and modified scaled rigid - harmonic oscillator approximations reaching 10 kcal mol-1.
Collapse
Affiliation(s)
- Alexander S Ryzhako
- N.N. Semenov Federal Research Center for Chemical Physics RAS, Moscow, Russian Federation
- The Faculty of Natural Sciences, Dmitry Mendeleev University of Chemical Technology of Russia, Moscow, Russian Federation
| | - Anna A Tuma
- N.N. Semenov Federal Research Center for Chemical Physics RAS, Moscow, Russian Federation
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Arseniy A Otlyotov
- N.N. Semenov Federal Research Center for Chemical Physics RAS, Moscow, Russian Federation
| | - Yury Minenkov
- N.N. Semenov Federal Research Center for Chemical Physics RAS, Moscow, Russian Federation
| |
Collapse
|
2
|
Imperato M, Nicolini A, Boniburini M, Gómez-Coca S, Ruiz E, Santanni F, Sorace L, Cornia A. Phase-dependent polymerization isomerism in the coordination complexes of a flexible bis(β-diketonato) ligand. Dalton Trans 2024; 53:18762-18781. [PMID: 39495486 DOI: 10.1039/d4dt02574a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
First prepared in the late 70s, the pro-ligand 1,3-bis(3,5-dioxo-1-hexyl)benzene (H2bdhb) contains two acetoacetyl terminations linked to a central 1,3-phenylene unit through dimethylene bridges. Since each termination can be either in diketonic or keto-enolic form, in organic solution it exists as a mixture of three spectroscopically resolvable tautomers. In the presence of pyridine, Co2+ and the bdhb2- anion form a crystalline dimeric compound with formula [Co2(bdhb)2(py)4] (2) and a Co⋯Co separation of more than 11 Å. Complex 2 contains two pseudo-octahedrally coordinated and non-interacting high-spin cobalt(II) ions (S = 3/2) displaying a large easy-plane anisotropy (D ∼ 70 cm-1), as consistently indicated by magnetic measurements, X-band EPR spectra, and complete active space self-consistent field/N-electron valence state perturbation theory (CASSCF/NEVPT2) calculations. At cryogenic temperatures (T < 7 K) and in an applied static magnetic field, the compound shows detectably slow magnetic relaxation, which occurs through direct and Raman mechanisms. Combined mass spectrometry, UV-Vis, and 1H/2H NMR data, including an isotopic labelling experiment and a determination of molecular weight by diffusion ordered spectroscopy (DOSY), show that 2 rearranges to monomeric high-spin [Co(bdhb)(py)x] species (x = 0, 1, or 2) in organic solution (CH2Cl2, THF) with concomitant partial dissociation of the py ligands. The X-band EPR spectra in a frozen CH2Cl2/toluene matrix concurrently suggest a significant alteration of the coordination environment upon dissolution. These observations are fairly well reproduced by density functional theory (DFT) and CASSCF/NEVPT2 calculations on the lowest Gibbs free energy conformers of each species, as provided by an extensive conformational search based on meta-dynamics simulations and semiempirical tight-binding methods. After the vanadyl analogue, compound 2 provides the second example of polymerization isomerism in the 1 : 1 adducts of bdhb2- with divalent metal ions.
Collapse
Affiliation(s)
- Manuel Imperato
- Dipartimento di Scienze Chimiche e Geologiche e UdR INSTM, Università degli Studi di Modena e Reggio Emilia, via G. Campi 103, 41125 Modena, Italy.
- Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Università degli Studi di Modena e Reggio Emilia, via G. Campi 213/A, 41125 Modena, Italy
| | - Alessio Nicolini
- Dipartimento di Scienze Chimiche e Geologiche e UdR INSTM, Università degli Studi di Modena e Reggio Emilia, via G. Campi 103, 41125 Modena, Italy.
| | - Matteo Boniburini
- Dipartimento di Scienze Chimiche e Geologiche e UdR INSTM, Università degli Studi di Modena e Reggio Emilia, via G. Campi 103, 41125 Modena, Italy.
| | - Silvia Gómez-Coca
- Departament de Química Inorgànica i Orgànica, Institut de Química Teòrica i Computacional, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | - Eliseo Ruiz
- Departament de Química Inorgànica i Orgànica, Institut de Química Teòrica i Computacional, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | - Fabio Santanni
- Dipartimento di Chimica "Ugo Schiff" e UdR INSTM, Università degli Studi di Firenze, via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy
| | - Lorenzo Sorace
- Dipartimento di Chimica "Ugo Schiff" e UdR INSTM, Università degli Studi di Firenze, via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy
| | - Andrea Cornia
- Dipartimento di Scienze Chimiche e Geologiche e UdR INSTM, Università degli Studi di Modena e Reggio Emilia, via G. Campi 103, 41125 Modena, Italy.
| |
Collapse
|
3
|
Prada C, Dzib E, Núñez-Zarur F, Salvador P, Merino G, Calzado CJ, Zapata-Rivera J. Mechanism of Dinitrogen Photoactivation by P 2P PhFe Complexes: Thermodynamic and Kinetic Computational Studies. Inorg Chem 2024; 63:21364-21374. [PMID: 39442084 PMCID: PMC11539056 DOI: 10.1021/acs.inorgchem.4c04006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
The P2PPhFe(N2)(H)2 catalyst showed a significant ammonia yield under light irradiation. However, under thermal conditions, the hydrogen evolution reaction (HER) is favored over the nitrogen reduction reaction (N2RR), making P2PPhFe(N2)(H)2 an ideal system for studying the competition between both reactions. In this study, we used a series of computational tools to elucidate the photochemical reaction mechanism for the N2RR and thermal pathways leading to the HER with this catalyst. We calculated the energy profile for each transformation and estimated the rate constants for each step. Our results, which are consistent with experimental observations, indicate that photoinduced H2 elimination from P2PPhFe(N2)(H)2 promotes the formation of P2PPhFe(N2)2, which is on-path for N2RR. However, this elimination process is kinetically hindered due to high-energy barriers. Furthermore, our calculations reveal enhanced dinitrogen activation upon the conversion of P2PPhFe(N2)(H)2 to P2PPhFe(N2)2.
Collapse
Affiliation(s)
- Camilo Prada
- Departamento
de Química, Universidad de los Andes, Cra 1 No. 18A − 12, Bogotá 111711, Colombia
| | - Eugenia Dzib
- Departamento
de Física Aplicada, Centro de Investigación
y de Estudios Avanzados, Unidad Mérida, Km. 6 Antigua Carretera a Progreso,
Apdo. Postal 73, Mérida, Yucatan 97310, México
| | - Francisco Núñez-Zarur
- Facultad
de Ciencias Básicas, Departamento de Química Física, Universidad de Medellín, Carrera 87 N° 30-65, Medellín 050026, Colombia
| | - Pedro Salvador
- Institut
de Química Computacional i Catàlisi and Departament
de Química, Universitat de Girona, Maria Aurèlia Capmany 69, Girona, Catalonia 17003, Spain
| | - Gabriel Merino
- Departamento
de Física Aplicada, Centro de Investigación
y de Estudios Avanzados, Unidad Mérida, Km. 6 Antigua Carretera a Progreso,
Apdo. Postal 73, Mérida, Yucatan 97310, México
| | - Carmen J. Calzado
- Departamento
de Química Física, Universidad
de Sevilla, c/Profesor García
González, s/n, Sevilla 41012, Spain
| | - Jhon Zapata-Rivera
- Departamento
de Química, Universidad del Valle, Calle 13 N° 100−00, Cali 760042, Colombia
| |
Collapse
|
4
|
Malagarriga M, González L. Binding modes of a flexible ruthenium polypyridyl complex to DNA. Phys Chem Chem Phys 2024; 26:27116-27130. [PMID: 39431730 PMCID: PMC11492816 DOI: 10.1039/d4cp02782e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/11/2024] [Indexed: 10/22/2024]
Abstract
Ruthenium(II) polypyridyl complexes are attractive binders to DNA. Modifying the hydrophobicity, shape, or size of the ancillary ligands around the central ruthenium atom can induce changes in the binding mode to the DNA double helix. In this paper, we investigate the binding modes of [Ru(2,2'-bipyridine)2 (5-{4-[(pyren-1-yl)methyl]-1H-1,2,3-triazol-4-yl}-1,10-phenanthroline)]2+ (RuPy for short), a metal complex featuring a flexible pyrene moiety known for its intercalative properties. Classical molecular dynamics simulations are employed to gain insight into the non-covalent binding interactions of RuPy with two different 20 base pair DNA sequences, poly(dA)poly(dT) (AT) and poly(dC)poly(dG) (CG). In addition to examining the intercalation of the pyrene moiety from the major groove, the stability of RuPy-DNA adducts is investigated when the metal complex interacts externally with the DNA and with the major and minor groove pockets. The results indicate that external interaction and major groove binding are not stable, whereas intercalation consistently forms stable adducts. Minor groove binding showed less stability than intercalation and more variability, with some trajectories transitioning to intercalation, involving either the pyrene moiety or a bipyridine ligand. Pyrene intercalation, especially from the minor groove, was the most stable, while bipyridine intercalation was less favorable and associated with higher binding free energies.
Collapse
Affiliation(s)
- Meritxell Malagarriga
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
- Doctoral School in Chemistry (DoSChem), University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| | - Leticia González
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
- Vienna Research Platform on Accelerating Photoreaction Discovery, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria.
| |
Collapse
|
5
|
Nations SM, Burrows LC, Crawford SE, Saidi WA. Cryptate binding energies towards high throughput chelator design: metadynamics ensembles with cluster-continuum solvation. Phys Chem Chem Phys 2024; 26:26772-26783. [PMID: 39403042 DOI: 10.1039/d4cp03129f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
A tiered forcefield/semiempirical/meta-GGA pipeline together with a thermodynamic scheme designed with error cancellation in mind was developed to calculate binding energies of [2.2.2] cryptate complexes of mono- and divalent cations. Stable complexes of Na, K, Rb, Ca, Zn and Pb were generated, revealing consistent cation-N lengths but highly variable cation-O lengths and an amine stacking mechanism potentially augmenting the cation size selectivity. Metadynamics, used for searching the high-dimensional potential energy surface, together with a cluster-continuum model for affordable - yet accurate - solvation modeling, enabled the discovery of more stable geometries than those previously reported. Similar solvation energy curve shapes for lone vs. coordinated ions enabled rapid solvation convergence via the cancellation of errors stemming from finite cluster sizes. An R2 of 0.850 vs. experimental aqueous binding energies was obtained, validating this scheme as the backbone of a high-throughput workflow for chelator design.
Collapse
Affiliation(s)
- Sean M Nations
- National Energy Technology Laboratory, 626 Cochran Mill Road, Pittsburgh, PA 15236, USA.
| | - Lauren C Burrows
- National Energy Technology Laboratory, 626 Cochran Mill Road, Pittsburgh, PA 15236, USA.
| | - Scott E Crawford
- National Energy Technology Laboratory, 626 Cochran Mill Road, Pittsburgh, PA 15236, USA.
| | - Wissam A Saidi
- National Energy Technology Laboratory, 626 Cochran Mill Road, Pittsburgh, PA 15236, USA.
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, 4200 Fifth Ave., Pittsburgh, PA 15260, USA
| |
Collapse
|
6
|
Mészáros B, Kubicskó K, Németh DD, Daru J. Emerging Conformational-Analysis Protocols from the RTCONF55-16K Reaction Thermochemistry Conformational Benchmark Set. J Chem Theory Comput 2024; 20:7385-7392. [PMID: 38899777 PMCID: PMC11498139 DOI: 10.1021/acs.jctc.4c00565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024]
Abstract
RTCONF55-16K is a new, reactive conformational data set based on cost-efficient methods to assess different conformational analysis protocols. Our reference calculations underpinned the accuracy of the CENSO (Grimme et al. J. Phys. Chem. A, 2021, 125, 4039) procedure and resulted in alternative recipes with different cost-accuracy compromises. Our general-purpose and economical protocols (CENSO-light and zero, respectively) were found to be 10-30 times faster than the original algorithm, adding only 0.4-0.7 kcal/mol absolute error to the relative free energy estimates.
Collapse
Affiliation(s)
- Bence
Balázs Mészáros
- Hevesy
György PhD School of Chemistry, ELTE
Eötvös Loránd University, Pázmány Péter sétány
1/A, 1117 Budapest, Hungary
- Department
of Organic Chemistry, ELTE Eötvös
Loránd University, Pázmány Péter sétány
1/A, 1117 Budapest, Hungary
| | - Károly Kubicskó
- Hevesy
György PhD School of Chemistry, ELTE
Eötvös Loránd University, Pázmány Péter sétány
1/A, 1117 Budapest, Hungary
- Department
of Organic Chemistry, ELTE Eötvös
Loránd University, Pázmány Péter sétány
1/A, 1117 Budapest, Hungary
| | - Dávid Dorián Németh
- Department
of Organic Chemistry, ELTE Eötvös
Loránd University, Pázmány Péter sétány
1/A, 1117 Budapest, Hungary
| | - János Daru
- Department
of Organic Chemistry, ELTE Eötvös
Loránd University, Pázmány Péter sétány
1/A, 1117 Budapest, Hungary
| |
Collapse
|
7
|
Jin H, Merz KM. Partial to Total Generation of 3D Transition-Metal Complexes. J Chem Theory Comput 2024; 20. [PMID: 39251343 PMCID: PMC11428130 DOI: 10.1021/acs.jctc.4c00775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/16/2024] [Accepted: 08/28/2024] [Indexed: 09/11/2024]
Abstract
The design of transition-metal complexes (TMCs) has drawn much attention over the years because of their important applications as metallodrugs and functional materials. In this work, we present an extension of our recently reported approach, LigandDiff [Jin et al. J. Chem. Theory Comput. 20, 4377(2024)]. The new model, which we call multi-LigandDiff, is more flexible and greatly outperforms its predecessor. This scaffold-based diffusion model allows de novo ligand design with either existing ligands or without any ligand. Moreover, it allows users to predefine the denticity of the generated ligand. Our results indicate that multi-LigandDiff can generate well-defined ligands and is transferable to multiple transition metals and coordination geometries. In terms of its application, multi-LigandDiff successfully designed 338 Fe(II) spin-crossover (SCO) complexes from only 47 experimentally validated SCO complexes. And these generated complexes are configurationally diverse and structurally reasonable. Overall, the results show that multi-LigandDiff is an ideal tool to design novel TMCs from scratch.
Collapse
Affiliation(s)
- Hongni Jin
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Kenneth M. Merz
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
8
|
Nakajima Y, Ohmura T, Seino J. Using atomic clustering based on structural and electronic descriptors that consider surrounding environment to evaluate local properties of DFT functionals. J Comput Chem 2024; 45:1870-1879. [PMID: 38686778 DOI: 10.1002/jcc.27375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 05/02/2024]
Abstract
We developed a method for evaluating the accuracies of the local properties of DFT functionals in detail using a clustering method based on machine learning and structural/electronic descriptors. We generated 36 clusters consistent with human intuition using 30,436 carbon atoms from the QM9 dataset. The results were used to evaluate 13C NMR chemical shifts calculated using 84 DFT functionals. Carbon atoms were grouped based on their similar environments, reducing errors within these groups. This enables more accurate assessment of the accuracy using a specific DFT functional. Therefore, the present atomic clustering provides more detailed insight into accuracy verification.
Collapse
Affiliation(s)
- Yuya Nakajima
- Waseda Research Institute for Science and Engineering, Tokyo, Japan
| | - Takuto Ohmura
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Junji Seino
- Waseda Research Institute for Science and Engineering, Tokyo, Japan
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| |
Collapse
|
9
|
Kalikadien AV, Mirza A, Hossaini AN, Sreenithya A, Pidko EA. Paving the road towards automated homogeneous catalyst design. Chempluschem 2024; 89:e202300702. [PMID: 38279609 DOI: 10.1002/cplu.202300702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/20/2023] [Indexed: 01/28/2024]
Abstract
In the past decade, computational tools have become integral to catalyst design. They continue to offer significant support to experimental organic synthesis and catalysis researchers aiming for optimal reaction outcomes. More recently, data-driven approaches utilizing machine learning have garnered considerable attention for their expansive capabilities. This Perspective provides an overview of diverse initiatives in the realm of computational catalyst design and introduces our automated tools tailored for high-throughput in silico exploration of the chemical space. While valuable insights are gained through methods for high-throughput in silico exploration and analysis of chemical space, their degree of automation and modularity are key. We argue that the integration of data-driven, automated and modular workflows is key to enhancing homogeneous catalyst design on an unprecedented scale, contributing to the advancement of catalysis research.
Collapse
Affiliation(s)
- Adarsh V Kalikadien
- Inorganic Systems Engineering, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Adrian Mirza
- Inorganic Systems Engineering, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Aydin Najl Hossaini
- Inorganic Systems Engineering, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Avadakkam Sreenithya
- Inorganic Systems Engineering, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Evgeny A Pidko
- Inorganic Systems Engineering, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| |
Collapse
|
10
|
Jin H, Merz KM. Modeling Zinc Complexes Using Neural Networks. J Chem Inf Model 2024; 64:3140-3148. [PMID: 38587510 PMCID: PMC11040731 DOI: 10.1021/acs.jcim.4c00095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/04/2024] [Accepted: 03/28/2024] [Indexed: 04/09/2024]
Abstract
Understanding the energetic landscapes of large molecules is necessary for the study of chemical and biological systems. Recently, deep learning has greatly accelerated the development of models based on quantum chemistry, making it possible to build potential energy surfaces and explore chemical space. However, most of this work has focused on organic molecules due to the simplicity of their electronic structures as well as the availability of data sets. In this work, we build a deep learning architecture to model the energetics of zinc organometallic complexes. To achieve this, we have compiled a configurationally and conformationally diverse data set of zinc complexes using metadynamics to overcome the limitations of traditional sampling methods. In terms of the neural network potentials, our results indicate that for zinc complexes, partial charges play an important role in modeling the long-range interactions with a neural network. Our developed model outperforms semiempirical methods in predicting the relative energy of zinc conformers, yielding a mean absolute error (MAE) of 1.32 kcal/mol with reference to the double-hybrid PWPB95 method.
Collapse
Affiliation(s)
- Hongni Jin
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Kenneth M. Merz
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
11
|
Pracht P, Grimme S, Bannwarth C, Bohle F, Ehlert S, Feldmann G, Gorges J, Müller M, Neudecker T, Plett C, Spicher S, Steinbach P, Wesołowski PA, Zeller F. CREST-A program for the exploration of low-energy molecular chemical space. J Chem Phys 2024; 160:114110. [PMID: 38511658 DOI: 10.1063/5.0197592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 02/29/2024] [Indexed: 03/22/2024] Open
Abstract
Conformer-rotamer sampling tool (CREST) is an open-source program for the efficient and automated exploration of molecular chemical space. Originally developed in Pracht et al. [Phys. Chem. Chem. Phys. 22, 7169 (2020)] as an automated driver for calculations at the extended tight-binding level (xTB), it offers a variety of molecular- and metadynamics simulations, geometry optimization, and molecular structure analysis capabilities. Implemented algorithms include automated procedures for conformational sampling, explicit solvation studies, the calculation of absolute molecular entropy, and the identification of molecular protonation and deprotonation sites. Calculations are set up to run concurrently, providing efficient single-node parallelization. CREST is designed to require minimal user input and comes with an implementation of the GFNn-xTB Hamiltonians and the GFN-FF force-field. Furthermore, interfaces to any quantum chemistry and force-field software can easily be created. In this article, we present recent developments in the CREST code and show a selection of applications for the most important features of the program. An important novelty is the refactored calculation backend, which provides significant speed-up for sampling of small or medium-sized drug molecules and allows for more sophisticated setups, for example, quantum mechanics/molecular mechanics and minimum energy crossing point calculations.
Collapse
Affiliation(s)
- Philipp Pracht
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - Christoph Bannwarth
- Institute for Physical Chemistry, RWTH Aachen University, Melatener Str. 20, 52056 Aachen, Germany
| | - Fabian Bohle
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - Sebastian Ehlert
- AI4Science, Microsoft Research, Evert van de Beekstraat 354, 1118 CZ Schiphol, The Netherlands
| | - Gereon Feldmann
- Institute for Physical Chemistry, RWTH Aachen University, Melatener Str. 20, 52056 Aachen, Germany
| | - Johannes Gorges
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - Marcel Müller
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - Tim Neudecker
- Institute for Physical and Theoretical Chemistry, University of Bremen, 28359 Bremen, Germany
| | - Christoph Plett
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| | | | - Pit Steinbach
- Institute for Physical Chemistry, RWTH Aachen University, Melatener Str. 20, 52056 Aachen, Germany
| | - Patryk A Wesołowski
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Felix Zeller
- Institute for Physical and Theoretical Chemistry, University of Bremen, 28359 Bremen, Germany
| |
Collapse
|
12
|
Fataj X, Achazi AJ, Rohland P, Schröter E, Muench S, Burges R, Pohl KLH, Mollenhauer D, Hager MD, Schubert US. Development of Novel Redox-Active Organic Materials Based on Benzimidazole, Benzoxazole, and Benzothiazole: A Combined Theoretical and Experimental Screening Approach. Chemistry 2024; 30:e202302979. [PMID: 37950854 DOI: 10.1002/chem.202302979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/28/2023] [Accepted: 11/06/2023] [Indexed: 11/13/2023]
Abstract
Sustainability is one of the hot topics of today's research, in particular when it comes to energy-storage systems such as batteries. Redox-active molecules implemented in organic batteries represent a promising alternative to lithium-ion batteries, which partially rely on non-sustainable heavy metal salts. As an alternative, we propose benzothiazole, -oxazole and -imidazole derivatives as redox-active moieties for polymers in organic (radical) batteries. The target molecules were identified by a combination of theoretical and experimental approaches for the investigation of new organic active materials. Herein, we present the synthesis, electrochemical characterization and theoretical investigation of the proposed molecules, which can later be introduced into a polymer backbone and used in organic polymer batteries.
Collapse
Affiliation(s)
- Xhesilda Fataj
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743, Jena, Germany
| | - Andreas J Achazi
- Institute of Physical Chemistry, Justus-Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Gießen, Germany
- Center for Materials Research, Justus-Liebig University Giessen, Heinrich-Buff-Ring 16, 35392, Giessen, Germany
| | - Philip Rohland
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743, Jena, Germany
| | - Erik Schröter
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743, Jena, Germany
| | - Simon Muench
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743, Jena, Germany
| | - René Burges
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743, Jena, Germany
| | - K Linus H Pohl
- Institute of Physical Chemistry, Justus-Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Gießen, Germany
- Center for Materials Research, Justus-Liebig University Giessen, Heinrich-Buff-Ring 16, 35392, Giessen, Germany
| | - Doreen Mollenhauer
- Institute of Physical Chemistry, Justus-Liebig University Giessen, Heinrich-Buff-Ring 17, 35392, Gießen, Germany
- Center for Materials Research, Justus-Liebig University Giessen, Heinrich-Buff-Ring 16, 35392, Giessen, Germany
| | - Martin D Hager
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743, Jena, Germany
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743, Jena, Germany
| |
Collapse
|
13
|
Zapata-Rivera J, Calzado CJ. Dinitrogen Activation Mediated by the (P 2P Ph)Fe Complex: Electronic Structure, Dimerization Mechanism, and Magnetic Coupling. Inorg Chem 2024; 63:1633-1641. [PMID: 38194669 PMCID: PMC10954229 DOI: 10.1021/acs.inorgchem.3c03813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 01/11/2024]
Abstract
Herein, we report the estimation of the extent of dinitrogen activation by different charged and structural forms of (P2PPh)Fe biomimetic catalysts, which, in the presence of light, exhibit significant yield in the N2-to-NH3 conversion. Complete active space self-consistent field (CASSCF) calculations have been used to determine the electronic structure of different reduced forms of the mononuclear complexes: the neutral (P2PPh)Fe(N2)2 adduct and the anionic [(P2PPh)Fe(N2)]- and [(P2PPh)Fe(N2)]2- complexes. These calculations also revealed that the extent of reduction of a dinitrogen molecule reaches up to one electron (N21-) due to the back-bonding from the Fe center, in agreement with the changes observed in the vibration frequency of the N-N bond in these complexes. In addition, the energy profile of the dimerization of the mononuclear (P2PPh)Fe(N2)2 complex to the dinuclear mono-N2-bridged [(P2PPh)Fe]2(μ-N2) complex has been determined by means of density functional theory (DFT) calculations. A three-step mechanism has been proposed for the dimerization, favored by both kinetics and thermodynamics criteria. Finally, the magnetic coupling constant in the diiron (μ-N2) complex is estimated from CASSCF/NEVPT2 calculations. Such a dinuclear complex presents a strong antiferromagnetic coupling resulting from the interaction between two S = 1 d6 Fe2+ ions, bridged by a highly activated dinitrogen molecule (N22-) with two electrons on the π* orbitals.
Collapse
Affiliation(s)
- Jhon Zapata-Rivera
- Facultad
de Ciencias Naturales y Exactas, Departamento de Química, Universidad del Valle, Calle 13 N° 100–00, 25360 Cali, Colombia
| | - Carmen J. Calzado
- Departamento
de Química Física, Universidad
de Sevilla, c/Profesor
García González, s/n, 41012 Sevilla, Spain
| |
Collapse
|
14
|
Wappett D, Goerigk L. Benchmarking Density Functional Theory Methods for Metalloenzyme Reactions: The Introduction of the MME55 Set. J Chem Theory Comput 2023; 19:8365-8383. [PMID: 37943578 PMCID: PMC10688432 DOI: 10.1021/acs.jctc.3c00558] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 11/10/2023]
Abstract
We present a new benchmark set of metalloenzyme model reaction energies and barrier heights that we call MME55. The set contains 10 different enzymes, representing eight transition metals, both open and closed shell systems, and system sizes of up to 116 atoms. We use four DLPNO-CCSD(T)-based approaches to calculate reference values against which we then benchmark the performance of a range of density functional approximations with and without dispersion corrections. Dispersion corrections improve the results across the board, and triple-ζ basis sets provide the best balance of efficiency and accuracy. Jacob's ladder is reproduced for the whole set based on averaged mean absolute (percent) deviations, with the double hybrids SOS0-PBE0-2-D3(BJ) and revDOD-PBEP86-D4 standing out as the most accurate methods for the MME55 set. The range-separated hybrids ωB97M-V and ωB97X-V also perform well here and can be recommended as a reliable compromise between accuracy and efficiency; they have already been shown to be robust across many other types of chemical problems, as well. Despite the popularity of B3LYP in computational enzymology, it is not a strong performer on our benchmark set, and we discourage its use for enzyme energetics.
Collapse
Affiliation(s)
- Dominique
A. Wappett
- School of Chemistry, The University
of Melbourne, Melbourne, Victoria 3010, Australia
| | - Lars Goerigk
- School of Chemistry, The University
of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
15
|
Lutz JJ, Jensen DS, Hubbard JA. Deposition products predicted from conceptual DFT: The hydrolysis reactions of MoF6, WF6, and UF6. J Chem Phys 2023; 159:184305. [PMID: 37962449 DOI: 10.1063/5.0176552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Metal hexafluorides hydrolyze at ambient temperature to deposit compounds having fluorine-to-oxygen ratios that depend upon the identity of the metal. Uranium-hexafluoride hydrolysis, for example, deposits uranyl fluoride (UO2F2), whereas molybdenum hexafluoride (MoF6) and tungsten hexafluoride deposit trioxides. Here, we pursue general strategies enabling the prediction of depositing compounds resulting from multi-step gas-phase reactions. To compare among the three metal-hexafluoride hydrolyses, we first investigate the mechanism of MoF6 hydrolysis using hybrid density functional theory (DFT). Intermediates are then validated by performing anharmonic vibrational simulations and comparing with infrared spectra [McNamara et al., Phys. Chem. Chem. Phys. 25, 2990 (2023)]. Conceptual DFT, which is leveraged here to quantitatively evaluate site-specific electrophilicity and nucleophilicity metrics, is found to reliably predict qualitative deposition propensities for each intermediate. In addition to the nucleophilic potential of the oxygen ligands, several other contributing characteristics are discussed, including amphoterism, polyvalency, fluxionality, steric hindrance, dipolar strength, and solubility. To investigate the structure and composition of pre-nucleation clusters, an automated workflow is presented for the simulation of particle growth. The workflow entails a conformer search at the density functional tight-binding level, structural refinement at the hybrid DFT level, and computation of a composite free-energy profile. Such profiles can be used to estimate particle nucleation kinetics. Droplet formation is also considered, which helps to rationalize the different UO2F2 particle morphologies observed under varying levels of humidity. Development of predictive methods for simulating physical and chemical deposition processes is important for the advancement of material manufacturing involving coatings and thin films.
Collapse
Affiliation(s)
- Jesse J Lutz
- Center for Computing Research, Sandia National Laboratories, Albuquerque, New Mexico 87123, USA
| | - Daniel S Jensen
- Center for Computing Research, Sandia National Laboratories, Albuquerque, New Mexico 87123, USA
| | - Joshua A Hubbard
- Center for Computing Research, Sandia National Laboratories, Albuquerque, New Mexico 87123, USA
| |
Collapse
|
16
|
Neugebauer H, Pinski P, Grimme S, Neese F, Bursch M. Assessment of DLPNO-MP2 Approximations in Double-Hybrid DFT. J Chem Theory Comput 2023; 19:7695-7703. [PMID: 37862406 PMCID: PMC10653103 DOI: 10.1021/acs.jctc.3c00896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Indexed: 10/22/2023]
Abstract
The unfavorable scaling (N5) of the conventional second-order Møller-Plesset theory (MP2) typically prevents the application of double-hybrid (DH) density functionals to large systems with more than 100 atoms. A prominent approach to reduce the computational demand of electron correlation methods is the domain-based local pair natural orbital (DLPNO) approximation that is successfully used in the framework of DLPNO-CCSD(T). Its extension to MP2 [Pinski P.; Riplinger, C.; Valeev, E. F.; Neese, F. J. Chem. Phys. 2015, 143, 034108.] paved the way for DLPNO-based DH (DLPNO-DH) methods. In this work, we assess the accuracy of the DLPNO-DH approximation compared to conventional DHs on a large number of 7925 data points for thermochemistry and 239 data points for structural features, including main-group and transition-metal systems. It is shown that DLPNO-DH-DFT can be applied successfully to perform energy calculations and geometry optimizations for large molecules at a drastically reduced computational cost. Furthermore, PNO space extrapolation is shown to be applicable, similar to its DLPNO-CCSD(T) counterpart, to reduce the remaining error.
Collapse
Affiliation(s)
- Hagen Neugebauer
- Mulliken
Center for Theoretical Chemistry, Clausius Institute for Physical
and Theoretical Chemistry, University of
Bonn, Beringstraße 4, D-53115 Bonn, Germany
| | - Peter Pinski
- HQS
Quantum Simulations GmbH, Rintheimer Straße 23, D-76131 Karlsruhe, Germany
| | - Stefan Grimme
- Mulliken
Center for Theoretical Chemistry, Clausius Institute for Physical
and Theoretical Chemistry, University of
Bonn, Beringstraße 4, D-53115 Bonn, Germany
| | - Frank Neese
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Markus Bursch
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
17
|
Neugebauer H, Bädorf B, Ehlert S, Hansen A, Grimme S. High-throughput screening of spin states for transition metal complexes with spin-polarized extended tight-binding methods. J Comput Chem 2023; 44:2120-2129. [PMID: 37401535 DOI: 10.1002/jcc.27185] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 07/05/2023]
Abstract
The semiempirical GFNn-xTB ( n = 1 , 2 ) tight-binding methods are extended with a spin-dependent energy term (spin-polarization), enabling the fast and efficient screening of different spin states for transition metal complexes. While GFNn-xTB methods inherently can not differentiate properly between high-spin (HS) and low-spin (LS) states, this shortcoming is corrected with the presented methods termed spGFNn-xTB. The performance of spGFNn-xTB methods for spin state energy splittings is evaluated on a newly compiled benchmark set of 90 complexes (27 HS and 63 LS complexes) containing 3d, 4d, and 5d transition metals (termed TM90S) employing DFT references at the TPSSh-D4/def2-QZVPP level of theory. The challenging TM90S set contains complexes with charges between - 4 and +3, spin multiplicities between 1 and 6, and spin-splitting energies that range from - 47.8 to 146.6 kcal/mol with a mean average of 32.2 kcal/mol. On this set the (sp)GFNn-xTB methods, the PM6-D3H4 method, and the PM7 method are evaluated with spGFN1-xTB yielding the lowest MAD of 19.6 kcal/mol followed by spGFN2-xTB with 24.8 kcal/mol. While for the 4d and 5d subsets small or no improvements are observed with spin-polarization, large improvements are obtained for the 3d subset with spGFN1-xTB yielding the smallest MAD of 14.2 kcal/mol followed by spGFN2-xTB with 17.9 kcal/mol and PM6-D3H4 with 28.4 kcal/mol. The correct sign of the spin state splittings is obtained with spGFN2-xTB in 89% of all cases closely followed by spGFN1-xTB with 88%. On the full set, a pure semiempirical vertical spGFN2-xTB//GFN2-xTB-based workflow for screening purposes yields a slightly better MAD of 22.2 kcal/mol due to error compensation, while being qualitative correct for one additional case. In combination with their low computational cost (scanning spin states in seconds), the spGFNn-xTB methods represent robust tools for pre-screening steps of spin state calculations and high-throughput workflows.
Collapse
Affiliation(s)
- Hagen Neugebauer
- Mulliken Center for Theoretical Chemistry, University of Bonn, Bonn, Germany
| | - Benedikt Bädorf
- Mulliken Center for Theoretical Chemistry, University of Bonn, Bonn, Germany
| | | | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry, University of Bonn, Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, University of Bonn, Bonn, Germany
| |
Collapse
|
18
|
Talmazan RA, Podewitz M. PyConSolv: A Python Package for Conformer Generation of (Metal-Containing) Systems in Explicit Solvent. J Chem Inf Model 2023; 63:5400-5407. [PMID: 37606893 PMCID: PMC10498442 DOI: 10.1021/acs.jcim.3c00798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Indexed: 08/23/2023]
Abstract
We introduce PyConSolv, a freely available Python package that automates the generation of conformers of metal- and nonmetal-containing complexes in explicit solvent, through classical molecular dynamics simulations. Using a streamlined workflow and interfacing with widely used computational chemistry software, PyConSolv is an all-in-one tool for the generation of conformers in any solvent. Input requirements are minimal; only the geometry of the structure and the desired solvent in xyz (XMOL) format are needed. The package can also account for charged systems, by including arbitrary counterions in the simulation. A bonded model parametrization is performed automatically, utilizing AmberTools, ORCA, and Multiwfn software packages. PyConSolv provides a selection of preparametrized solvents and counterions for use in classical molecular dynamics simulations. We show the applicability of our package on a number of (transition-metal-containing) systems. The software is provided open source and free of charge.
Collapse
Affiliation(s)
- R. A. Talmazan
- Institute
of Materials Chemistry, TU Wien, Getreidemarkt 9, A-1060 Wien, Austria
| | - M. Podewitz
- Institute
of Materials Chemistry, TU Wien, Getreidemarkt 9, A-1060 Wien, Austria
| |
Collapse
|
19
|
Yang X, Li N, Li Y, Pang S. Can Catenated Nitrogen Compounds with Amine-like Structures Become Candidates for High-Energy-Density Compounds? J Org Chem 2023; 88:12481-12492. [PMID: 37590038 PMCID: PMC10476612 DOI: 10.1021/acs.joc.3c01225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Indexed: 08/18/2023]
Abstract
The worthwhile idea of whether amine-like catenated nitrogen compounds are stable enough to be used as high-energy materials was proposed and answered. Abstracting the NH3 structure into NR3 (R is the substituent) yields a new class of amine-like catenated nitrogen compounds. Most of the azole ring structures have a high nitrogen content and stability. Inspired by this idea, a series of new amine-like catenated nitrogen compounds (A1 to H5) were designed, and their basic energetic properties were calculated. The results showed that (1) amine-like molecular structures are often characterized by low density; however, the density of these compounds increases as the number of nitrogens in the azole ring increases; (2) these catenated nitrogen compounds generally have extremely high enthalpies of formation (882.91-2652.03 kJ/mol), and the detonation velocity of some compounds exceeds 9254.00 m/s; (3) the detonation performance of amine-like catenated nitrogen compounds designed based on imidazole and pyrazole rings is poor due to their low nitrogen content; and (4) the bond dissociation enthalpy of trigger bonds of most compounds is higher than 84 kJ/mol, indicating that these compounds have a certain thermodynamic stability. In summary, amine-like catenated nitrogen compounds have the potential to become energetic compounds with excellent detonation properties and should be considered to be synthesized by experimental chemists.
Collapse
Affiliation(s)
- Xinbo Yang
- School
of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
- School
of Mechatronical Engineering, Beijing Institute
of Technology, Beijing 100081, China
| | - Nan Li
- School
of Mechatronical Engineering, Beijing Institute
of Technology, Beijing 100081, China
| | - Yuchuan Li
- School
of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Siping Pang
- School
of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
20
|
Staub R, Gantzer P, Harabuchi Y, Maeda S, Varnek A. Challenges for Kinetics Predictions via Neural Network Potentials: A Wilkinson's Catalyst Case. Molecules 2023; 28:molecules28114477. [PMID: 37298952 DOI: 10.3390/molecules28114477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Ab initio kinetic studies are important to understand and design novel chemical reactions. While the Artificial Force Induced Reaction (AFIR) method provides a convenient and efficient framework for kinetic studies, accurate explorations of reaction path networks incur high computational costs. In this article, we are investigating the applicability of Neural Network Potentials (NNP) to accelerate such studies. For this purpose, we are reporting a novel theoretical study of ethylene hydrogenation with a transition metal complex inspired by Wilkinson's catalyst, using the AFIR method. The resulting reaction path network was analyzed by the Generative Topographic Mapping method. The network's geometries were then used to train a state-of-the-art NNP model, to replace expensive ab initio calculations with fast NNP predictions during the search. This procedure was applied to run the first NNP-powered reaction path network exploration using the AFIR method. We discovered that such explorations are particularly challenging for general purpose NNP models, and we identified the underlying limitations. In addition, we are proposing to overcome these challenges by complementing NNP models with fast semiempirical predictions. The proposed solution offers a generally applicable framework, laying the foundations to further accelerate ab initio kinetic studies with Machine Learning Force Fields, and ultimately explore larger systems that are currently inaccessible.
Collapse
Affiliation(s)
- Ruben Staub
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo 001-0021, Japan
| | - Philippe Gantzer
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo 001-0021, Japan
| | - Yu Harabuchi
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo 001-0021, Japan
- Japan Science and Technology Agency (JST), ERATO Maeda Artificial Intelligence in Chemical Reaction Design and Discovery Project, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0810, Japan
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0810, Japan
| | - Satoshi Maeda
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo 001-0021, Japan
- Japan Science and Technology Agency (JST), ERATO Maeda Artificial Intelligence in Chemical Reaction Design and Discovery Project, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0810, Japan
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0810, Japan
- Research and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Alexandre Varnek
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo 001-0021, Japan
- Laboratory of Chemoinformatics, UMR 7140, CNRS, University of Strasbourg, 67081 Strasbourg, France
| |
Collapse
|
21
|
Taylor MG, Burrill DJ, Janssen J, Batista ER, Perez D, Yang P. Architector for high-throughput cross-periodic table 3D complex building. Nat Commun 2023; 14:2786. [PMID: 37188661 PMCID: PMC10185541 DOI: 10.1038/s41467-023-38169-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Rare-earth and actinide complexes are critical for a wealth of clean-energy applications. Three-dimensional (3D) structural generation and prediction for these organometallic systems remains a challenge, limiting opportunities for computational chemical discovery. Here, we introduce Architector, a high-throughput in-silico synthesis code for s-, p-, d-, and f-block mononuclear organometallic complexes capable of capturing nearly the full diversity of the known experimental chemical space. Beyond known chemical space, Architector performs in-silico design of new complexes including any chemically accessible metal-ligand combinations. Architector leverages metal-center symmetry, interatomic force fields, and tight binding methods to build many possible 3D conformers from minimal 2D inputs including metal oxidation and spin state. Over a set of more than 6,000 x-ray diffraction (XRD)-determined complexes spanning the periodic table, we demonstrate quantitative agreement between Architector-predicted and experimentally observed structures. Further, we demonstrate out-of-the box conformer generation and energetic rankings of non-minimum energy conformers produced from Architector, which are critical for exploring potential energy surfaces and training force fields. Overall, Architector represents a transformative step towards cross-periodic table computational design of metal complex chemistry.
Collapse
Affiliation(s)
- Michael G Taylor
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Daniel J Burrill
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Jan Janssen
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Enrique R Batista
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| | - Danny Perez
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| | - Ping Yang
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| |
Collapse
|
22
|
Cytter Y, Nandy A, Duan C, Kulik HJ. Insights into the deviation from piecewise linearity in transition metal complexes from supervised machine learning models. Phys Chem Chem Phys 2023; 25:8103-8116. [PMID: 36876903 DOI: 10.1039/d3cp00258f] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Virtual high-throughput screening (VHTS) and machine learning (ML) with density functional theory (DFT) suffer from inaccuracies from the underlying density functional approximation (DFA). Many of these inaccuracies can be traced to the lack of derivative discontinuity that leads to a curvature in the energy with electron addition or removal. Over a dataset of nearly one thousand transition metal complexes typical of VHTS applications, we computed and analyzed the average curvature (i.e., deviation from piecewise linearity) for 23 density functional approximations spanning multiple rungs of "Jacob's ladder". While we observe the expected dependence of the curvatures on Hartree-Fock exchange, we note limited correlation of curvature values between different rungs of "Jacob's ladder". We train ML models (i.e., artificial neural networks or ANNs) to predict the curvature and the associated frontier orbital energies for each of these 23 functionals and then interpret differences in curvature among the different DFAs through analysis of the ML models. Notably, we observe spin to play a much more important role in determining the curvature of range-separated and double hybrids in comparison to semi-local functionals, explaining why curvature values are weakly correlated between these and other families of functionals. Over a space of 187.2k hypothetical compounds, we use our ANNs to pinpoint DFAs for which representative transition metal complexes have near-zero curvature with low uncertainty, demonstrating an approach to accelerate screening of complexes with targeted optical gaps.
Collapse
Affiliation(s)
- Yael Cytter
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Aditya Nandy
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Chenru Duan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
23
|
Yang XB, Jia CH, Miao XY, Li YC, Pang SP. Synthesis and characterization of potential polycyclic energetic materials using bicyclic triazole and azetidine structures as building blocks. RSC Adv 2023; 13:2600-2610. [PMID: 36741148 PMCID: PMC9843695 DOI: 10.1039/d2ra06646g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/20/2022] [Indexed: 01/18/2023] Open
Abstract
Exploring the design strategy of new energetic materials is crucial to promote the development of energetic materials. In this study, a method for designing polycyclic energetic materials is proposed by combining the azetidine structure with azobis-1,2,4-triazole or bi-1,2,4-triazole. A series of typical triazolyl polycyclic compounds were designed and synthesized by simple nucleophilic reaction, which included 5,5'-dichloro-3,3'-bis(3,3'-difluoroazetidine)-4,4'-azobis-1,2,4-triazole (1), 5,5'-dichloro-3,3'-bis(3,3'-difluoroazetidine)-4,4'-bi-1,2,4-triazole (2), 5,5'-dichloro-3-(N,N-dimethyl)-3'-(3,3'-difluoroazetidine)-4,4'-bi-1,2,4-triazole (3) 5,5'-dichloro-3,3'-bis(3,3'-dinitroazetidine)-4,4'-bi-1,2,4-triazole (4), 5,5'-dichloro-3-(N,N-dimethyl)-3'-(3,3'-dinitroazetidine)-4,4'-bi-1,2,4-triazole (5), and 5,5'-diazido-3,3'-bis(3,3'-difluoroazetidine)-4,4'-azo-1,2,4-triazole (6). These designed and synthesized polycyclic compounds (1, 2, 3) have high decomposition temperatures (>200 °C). The molecular van der Waals surface electrostatic potentials suggested the reactivity of compounds 1, 2, and 3 when attacked by nucleophiles. The natural bond orbital and Hirshfeld surface analysis proved the essential reason for the stability of these compounds in theory. The formula design example suggests that some triazolyl polycyclic compounds (4, 5, and 6) are potentially explosives, suggesting that this strategy is feasible for constructing the triazolyl polycyclic energetic compounds.
Collapse
Affiliation(s)
- Xin-bo Yang
- School of Materials Science & Engineering, Beijing Institute of TechnologyBeijing 100081China,School of Mechatronical Engineering, Beijing Institute of TechnologyBeijing 100081China
| | - Chen-hui Jia
- Beijing Composite Materials Co., LtdNo. 261 Kangxi Road, Badaling Economic Development Zone, Yanqing DistrictBeijing102101China
| | - Xiang-yan Miao
- School of Materials Science & Engineering, Beijing Institute of TechnologyBeijing 100081China
| | - Yu-chuan Li
- School of Materials Science & Engineering, Beijing Institute of TechnologyBeijing 100081China
| | - Si-ping Pang
- School of Materials Science & Engineering, Beijing Institute of TechnologyBeijing 100081China
| |
Collapse
|
24
|
Müller M, Hansen A, Grimme S. ωB97X-3c: A composite range-separated hybrid DFT method with a molecule-optimized polarized valence double-ζ basis set. J Chem Phys 2023; 158:014103. [PMID: 36610980 DOI: 10.1063/5.0133026] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A new composite density functional theory (DFT) method is presented. It is based on ωB97X-V as one of the best-performing density functionals for the GMTKN55 thermochemistry database and completes the family of "3c" methods toward range-separated hybrid DFT. This method is consistently available for all elements up to Rn (Z = 1-86). Its further key ingredients are a polarized valence double-ζ (vDZP) Gaussian basis set, which was fully optimized in molecular DFT calculations, in combination with large-core effective core potentials and a specially adapted D4 dispersion correction. Unlike most existing double-ζ atomic orbital sets, vDZP shows only small basis set superposition errors (BSSEs) and can compete with standard sets of triple-ζ quality. Small residual BSSE effects are efficiently absorbed by the D4 damping scheme, which overall eliminates the need for an explicit treatment or empirical corrections for BSSE. Thorough tests on a variety of thermochemistry benchmark sets show that the new composite method, dubbed ωB97X-3c, is on par with or even outperforms standard hybrid DFT methods in a quadruple-zeta basis set at a small fraction of the computational cost. Particular strengths of this method are the description of non-covalent interactions and barrier heights, for which it is among the best-performing density functionals overall.
Collapse
Affiliation(s)
- Marcel Müller
- Mulliken Center for Theoretical Chemistry, Clausius-Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms Universität Bonn, Beringstraße 4, 53115 Bonn, Germany
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry, Clausius-Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms Universität Bonn, Beringstraße 4, 53115 Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Clausius-Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms Universität Bonn, Beringstraße 4, 53115 Bonn, Germany
| |
Collapse
|
25
|
Bursch M, Mewes J, Hansen A, Grimme S. Best-Practice DFT Protocols for Basic Molecular Computational Chemistry. Angew Chem Int Ed Engl 2022; 61:e202205735. [PMID: 36103607 PMCID: PMC9826355 DOI: 10.1002/anie.202205735] [Citation(s) in RCA: 153] [Impact Index Per Article: 76.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Indexed: 01/11/2023]
Abstract
Nowadays, many chemical investigations are supported by routine calculations of molecular structures, reaction energies, barrier heights, and spectroscopic properties. The lion's share of these quantum-chemical calculations applies density functional theory (DFT) evaluated in atomic-orbital basis sets. This work provides best-practice guidance on the numerous methodological and technical aspects of DFT calculations in three parts: Firstly, we set the stage and introduce a step-by-step decision tree to choose a computational protocol that models the experiment as closely as possible. Secondly, we present a recommendation matrix to guide the choice of functional and basis set depending on the task at hand. A particular focus is on achieving an optimal balance between accuracy, robustness, and efficiency through multi-level approaches. Finally, we discuss selected representative examples to illustrate the recommended protocols and the effect of methodological choices.
Collapse
Affiliation(s)
- Markus Bursch
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Jan‐Michael Mewes
- Mulliken Center for Theoretical ChemistryInstitut für Physikalische und Theoretische ChemieUniversität BonnBeringstraße 453115BonnGermany
| | - Andreas Hansen
- Mulliken Center for Theoretical ChemistryInstitut für Physikalische und Theoretische ChemieUniversität BonnBeringstraße 453115BonnGermany
| | - Stefan Grimme
- Mulliken Center for Theoretical ChemistryInstitut für Physikalische und Theoretische ChemieUniversität BonnBeringstraße 453115BonnGermany
| |
Collapse
|
26
|
Iwanek W. Theoretical calculations of formation and reactivity of o-quinomethide derivatives of resorcin[4]arene with reference to empirical data. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220541. [PMID: 36249340 PMCID: PMC9554518 DOI: 10.1098/rsos.220541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
This paper describes theoretical reaction pathways of alkoxybenzyl derivatives of resorcin[4]arene leading to the formation of o-quinomethide derivatives of resorcin[4]arene (o-QMR[4]A). For each case, the activation energies for the formation of one o-QMR[4]A unit and the activation energies for the backward reaction were calculated. Based on the calculated reaction pathways, the reaction mechanism of o-QMR[4]A formation was proposed. Using the example of o-QMR[4]A generated from a methoxy derivative of resorcin[4]arene, the activation energies with selected nucleophiles were calculated and the reaction mechanisms discussed. Reaction path calculations were performed using the nudged elastic band method and semiempirical extended tight-binding method (GFN2-xTB). Using hydroxybenzyl derivatives of resorcin[4]arene as an example, a comparison of calculated activation energies by selected density-functional theory methods with GFN2-xTB and B97-3c geometries was performed. B97-3c and wB97XD methods were used to calculate the energies of the reactants (R), transition states (TS) and products (P) of the analysed reactions. Theoretical reaction mechanisms were discussed with respect to the orbital-weighted Fukui dual descriptor (Δfw ) and experimental data.
Collapse
Affiliation(s)
- Waldemar Iwanek
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3, 85-326 Bydgoszcz, Poland
| |
Collapse
|
27
|
Lawniczak JJ, Zhang X, Christianson M, Bailey B, Bremer S, Barcia S, Mukhopadhyay S, Klosin J, Miller TF. Solution-Phase Conformational/Vibrational Anharmonicity in Comonomer Incorporation Polyolefin Catalysis. J Phys Chem A 2022; 126:6858-6869. [PMID: 36137217 DOI: 10.1021/acs.jpca.2c04038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The prediction of comonomer incorporation statistics in polyolefin catalysis necessitates an accurate calculation of free energies corresponding to monomer binding and insertion, often requiring sub-kcal/mol resolution to resolve experimental free energies. Batch reactor experiments are used to probe incorporation statistics of ethene and larger α-olefins for three constrained geometry complexes which are employed as model systems. Herein, over 6 ns of quantum mechanics/molecular mechanics (QM/MM) molecular dynamics is performed in combination with the zero-temperature string method to characterize the solution-phase insertion barrier and to analyze the contributions from conformational and vibrational anharmonicity arising both in vacuum and in solution. Conformational sampling in the solution-phase results in 0-2 kcal/mol corrections to the insertion barrier which are on the same scale necessary to resolve experimental free energies. Anharmonic contributions from conformational sampling in the solution phase are crucial energy contributions missing from static density functional theory calculations and implicit solvation models, and the accurate calculation of these contributions is a key step toward the quantitative prediction of comonomer incorporation statistics.
Collapse
Affiliation(s)
- James J Lawniczak
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Xinglong Zhang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | | | - Brad Bailey
- The Dow Chemical Company, Midland, Michigan 48674, United States
| | - Sean Bremer
- The Dow Chemical Company, Midland, Michigan 48674, United States
| | - Sarah Barcia
- Kelly Services, Inc., Troy, Michigan 48084, United States
| | | | - Jerzy Klosin
- The Dow Chemical Company, Midland, Michigan 48674, United States
| | - Thomas F Miller
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
28
|
Bursch M, Mewes J, Hansen A, Grimme S. Best‐Practice DFT Protocols for Basic Molecular Computational Chemistry**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Markus Bursch
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Jan‐Michael Mewes
- Mulliken Center for Theoretical Chemistry Institut für Physikalische und Theoretische Chemie Universität Bonn Beringstraße 4 53115 Bonn Germany
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry Institut für Physikalische und Theoretische Chemie Universität Bonn Beringstraße 4 53115 Bonn Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry Institut für Physikalische und Theoretische Chemie Universität Bonn Beringstraße 4 53115 Bonn Germany
| |
Collapse
|
29
|
Otlyotov AA, Minenkov Y. Conformational energies of microsolvated Na + clusters with protic and aprotic solvents from GFNn-xTB methods. J Comput Chem 2022; 43:1856-1863. [PMID: 36053781 DOI: 10.1002/jcc.26988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/13/2022] [Accepted: 08/08/2022] [Indexed: 11/10/2022]
Abstract
Performance of contemporary tight-binding semiempirical GFNn-xTB methods for the conformational energies of singly charged sodium clusters Na+ (S)n (n = 4-8) with 3 protic and 8 aprotic solvents is examined against the reference RI-MP2/CBS method. The median Pearson correlation coefficients of ρ = 0.84 (GFN2-xTB) and ρ = 0.82 (GFN1-xTB) do not give the clear preference to any tested approach. GFN1-xTB method demonstrates more stable performance than its GFN2-xTB successor with the average mean absolute errors (MAEs)/mean signed errors (MSEs) of 1.2/0.2 and 2.3/1.6 kcal mol-1 , respectively. Conformational energies produced by the computationally efficient DFT functional PBE and double-ζ basis set complemented with -D3(BJ) dispersion correction are suitable for the preliminary sampling (median ρ = 0.93), but should be used with a caution for the calculations of the average ensemble properties (MAE/MSE = 1.7/1.1 kcal mol-1 ). Higher-ranking PBE0-D3(BJ) and ωB97M-V with triple-ζ basis sets yield significantly lower MAEs/MSEs of 0.55/0.20 and 0.51/0.23 kcal mol-1 , respectively.
Collapse
Affiliation(s)
- Arseniy A Otlyotov
- N.N. Semenov Federal Research Center for Chemical Physics RAS, Moscow, Russian Federation
| | - Yury Minenkov
- N.N. Semenov Federal Research Center for Chemical Physics RAS, Moscow, Russian Federation.,Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
30
|
Interaction mechanism of cholesterol/β-cyclodextrin complexation by combined experimental and computational approaches. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Quesada JV, Chmela J, Greisch JF, Klopper W, Harding ME. A litmus test for the balanced description of dispersion interactions and coordination chemistry of lanthanoids. Phys Chem Chem Phys 2022; 24:25106-25117. [PMID: 35920212 DOI: 10.1039/d2cp01414a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The influence of long-range interactions on the structure of complexes of Eu(III) with four 9-hydroxy-phenalen-1-one ligands (HPLN) and one alkaline earth metal dication [Eu(PLN)4AE]+ (AE: Mg, Ca, Sr, and Ba) is analyzed. Through the [Eu(PLN)4Ca]+ complex, which is a charged complex with two metals-one of them a lanthanoid-and with four relatively fluxional π-ligands, the difficulties of describing such systems are identified. The inclusion of the D3(BJ) or D4 corrections to different density functionals introduces significant changes in the structure, which are shown to stem from the interaction between pairs of PLN ligands. This interaction is studied further with a variety of density functionals, wave-function based methods, and by means of the random phase approximation. By comparing the computed results with those from experimental evidence of gas-phase photoluminescence and ion mobility measurements it is concluded that the inclusion of dispersion corrections does not always yield structures that are in agreement with the experimental findings.
Collapse
Affiliation(s)
- Juana Vázquez Quesada
- Institut für Physikalische Chemie, Karlsruher Institut für Technologie (KIT), Campus Süd, Postfach 6980, D-76049 Karlsruhe, Germany.
| | - Jiří Chmela
- Institut für Physikalische Chemie, Karlsruher Institut für Technologie (KIT), Campus Süd, Postfach 6980, D-76049 Karlsruhe, Germany.
| | - Jean-François Greisch
- Institut für Nanotechnologie, Karlsruher Institut für Technologie (KIT), Campus Nord, Postfach 3640, D-76021 Karlsruhe, Germany.
| | - Wim Klopper
- Institut für Physikalische Chemie, Karlsruher Institut für Technologie (KIT), Campus Süd, Postfach 6980, D-76049 Karlsruhe, Germany. .,Institut für Nanotechnologie, Karlsruher Institut für Technologie (KIT), Campus Nord, Postfach 3640, D-76021 Karlsruhe, Germany.
| | - Michael E Harding
- Institut für Nanotechnologie, Karlsruher Institut für Technologie (KIT), Campus Nord, Postfach 3640, D-76021 Karlsruhe, Germany.
| |
Collapse
|
32
|
Sugiarto S, Minato T, Sakiyama H, Sadakane M. Anion‐directed conformation switching and trigonal distortion in hexakis(methylamine)nickel(II) cations. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sugiarto Sugiarto
- Hiroshima University Applied Chemistry 1-4-1 Kagamiyama 7398527 Higashi-Hiroshima JAPAN
| | - Takuo Minato
- Hiroshima University: Hiroshima Daigaku Department of Applied Chemistry JAPAN
| | - Hiroshi Sakiyama
- Yamagata University: Yamagata Daigaku Department of Science, Faculty of Science JAPAN
| | - Masahiro Sadakane
- Hiroshima University: Hiroshima Daigaku Department of Applied Chemistry JAPAN
| |
Collapse
|
33
|
Fey N, Lynam JM. Computational mechanistic study in organometallic catalysis: Why prediction is still a challenge. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1590] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Natalie Fey
- School of Chemistry University of Bristol, Cantock's Close Bristol UK
| | | |
Collapse
|
34
|
Gasevic T, Stückrath JB, Grimme S, Bursch M. Optimization of the r 2SCAN-3c Composite Electronic-Structure Method for Use with Slater-Type Orbital Basis Sets. J Phys Chem A 2022; 126:3826-3838. [PMID: 35654439 PMCID: PMC9255700 DOI: 10.1021/acs.jpca.2c02951] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The "Swiss army knife" composite density functional electronic-structure method r2SCAN-3c (J. Chem. Phys. 2021, 154, 064103) is extended and optimized for the use with Slater-type orbital basis sets. The meta generalized-gradient approximation (meta-GGA) functional r2SCAN by Furness et al. is combined with a tailor-made polarized triple-ζ Slater-type atomic orbital (STO) basis set (mTZ2P), the semiclassical London dispersion correction (D4), and a geometrical counterpoise (gCP) correction. Relativistic effects are treated explicitly with the scalar-relativistic zeroth-order regular approximation (SR-ZORA). The performance of the new implementation is assessed on eight geometry and 74 energy benchmark sets, including the extensive GMTKN55 database as well as recent sets such as ROST61 and IONPI19. In geometry optimizations, the STO-based r2SCAN-3c is either on par with or more accurate than the hybrid density functional approximation M06-2X-D3(0)/TZP. In energy calculations, the overall accuracy is similar to the original implementation of r2SCAN-3c with Gaussian-type atomic orbitals (GTO), but basic properties, intermolecular noncovalent interactions, and barrier heights are better described with the STO approach, resulting in a lower weighted mean absolute deviation (WTMAD-2(STO) = 7.15 vs 7.50 kcal mol-1 with the original method) for the GMTKN55 database. The STO-optimized r2SCAN-3c outperforms many conventional hybrid/QZ approaches in most common applications at a fraction of their cost. The reliable, robust, and accurate r2SCAN-3c implementation with STOs is a promising alternative to the original implementation with GTOs and can be generally used for a broad field of quantum chemical problems.
Collapse
Affiliation(s)
- Thomas Gasevic
- Mulliken Center for Theoretical Chemistry, Universität Bonn, Beringstr. 4, D-53115 Bonn, Germany
| | - Julius B Stückrath
- Mulliken Center for Theoretical Chemistry, Universität Bonn, Beringstr. 4, D-53115 Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Universität Bonn, Beringstr. 4, D-53115 Bonn, Germany
| | - Markus Bursch
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
35
|
Jain A, Fostvedt JI, Kriegel BM, Small DW, Grant LN, Bergman RG, Arnold J. [3 + 2] Cycloadditions and Retrocycloadditions of Niobium Imido Complexes: An Experimental and Computational Mechanistic Study. Inorg Chem 2022; 61:6574-6583. [PMID: 35436407 DOI: 10.1021/acs.inorgchem.2c00428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We demonstrate reactivity between a β-diketiminate-supported niobium(III) imido complex and alkyl azides to form niobatetrazene complexes (BDI)Nb(NtBu)(RNNNNR) (BDI = N,N-bis(2,6-diisopropylphenyl)-3,5-dimethyl-β-diketiminate; R = cyclohexyl (1), benzyl (2)). Intriguingly, niobatetrazene complexes 1 and 2 can be interconverted via addition of an appropriate alkyl azide, likely through a series of concerted [3 + 2] cycloaddition and retrocycloaddition reactions in which π-loaded bis(imido) intermediates are formed. The bis(imido) intermediates were trapped upon addition of alkyl isocyanides to yield five-coordinate bis(imido) complexes (BDI)Nb(NtBu)(NCy)(CNR) (R = tert-butyl (4a), cyclohexyl (4b)). Two computational methods─density functional theory and density functional tight binding (DFTB)─were employed to calculate the lowest energy pathway across the potential energy surface for this multistep transformation. Reaction path calculations for individual cycloaddition or retrocycloaddition processes along the multistep reaction pathway showed that these transformations occur via a concerted, yet highly asynchronous mechanism, in which the two bond-breaking or -making events do not occur simultaneously. The use of the DFTB method in this work highlights its advantages and utility for studying transition metal systems.
Collapse
Affiliation(s)
- Anukta Jain
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Jade I Fostvedt
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Benjamin M Kriegel
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - David W Small
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Lauren N Grant
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Robert G Bergman
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - John Arnold
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
36
|
Nambigari N, Kodipaka A, Vuradi RK, Airva PK, Sirasani S. A Biophysical Study of Ru(II) Polypyridyl Complex, Properties and its Interaction with DNA. J Fluoresc 2022; 32:1211-1228. [PMID: 35353277 DOI: 10.1007/s10895-021-02879-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/17/2021] [Indexed: 10/18/2022]
Abstract
Mononuclear Ru(II)Polypyridyl complexes of type [Ru(A)2BPIIP] (ClO4)2.2H2O, where BPIIP = 2-(3-(4-bromophenyl)isoxazole-5-yl)-1 H-imidazo [4,5-f] [1, 10] phenanthroline and A = bpy = bipyridyl (1), phen = 1,10 Phenanthroline (2), dmb = 4, 4' -dimethyl 2, 2'- bipyridine (3) & dmp = 4,4'-dimethyl-1,10 -Ortho Phenanthroline (4), were synthesized and their antibacterial activity were examined. The synthesized complexes were characterized and their interaction with DNA was studied using Computational and Biophysical methods (Absorption, emission methods, and viscosity). Molecular modelling studies were carried out for molecular geometry and electronic properties (Frontier molecular orbital HOMO-LUMO). The electrostatic potential surface contours for the complexes were analysed to give their nucleophilic level of sensitivity. The study reveals that the Ru(II) Polypyridyl complexes bind to DNA preponderantly by intercalation. The results recommend that the phen and dmp complex have more effective binding ability than the bpy and dmb, indicating the role of the ancillary ligand in determining their specificity for DNA binding. Further molecular docking studies suggested an octahedral geometry and bind to DNA by preferential binding to Guanine. The docking study additionally sustains the binding constant data acquired with the absorption and emission techniques.The results reveal that the nature of the ancillary Ligand plays a considerable role for the intercalation of the Ru(II) polypyridyl complex to DNA, which subsequently influences the antibacterial activity. Biological studies conducted on Gram-Negative (E.coli and K.pneumonia) and Gram-Positive (S. aureus and E. faecalis) bacteria establish that complex 1 and 2 were considerably active against S. aureus and E. coli.
Collapse
Affiliation(s)
- Navaneetha Nambigari
- Department of Chemistry, University College of Science, Osmania University, Saifabad, Telangana State, 500004, India. .,Department of Chemistry, University College of Science, Osmania University, Tarnaka, Telangana State, 500007, India.
| | - Aruna Kodipaka
- Department of Chemistry, University College of Science, Osmania University, Saifabad, Telangana State, 500004, India
| | - Ravi Kumar Vuradi
- Department of Chemistry, University College of Science, Osmania University, Tarnaka, Telangana State, 500007, India
| | - Praveen Kumar Airva
- Department of Biotechnology, Sri Satya Sai University of Technology & Medical Sciences, Bhopal- Indore Road, Opp. Oilfed Plant, Sehore, Madhya Pradesh, 466001, India
| | - Satyanarayana Sirasani
- Department of Chemistry, University College of Science, Osmania University, Tarnaka, Telangana State, 500007, India.
| |
Collapse
|
37
|
Tarzia A, Jelfs KE. Unlocking the computational design of metal-organic cages. Chem Commun (Camb) 2022; 58:3717-3730. [PMID: 35229861 PMCID: PMC8932387 DOI: 10.1039/d2cc00532h] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/22/2022] [Indexed: 12/11/2022]
Abstract
Metal-organic cages are macrocyclic structures that can possess an intrinsic void that can hold molecules for encapsulation, adsorption, sensing, and catalysis applications. As metal-organic cages may be comprised from nearly any combination of organic and metal-containing components, cages can form with diverse shapes and sizes, allowing for tuning toward targeted properties. Therefore, their near-infinite design space is almost impossible to explore through experimentation alone and computational design can play a crucial role in exploring new systems. Although high-throughput computational design and screening workflows have long been known as powerful tools in drug and materials discovery, their application in exploring metal-organic cages is more recent. We show examples of structure prediction and host-guest/catalytic property evaluation of metal-organic cages. These examples are facilitated by advances in methods that handle metal-containing systems with improved accuracy and are the beginning of the development of automated cage design workflows. We finally outline a scope for how high-throughput computational methods can assist and drive experimental decisions as the field pushes toward functional and complex metal-organic cages. In particular, we highlight the importance of considering realistic, flexible systems.
Collapse
Affiliation(s)
- Andrew Tarzia
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, Wood Lane, London, W12 0BZ, UK.
| | - Kim E Jelfs
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, White City Campus, Wood Lane, London, W12 0BZ, UK.
| |
Collapse
|
38
|
Kalikadien AV, Pidko EA, Sinha V. ChemSpaX: exploration of chemical space by automated functionalization of molecular scaffold. DIGITAL DISCOVERY 2022; 1:8-25. [PMID: 35340336 PMCID: PMC8887922 DOI: 10.1039/d1dd00017a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/23/2021] [Indexed: 12/19/2022]
Abstract
Exploration of the local chemical space of molecular scaffolds by post-functionalization (PF) is a promising route to discover novel molecules with desired structure and function. PF with rationally chosen substituents based on known electronic and steric properties is a commonly used experimental and computational strategy in screening, design and optimization of catalytic scaffolds. Automated generation of reasonably accurate geometric representations of post-functionalized molecular scaffolds is highly desirable for data-driven applications. However, automated PF of transition metal (TM) complexes remains challenging. In this work a Python-based workflow, ChemSpaX, that is aimed at automating the PF of a given molecular scaffold with special emphasis on TM complexes, is introduced. In three representative applications of ChemSpaX by comparing with DFT and DFT-B calculations, we show that the generated structures have a reasonable quality for use in computational screening applications. Furthermore, we show that ChemSpaX generated geometries can be used in machine learning applications to accurately predict DFT computed HOMO-LUMO gaps for transition metal complexes. ChemSpaX is open-source and aims to bolster and democratize the efforts of the scientific community towards data-driven chemical discovery.
Collapse
Affiliation(s)
- Adarsh V Kalikadien
- Inorganic Systems Engineering, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology Van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Evgeny A Pidko
- Inorganic Systems Engineering, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology Van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Vivek Sinha
- Inorganic Systems Engineering, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology Van der Maasweg 9 2629 HZ Delft The Netherlands
| |
Collapse
|
39
|
DFT Study of the Molecular and Electronic Structure of Metal-Free Tetrabenzoporphyrin and Its Metal Complexes with Zn, Cd, Al, Ga, In. Int J Mol Sci 2022; 23:ijms23020939. [PMID: 35055126 PMCID: PMC8781462 DOI: 10.3390/ijms23020939] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 12/12/2022] Open
Abstract
The electronic and molecular structures of metal-free tetrabenzoporphyrin (H2TBP) and its complexes with zinc, cadmium, aluminum, gallium and indium were investigated by density functional theory (DFT) calculations with a def2-TZVP basis set. A geometrical structure of ZnTBP and CdTBP was found to possess D4h symmetry; AlClTBP, GaClTBP and InClTBP were non-planar complexes with C4v symmetry. The molecular structure of H2TBP belonged to the point symmetry group of D2h. According to the results of the natural bond orbital (NBO) analysis, the M-N bonds had a substantial ionic character in the cases of the Zn(II) and Cd(II) complexes, with a noticeably increased covalent contribution for Al(III), Ga(III) and In(III) complexes with an axial –Cl ligand. The lowest excited states were computed with the use of time-dependent density functional theory (TDDFT) calculations. The model electronic absorption spectra indicated a weak influence of the nature of the metal on the Q-band position.
Collapse
|
40
|
Otlyotov A, Moshchenkov A, Cavallo L, Minenkov Y. 16OSTM10: A new open-shell transition metal conformational energies database to challenge contemporary semiempirical and force field methods. Phys Chem Chem Phys 2022; 24:17314-17322. [DOI: 10.1039/d2cp01659a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
transition metal (OSTM) complexes has been developed. Contemporary composite density functional theory (DFT) (PBEh-3c, B97-3c), semiempirical (PM6, PM7) and the methods of GFNn-xTB/FF family were examined against conventional DFT (PBE-D3(BJ),...
Collapse
|
41
|
Sánchez P, Goel B, Neugebauer H, Lalancette RA, Grimme S, Hansen A, Prokopchuk DE. Ligand Protonation at Carbon, not Nitrogen, during H 2 Production with Amine-Rich Iron Electrocatalysts. Inorg Chem 2021; 60:17407-17413. [PMID: 34735115 DOI: 10.1021/acs.inorgchem.1c03142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We present monometallic H2 production electrocatalysts containing electron-rich triamine-cyclopentadienyl (Cp) ligands coordinated to iron. After selective CO extrusion from the iron tricarbonyl precursors, electrocatalysis is observed via cyclic voltammetry in the presence of an exogenous acid. Contrary to the fact that amines in the secondary coordination sphere are often protonated during electrocatalysis, comprehensive quantum-chemical calculations indicate that the amines likely do not function as proton relays; instead, endo-Cp ring protonation is most favorable after 1e- reduction. This unusual mechanistic pathway emphasizes the need to consider a broad domain of H+/e- addition products by synergistically combining experimental and theoretical resources.
Collapse
Affiliation(s)
- Práxedes Sánchez
- Department of Chemistry, Rutgers University─Newark, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Bhumika Goel
- Department of Chemistry, Rutgers University─Newark, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Hagen Neugebauer
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms Universität Bonn, Beringstraße 4, Bonn 53115, Germany
| | - Roger A Lalancette
- Department of Chemistry, Rutgers University─Newark, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms Universität Bonn, Beringstraße 4, Bonn 53115, Germany
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms Universität Bonn, Beringstraße 4, Bonn 53115, Germany
| | - Demyan E Prokopchuk
- Department of Chemistry, Rutgers University─Newark, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
42
|
Bohle F, Seibert J, Grimme S. Automated Quantum Chemistry-Based Calculation of Optical Rotation for Large Flexible Molecules. J Org Chem 2021; 86:15522-15531. [PMID: 34612629 DOI: 10.1021/acs.joc.1c02008] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The calculation of optical rotation (OR, [α]D) for nonrigid molecules was limited to small systems due to the challenging problem of generating reliable conformer ensembles, calculating accurate Boltzmann populations and the extreme sensitivity of the OR to the molecules' three-dimensional structure. Herein, we describe and release the crenso workflow for the automated computation of conformer ensembles in solution and corresponding [α]D values for flexible molecules. A comprehensive set of 28 organic drug molecules (28-144 atoms) with experimentally determined values is used in our assessment. In all cases, the correct OR sign is obtained with an overall mean relative deviation of 72% (mean absolute deviation of 82 °[dm(g/cm3)]-1 for experimental values in the range -160 to 287 °[dm(g/cm3)]-1). We show that routine [α]D computations for very flexible, biologically active molecules are both feasible and reproducible in about a day of computation time on a standard workstation computer. Furthermore, we observed that the effect of energetically higher-lying structures in the ensemble on the OR is often averaged out and that in 23 out of 28 cases, the correct OR sign is obtained by just considering only the lowest free energy conformer. In four example cases, we show that the approach can also describe the OR of pairs of flexible diastereomers properly. In summary, even very sensitive, multifactorial physicochemical properties appear reliably predictable with minimal user input from efficiently automated quantum chemical methods.
Collapse
Affiliation(s)
- Fabian Bohle
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn 53115, Germany
| | - Jakob Seibert
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn 53115, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn 53115, Germany
| |
Collapse
|
43
|
Ketkaew R, Creazzo F, Luber S. Closer Look at Inverse Electron Demand Diels–Alder and Nucleophilic Addition Reactions on s-Tetrazines Using Enhanced Sampling Methods. Top Catal 2021; 65:1-17. [PMID: 35153451 PMCID: PMC8816378 DOI: 10.1007/s11244-021-01516-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2021] [Indexed: 12/30/2022]
Abstract
Inverse electron demand [4+2] Diels–Alder (iEDDA) reactions as well as unprecedented nucleophilic (azaphilic) additions of R-substituted silyl-enol ethers (where R is Phenyl, Methyl, and Hydrogen) to 1,2,4,5-tetrazine (s-tetrazine) catalyzed by \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {BF}_{3}$$\end{document}BF3 have recently been discovered (Simon et al. in Org Lett 23(7):2426–2430, 2021), where static calculations were employed for calculation of activation energies. In order to have a more realistic dynamic description of these reactions in explicit solution at ambient conditions, in this work we use a semiempirical tight-binding method combined with enhanced sampling techniques to calculate free energy surfaces (FESs) of the iEDDA and azaphilic addition reactions. Relevant products of not only s-tetrazine but also its derivatives such as \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {BF}_{3}$$\end{document}BF3-mediated s-tetrazine adducts are investigated. We reconstruct the FESs of the iEDDA and azaphilic addition reactions using metadynamics and blue moon ensemble, and compare the ability of different collective variables (CVs) including bond distances, Social PeRmutation INvarianT (SPRINT) coordinates, and path-CV to describe the reaction pathway. We find that when a bulky Phenyl is used as a substituent at the dienophile the azaphilic addition is preferred over the iEDDA reaction. In addition, we also investigate the effect of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {BF}_{3}$$\end{document}BF3 in the diene and steric hindrance in the dienophile on the competition between the iEDDA and azaphilic addition reactions, providing chemical insight for reaction design.
Collapse
Affiliation(s)
- Rangsiman Ketkaew
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Fabrizio Creazzo
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Sandra Luber
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
44
|
Duan C, Chen S, Taylor MG, Liu F, Kulik HJ. Machine learning to tame divergent density functional approximations: a new path to consensus materials design principles. Chem Sci 2021; 12:13021-13036. [PMID: 34745533 PMCID: PMC8513898 DOI: 10.1039/d1sc03701c] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/01/2021] [Indexed: 01/17/2023] Open
Abstract
Virtual high-throughput screening (VHTS) with density functional theory (DFT) and machine-learning (ML)-acceleration is essential in rapid materials discovery. By necessity, efficient DFT-based workflows are carried out with a single density functional approximation (DFA). Nevertheless, properties evaluated with different DFAs can be expected to disagree for cases with challenging electronic structure (e.g., open-shell transition-metal complexes, TMCs) for which rapid screening is most needed and accurate benchmarks are often unavailable. To quantify the effect of DFA bias, we introduce an approach to rapidly obtain property predictions from 23 representative DFAs spanning multiple families, “rungs” (e.g., semi-local to double hybrid) and basis sets on over 2000 TMCs. Although computed property values (e.g., spin state splitting and frontier orbital gap) differ by DFA, high linear correlations persist across all DFAs. We train independent ML models for each DFA and observe convergent trends in feature importance, providing DFA-invariant, universal design rules. We devise a strategy to train artificial neural network (ANN) models informed by all 23 DFAs and use them to predict properties (e.g., spin-splitting energy) of over 187k TMCs. By requiring consensus of the ANN-predicted DFA properties, we improve correspondence of computational lead compounds with literature-mined, experimental compounds over the typically employed single-DFA approach. Machine learning (ML)-based feature analysis reveals universal design rules regardless of density functional choices. Using the consensus among multiple functionals, we identify robust lead complexes in ML-accelerated chemical discovery.![]()
Collapse
Affiliation(s)
- Chenru Duan
- Department of Chemical Engineering, Massachusetts Institute of Technology Cambridge MA 02139 USA +1-617-253-4584.,Department of Chemistry, Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Shuxin Chen
- Department of Chemical Engineering, Massachusetts Institute of Technology Cambridge MA 02139 USA +1-617-253-4584.,Department of Chemistry, Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Michael G Taylor
- Department of Chemical Engineering, Massachusetts Institute of Technology Cambridge MA 02139 USA +1-617-253-4584
| | - Fang Liu
- Department of Chemical Engineering, Massachusetts Institute of Technology Cambridge MA 02139 USA +1-617-253-4584
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology Cambridge MA 02139 USA +1-617-253-4584
| |
Collapse
|
45
|
Podewitz M, Sen S, Buchmeiser MR. On the Origin of E-Selectivity in the Ring-Opening Metathesis Polymerization with Molybdenum Imido Alkylidene N-Heterocyclic Carbene Complexes. Organometallics 2021; 40:2478-2488. [PMID: 34393318 PMCID: PMC8356225 DOI: 10.1021/acs.organomet.1c00229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Indexed: 11/28/2022]
Abstract
The understanding and control of stereoselectivity is a central aspect in ring-opening metathesis polymerization (ROMP). Herein, we report detailed quantum chemical studies on the reaction mechanism of E-selective ROMP of norborn-2-ene (NBE) with Mo(N-2,6-Me2-C6H3)(CHCMe3)(IMes)(OTf)2 (1, IMes = 1,3-dimesitylimidazol-2-ylidene) as a first step to stereoselective polymerization. Four different reaction pathways based on an ene syn or ene anti approach of NBE to either the syn- or anti-isomer of the neutral precatalyst have been studied. In contrast to the recently established associative mechanism with a terminal alkene, where a neutral olefin adduct is formed, NBE reacts directly with the catalyst via [2 + 2] cycloaddition to form molybdacyclobutane with a reaction barrier about 30 kJ mol-1 lower in free energy than via the formation of a catalyst-monomer adduct. However, the direct cycloaddition of NBE was only found for one out of four stereoisomers. Our findings strongly suggest that this stereoselective approach is responsible for E-selectivity and point toward a substrate-specific reaction mechanism in olefin metathesis with neutral Mo imido alkylidene N-heterocyclic carbene bistriflate complexes.
Collapse
Affiliation(s)
- Maren Podewitz
- Institute
of General, Inorganic and Theoretical Chemistry, and Center of Molecular
Biosciences, University of Innsbruck, Innrain 80/82, AT-6020 Innsbruck, Austria
| | - Suman Sen
- Institute
of Polymer Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Michael R. Buchmeiser
- Institute
of Polymer Chemistry, University of Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| |
Collapse
|
46
|
Lloyd Williams OH, Rijs NJ. Reaction Monitoring and Structural Characterisation of Coordination Driven Self-Assembled Systems by Ion Mobility-Mass Spectrometry. Front Chem 2021; 9:682743. [PMID: 34169059 PMCID: PMC8217442 DOI: 10.3389/fchem.2021.682743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/14/2021] [Indexed: 01/03/2023] Open
Abstract
Nature creates exquisite molecular assemblies, required for the molecular-level functions of life, via self-assembly. Understanding and harnessing these complex processes presents an immense opportunity for the design and fabrication of advanced functional materials. However, the significant industrial potential of self-assembly to fabricate highly functional materials is hampered by a lack of knowledge of critical reaction intermediates, mechanisms, and kinetics. As we move beyond the covalent synthetic regime, into the domain of non-covalent interactions occupied by self-assembly, harnessing and embracing complexity is a must, and non-targeted analyses of dynamic systems are becoming increasingly important. Coordination driven self-assembly is an important subtype of self-assembly that presents several wicked analytical challenges. These challenges are "wicked" due the very complexity desired confounding the analysis of products, intermediates, and pathways, therefore limiting reaction optimisation, tuning, and ultimately, utility. Ion Mobility-Mass Spectrometry solves many of the most challenging analytical problems in separating and analysing the structure of both simple and complex species formed via coordination driven self-assembly. Thus, due to the emerging importance of ion mobility mass spectrometry as an analytical technique tackling complex systems, this review highlights exciting recent applications. These include equilibrium monitoring, structural and dynamic analysis of previously analytically inaccessible complex interlinked structures and the process of self-sorting. The vast and largely untapped potential of ion mobility mass spectrometry to coordination driven self-assembly is yet to be fully realised. Therefore, we also propose where current analytical approaches can be built upon to allow for greater insight into the complexity and structural dynamics involved in self-assembly.
Collapse
Affiliation(s)
| | - Nicole J. Rijs
- School of Chemistry, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
47
|
Leach IF, Belpassi L, Belanzoni P, Havenith RWA, Klein JEMN. Efficient Computation of Geometries for Gold Complexes. Chemphyschem 2021; 22:1262-1268. [PMID: 33729673 PMCID: PMC8252628 DOI: 10.1002/cphc.202001052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/23/2021] [Indexed: 12/21/2022]
Abstract
Computationally obtaining structural parameters along a reaction coordinate is commonly performed with Kohn‐Sham density functional theory which generally provides a good balance between speed and accuracy. However, CPU times still range from inconvenient to prohibitive, depending on the size of the system under study. Herein, the tight binding GFN2‐xTB method [C. Bannwarth, S. Ehlert, S. Grimme, J. Chem. Theory Comput. 2019, 15, 1652] is investigated as an alternative to produce reasonable geometries along a reaction path, that is, reactant, product and transition state structures for a series of transformations involving gold complexes. A small mean error (1 kcal/mol) was found, with respect to an efficient composite hybrid‐GGA exchange‐correlation functional (PBEh‐3c) paired with a double‐ζ basis set, which is 2–3 orders of magnitude slower. The outlined protocol may serve as a rapid tool to probe the viability of proposed mechanistic pathways in the field of gold catalysis.
Collapse
Affiliation(s)
- Isaac F Leach
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, University of Groningen, 9747, AG Groningen, The Netherlands.,Zernike Institute for Advanced Materials, University of Groningen, 9747, AG Groningen, The Netherlands
| | - Leonardo Belpassi
- CNR Institute of Chemical Science and Technologies, "Giulio Natta" (CNR-SCITEC), via Elce di Sotto 8, 06123, Perugia, Italy
| | - Paola Belanzoni
- CNR Institute of Chemical Science and Technologies, "Giulio Natta" (CNR-SCITEC), via Elce di Sotto 8, 06123, Perugia, Italy.,Department of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123, Perugia, Italy
| | - Remco W A Havenith
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, University of Groningen, 9747, AG Groningen, The Netherlands.,Zernike Institute for Advanced Materials, University of Groningen, 9747, AG Groningen, The Netherlands.,Ghent Quantum Chemistry Group, Department of Inorganic and Physical Chemistry, Ghent University, 9000, Gent, Belgium
| | - Johannes E M N Klein
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, University of Groningen, 9747, AG Groningen, The Netherlands
| |
Collapse
|
48
|
Boiko DA, Pentsak EO, Cherepanova VA, Gordeev EG, Ananikov VP. Deep neural network analysis of nanoparticle ordering to identify defects in layered carbon materials. Chem Sci 2021; 12:7428-7441. [PMID: 34163833 PMCID: PMC8171319 DOI: 10.1039/d0sc05696k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/05/2021] [Indexed: 11/21/2022] Open
Abstract
Smoothness/defectiveness of the carbon material surface is a key issue for many applications, spanning from electronics to reinforced materials, adsorbents and catalysis. Several surface defects cannot be observed with conventional analytic techniques, thus requiring the development of a new imaging approach. Here, we evaluate a convenient method for mapping such "hidden" defects on the surface of carbon materials using 1-5 nm metal nanoparticles as markers. A direct relationship between the presence of defects and the ordering of nanoparticles was studied experimentally and modeled using quantum chemistry calculations and Monte Carlo simulations. An automated pipeline for analyzing microscopic images is described: the degree of smoothness of experimental images was determined by a classification neural network, and then the images were searched for specific types of defects using a segmentation neural network. An informative set of features was generated from both networks: high-dimensional embeddings of image patches and statics of defect distribution.
Collapse
Affiliation(s)
- Daniil A Boiko
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences Leninsky Pr. 47 Moscow 119991 Russia
| | - Evgeniy O Pentsak
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences Leninsky Pr. 47 Moscow 119991 Russia
| | - Vera A Cherepanova
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences Leninsky Pr. 47 Moscow 119991 Russia
| | - Evgeniy G Gordeev
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences Leninsky Pr. 47 Moscow 119991 Russia
| | - Valentine P Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences Leninsky Pr. 47 Moscow 119991 Russia
| |
Collapse
|
49
|
Grimme S, Bohle F, Hansen A, Pracht P, Spicher S, Stahn M. Efficient Quantum Chemical Calculation of Structure Ensembles and Free Energies for Nonrigid Molecules. J Phys Chem A 2021; 125:4039-4054. [PMID: 33688730 DOI: 10.1021/acs.jpca.1c00971] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The application of quantum chemical, automatic multilevel modeling workflows for the determination of thermodynamic (e.g., conformation equilibria, partition coefficients, pKa values) and spectroscopic properties of relatively large, nonrigid molecules in solution is described. Key points are the computation of rather complete structure (conformer) ensembles with extremely fast but still reasonable GFN2-xTB or GFN-FF semiempirical methods in the CREST searching approach and subsequent refinement at a recently developed, accurate r2SCAN-3c DFT composite level. Solvation effects are included in all steps by accurate continuum solvation models (ALPB, (D)COSMO-RS). Consistent inclusion of thermostatistical contributions in the framework of the modified rigid-rotor-harmonic-oscillator approximation (mRRHO) based on xTB/FF computed PES is also recommended.
Collapse
Affiliation(s)
- Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstrasse 4, 53115 Bonn, Germany
| | - Fabian Bohle
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstrasse 4, 53115 Bonn, Germany
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstrasse 4, 53115 Bonn, Germany
| | - Philipp Pracht
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstrasse 4, 53115 Bonn, Germany
| | - Sebastian Spicher
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstrasse 4, 53115 Bonn, Germany
| | - Marcel Stahn
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstrasse 4, 53115 Bonn, Germany
| |
Collapse
|
50
|
Grimme S, Hansen A, Ehlert S, Mewes JM. r 2SCAN-3c: A "Swiss army knife" composite electronic-structure method. J Chem Phys 2021; 154:064103. [PMID: 33588555 DOI: 10.1063/5.0040021] [Citation(s) in RCA: 320] [Impact Index Per Article: 106.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The recently proposed r2SCAN meta-generalized-gradient approximation (mGGA) of Furness and co-workers is used to construct an efficient composite electronic-structure method termed r2SCAN-3c. To this end, the unaltered r2SCAN functional is combined with a tailor-made triple-ζ Gaussian atomic orbital basis set as well as with refitted D4 and geometrical counter-poise corrections for London-dispersion and basis set superposition error. The performance of the new method is evaluated for the GMTKN55 database covering large parts of chemical space with about 1500 data points, as well as additional benchmarks for non-covalent interactions, organometallic reactions, and lattice energies of organic molecules and ices, as well as for the adsorption on polar salt and non-polar coinage-metal surfaces. These comprehensive tests reveal a spectacular performance and robustness of r2SCAN-3c: It by far surpasses its predecessor B97-3c at only twice the cost and provides one of the best results of all semi-local density-functional theory (DFT)/QZ methods ever tested for the GMTKN55 database at one-tenth of the cost. Specifically, for reaction and conformational energies as well as non-covalent interactions, it outperforms prominent hybrid-DFT/QZ approaches at two to three orders of magnitude lower cost. Perhaps, the most relevant remaining issue of r2SCAN-3c is self-interaction error (SIE), owing to its mGGA nature. However, SIE is slightly reduced compared to other (m)GGAs, as is demonstrated in two examples. After all, this remarkably efficient and robust method is chosen as our new group default, replacing previous composite DFT and partially even expensive high-level methods in most standard applications for systems with up to several hundreds of atoms.
Collapse
Affiliation(s)
- Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms Universität Bonn, Beringstraße 4, 53115 Bonn, Germany
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms Universität Bonn, Beringstraße 4, 53115 Bonn, Germany
| | - Sebastian Ehlert
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms Universität Bonn, Beringstraße 4, 53115 Bonn, Germany
| | - Jan-Michael Mewes
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms Universität Bonn, Beringstraße 4, 53115 Bonn, Germany
| |
Collapse
|