1
|
Cao Y, Zhang Q, Yu IKM, Tsang DCW. Revealing OH species in situ generated on low-valence Cu sites for selective carbonyl oxidation. Proc Natl Acad Sci U S A 2024; 121:e2408770121. [PMID: 39388271 PMCID: PMC11494291 DOI: 10.1073/pnas.2408770121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/28/2024] [Indexed: 10/12/2024] Open
Abstract
Catalytic oxidation through the transfer of lattice oxygen from metal oxides to reactants, namely the Mars-van Krevelen mechanism, has been widely reported. In this study, we evidence the overlooked oxidation route that features the in situ formation of surface OH species on Cu catalysts and its selective addition to the reactant carbonyl group. We observed that glucose oxidation to gluconic acid in air (21% O2) was favored on low-valence Cu sites according to X-ray spectroscopic analyses. Molecular O2 was activated in situ on Cu0/Cu+ forming localized, adsorbed hydroxyl radicals (*OH) which played the primary reactive oxygen species as confirmed by the kinetic isotope effect (KIE) study in D2O and in situ Raman experiments. Combined with DFT calculations, we proposed a mechanism of O2-to-*OH activation through the *OOH intermediate. The localized *OH exhibited higher selectivity toward glucose oxidation at C1HO to form gluconic acid (up to 91% selectivity), in comparison with free radicals in bulk environment that emerged from thermal, noncatalytic hydrogen peroxide decomposition (40% selectivity). The KIE measurements revealed a lower glucose oxidation rate in D2O than in H2O, highlighting the role of water (H2O/D2O) or its derivatives (e.g., *OH/*OD) in the rate-determining step. After proving the C1-H activation step kinetically irrelevant, we proposed the oxidation mechanism that was characterized by the rate-limiting addition of *OH to C1=O in glucose. Our findings advocate that by maneuvering the coverage and activity of surface *OH, high-performance oxidation of carbonyl compounds beyond biomass molecules can be achieved in water and air using nonprecious metal catalysts.
Collapse
Affiliation(s)
- Yang Cao
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong999077, China
| | - Qiaozhi Zhang
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore117576, Singapore
| | - Iris K. M. Yu
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore117576, Singapore
| | - Daniel C. W. Tsang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong999077, China
| |
Collapse
|
2
|
Zheng S, Zhang Z, He S, Yang H, Atia H, Abdel-Mageed AM, Wohlrab S, Baráth E, Tin S, Heeres HJ, Deuss PJ, de Vries JG. Benzenoid Aromatics from Renewable Resources. Chem Rev 2024; 124:10701-10876. [PMID: 39288258 PMCID: PMC11467972 DOI: 10.1021/acs.chemrev.4c00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/25/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024]
Abstract
In this Review, all known chemical methods for the conversion of renewable resources into benzenoid aromatics are summarized. The raw materials that were taken into consideration are CO2; lignocellulose and its constituents cellulose, hemicellulose, and lignin; carbohydrates, mostly glucose, fructose, and xylose; chitin; fats and oils; terpenes; and materials that are easily obtained via fermentation, such as biogas, bioethanol, acetone, and many more. There are roughly two directions. One much used method is catalytic fast pyrolysis carried out at high temperatures (between 300 and 700 °C depending on the raw material), which leads to the formation of biochar; gases, such as CO, CO2, H2, and CH4; and an oil which is a mixture of hydrocarbons, mostly aromatics. The carbon selectivities of this method can be reasonably high when defined small molecules such as methanol or hexane are used but are rather low when highly oxygenated compounds such as lignocellulose are used. The other direction is largely based on the multistep conversion of platform chemicals obtained from lignocellulose, cellulose, or sugars and a limited number of fats and terpenes. Much research has focused on furan compounds such as furfural, 5-hydroxymethylfurfural, and 5-chloromethylfurfural. The conversion of lignocellulose to xylene via 5-chloromethylfurfural and dimethylfuran has led to the construction of two large-scale plants, one of which has been operational since 2023.
Collapse
Affiliation(s)
- Shasha Zheng
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Zhenlei Zhang
- State
Key Laboratory of Heavy Oil Processing, College of Chemical Engineering
and Environment, China University of Petroleum
(Beijing), 102249 Beijing, China
| | - Songbo He
- Joint International
Research Laboratory of Circular Carbon, Nanjing Tech University, Nanjing 211816, PR China
| | - Huaizhou Yang
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Hanan Atia
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Ali M. Abdel-Mageed
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Sebastian Wohlrab
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Eszter Baráth
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Sergey Tin
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Hero J. Heeres
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Peter J. Deuss
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Johannes G. de Vries
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| |
Collapse
|
3
|
Le DD, Nguyen TH, Nguyen LT, Le Nguyen DA, Thi Le MN, Nguyen KD, Phan HB, Tran PH. Boron-doped sulfonated graphitic carbon nitride as a highly efficient catalyst for the production of 5-hydroxymethylfurfural from carbohydrates. Heliyon 2024; 10:e37812. [PMID: 39315136 PMCID: PMC11417182 DOI: 10.1016/j.heliyon.2024.e37812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024] Open
Abstract
The presence of humins during the conversion of concentrated fructose presents a major obstacle in the large-scale production of 5-hydroxymethylfurfural (HMF) from fructose. Herein, we reported a boron-doped graphitic carbon nitride sulfonated (BGCN-SO3H) as an excellent catalyst for the synthesis of HMF from fructose. The BGCN-SO3H catalyst structures were analyzed using various characterization techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), energy-dispersive X-ray spectroscopy (EDX), elemental mapping analysis, and Fourier-transform infrared spectroscopy (FT-IR). The BGCN-SO3H catalyst was evaluated for the synthesis of HMF from fructose. We investigated the influence of catalyst performance, including solvent reactions, catalyst loading, substrates, and volume of solvent to optimize reaction conditions. As a result, the yield of HMF was obtained at 88 % within 5 h when using 30 mg of catalyst. The study of catalyst activity involved examining reactions that allowed recovery and reuse. The research findings offer a method for producing HMF with exceptional efficiency using solid catalysts.
Collapse
Affiliation(s)
- Diep Dinh Le
- Department of Organic Chemistry, Faculty of Chemistry, University of Science, Ho Chi Minh City, Viet Nam
- Vietnam National University, Ho Chi Minh City, Viet Nam
| | - Trinh Hao Nguyen
- Department of Organic Chemistry, Faculty of Chemistry, University of Science, Ho Chi Minh City, Viet Nam
- Vietnam National University, Ho Chi Minh City, Viet Nam
| | - Luc Tan Nguyen
- Department of Organic Chemistry, Faculty of Chemistry, University of Science, Ho Chi Minh City, Viet Nam
- Vietnam National University, Ho Chi Minh City, Viet Nam
| | - Dao Anh Le Nguyen
- Department of Organic Chemistry, Faculty of Chemistry, University of Science, Ho Chi Minh City, Viet Nam
- Vietnam National University, Ho Chi Minh City, Viet Nam
| | - Mai Ngoc Thi Le
- Department of Organic Chemistry, Faculty of Chemistry, University of Science, Ho Chi Minh City, Viet Nam
- Vietnam National University, Ho Chi Minh City, Viet Nam
| | - Khoa Dang Nguyen
- Department of Organic Chemistry, Faculty of Chemistry, University of Science, Ho Chi Minh City, Viet Nam
- Vietnam National University, Ho Chi Minh City, Viet Nam
| | - Ha Bich Phan
- Department of Organic Chemistry, Faculty of Chemistry, University of Science, Ho Chi Minh City, Viet Nam
- Vietnam National University, Ho Chi Minh City, Viet Nam
- Institute of Public Health, Ho Chi Minh City, Viet Nam
| | - Phuong Hoang Tran
- Department of Organic Chemistry, Faculty of Chemistry, University of Science, Ho Chi Minh City, Viet Nam
- Vietnam National University, Ho Chi Minh City, Viet Nam
| |
Collapse
|
4
|
Pavlovic L, Carvalho B, Hopmann KH. Revisiting the Mechanism of Asymmetric Ni-Catalyzed Reductive Carbo-Carboxylation with CO 2: The Additives Affect the Product Selectivity. Chemistry 2024; 30:e202401631. [PMID: 38924598 DOI: 10.1002/chem.202401631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/10/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
The mechanistic details of the asymmetric Ni-catalyzed reductive cyclization/carboxylation of alkenes with CO2 have been revisited using DFT methods. Emphasis was put on the enantioselectivity and the mechanistic role of Lewis acid additives and in situ formed salts. Our results show that oxidative addition of the substrate is rate-limiting, with the formed Ni(II)-aryl intermediate preferring a triplet spin state. After reduction to Ni(I), enantioselective cyclization of the substrate occurs, followed by inner sphere carboxylation. Our proposed mechanism reproduces the experimentally observed enantiomeric excess and identifies critical C-H/O and C-H/N interactions that affect the selectivity. Further, our results highlight the beneficial effect of Lewis acids on CO2 insertion and suggest that in situ formed salts influence if the 5-exo or 6-endo product will be formed.
Collapse
Affiliation(s)
- Ljiljana Pavlovic
- Department of Chemistry, UiT The Arctic University of Norway, N-9017, Tromsø, Norway
| | - Bjørn Carvalho
- Department of Chemistry, UiT The Arctic University of Norway, N-9017, Tromsø, Norway
- Hylleraas Center for Quantum Molecular Sciences, UiT The Arctic University of Norway, N-9017, Tromsø, Norway
| | - Kathrin H Hopmann
- Department of Chemistry, UiT The Arctic University of Norway, N-9017, Tromsø, Norway
| |
Collapse
|
5
|
Ding N, Sun L, Zhou X, Zhang L, Deng Y, Yin L. Enhancing glucaric acid production from myo-inositol in Escherichia coli by eliminating cell-to-cell variation. Appl Environ Microbiol 2024; 90:e0014924. [PMID: 38808978 PMCID: PMC11218621 DOI: 10.1128/aem.00149-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/08/2024] [Indexed: 05/30/2024] Open
Abstract
Glucaric acid (GA) is a value-added chemical and can be used to manufacture food additives, anticancer drugs, and polymers. The non-genetic cell-to-cell variations in GA biosynthesis are naturally inherent, indicating the presence of both high- and low-performance cells in culture. Low-performance cells can lead to nutrient waste and inefficient production. Furthermore, myo-inositol oxygenase (MIOX) is a key rate-limiting enzyme with the problem of low stability and activity in GA production. Therefore, eliminating cell-to-cell variations and increasing MIOX stability can select high-performance cells and improve GA production. In this study, an in vivo GA bioselector was constructed based on GA biosensor and tetracycline efflux pump protein TetA to continuously select GA-efficient production strains. Additionally, the upper limit of the GA biosensor was improved to 40 g/L based on ribosome-binding site optimization, achieving efficient enrichment of GA high-performance cells. A small ubiquitin-like modifier (SUMO) enhanced MIOX stability and activity. Overall, we used the GA bioselector and SUMO-MIOX fusion in fed-batch GA production and achieved a 5.52-g/L titer in Escherichia coli, which was 17-fold higher than that of the original strain.IMPORTANCEGlucaric acid is a non-toxic valuable product that was mainly synthesized by chemical methods. Due to the problems of non-selectivity, inefficiency, and environmental pollution, GA biosynthesis has attracted significant attention. The non-genetic cell-to-cell variations and MIOX stability were both critical factors for GA production. In addition, the high detection limit of the GA biosensor was a key condition for performing high-throughput screening of GA-efficient production strains. To increase GA titer, this work eliminated the cell-to-cell variations by GA bioselector constructed based on GA biosensor and TetA, and improved the stability and activity of MIOX in the GA biosynthetic pathway through fusing the SUMO to MIOX. Finally, these approaches improved the GA production by 17-fold to 5.52 g/L at 65 h. This study represents a significant step toward the industrial application of GA biosynthetic pathways in E. coli.
Collapse
Affiliation(s)
- Nana Ding
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
| | - Lei Sun
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, China
| | - Xuan Zhou
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, Wuxi, Jiangsu, China
| | - Linpei Zhang
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, Wuxi, Jiangsu, China
| | - Yu Deng
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, Wuxi, Jiangsu, China
| | - Lianghong Yin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
6
|
Liu P, Yang Z, Zhang M, Liu Y, Han D, Wu D, Xu C, Wang J. Enhanced carboxylation of furoic salt with CO 2 by ZnCl 2 coordination for efficient production of 2,5-furandicarboxylic acid. Dalton Trans 2024; 53:9130-9138. [PMID: 38739029 DOI: 10.1039/d4dt01196a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
C-H carboxylation of furoic acid (FA) with CO2 is an atom-efficient strategy to produce 2,5-furandicarboxylic acid (2,5-FDCA) from lignocellulose. The existing carbonate-promoted CO2 carboxylation processes rely on the use of large amounts of expensive Cs2CO3 as a deprotonating reagent and molten salt. Substitution of Cs with other cheap and abundant alkali ions (such as K and Na) can reduce the use of Cs, but it faces the problem of a low yield of 2,5-FDCA. This study found that the addition of catalytic amounts of ZnCl2 as a Lewis acid can increase the yield of 2,5-FDCA in the CO2 carboxylation reaction of Na/K-FA in a molten salt reaction system. 1H NMR analysis and DFT calculations confirmed that ZnCl2 coordinates with the furan ring through electron transfer from the conjugated furan ring to Zn2+, thereby activating the H at the C5 position of Na/K-FA. This coordination lengthened the C5-H bond and lowered its heterolytic dissociation energy, making it more susceptible to being deprotonated by CO32- and subsequently carboxylated by CO2. The developed Lewis acid coordination strategy provides a new idea for the efficient construction of C-C bonds between CO2 and aromatics through carbonate-promoted C-H carboxylation.
Collapse
Affiliation(s)
- Peiyao Liu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.
| | - Zhengzeng Yang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.
| | - Mengyuan Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.
| | - Yufeng Liu
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Dandan Han
- College of Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Dan Wu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.
| | - Chunbao Xu
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | - Jianshe Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.
| |
Collapse
|
7
|
Pishro KA, Gonzalez MH. Use of deep eutectic solvents in environmentally-friendly dye-sensitized solar cells and their physicochemical properties: a brief review. RSC Adv 2024; 14:14480-14504. [PMID: 38708112 PMCID: PMC11063684 DOI: 10.1039/d4ra01610f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/08/2024] [Indexed: 05/07/2024] Open
Abstract
A novel way to mitigate the greenhouse effect is to use dye-sensitized solar cells (DSSCs) to convert carbon dioxide from the air into useful products, such as hydrocarbons, which can also store energy from the sun, a plentiful, clean, and safe resource. The conversion of CO2 can help reduce the impacts of greenhouse gas emissions that contribute to global warming. However, there is a major obstacle in using DSSCs, since many solar devices operate with organic electrolytes, producing pollutants including toxic substances. Therefore, a key research area is to find new eco-friendly electrolytes that can effectively dissolve carbon dioxide. One option is to use deep eutectic solvents (DESs), which are potential substitutes for ionic liquids (ILs) and have similar advantages, such as being customizable, economical, and environmentally friendly. DESs are composed of low-cost materials and have very low toxicity and high biodegradability, making them suitable for use as electrolytes in DSSCs, within the framework of green chemistry. The purpose of this brief review is to explore the existing knowledge about how CO2 dissolves in DESs and how these solvents can be used as electrolytes in solar devices, especially in DSSCs. The physical and chemical properties of the DESs are described, and areas are suggested where further research should be focused.
Collapse
Affiliation(s)
- Khatereh A Pishro
- São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences (IBILCE), National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM) São José do Rio Preto SP 15054-000 Brazil +55 17 32212512 +55 17 32212512
| | - Mario Henrique Gonzalez
- São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences (IBILCE), National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM) São José do Rio Preto SP 15054-000 Brazil +55 17 32212512 +55 17 32212512
| |
Collapse
|
8
|
Jiménez-Martin JM, El Tawil-Lucas M, Montaña M, Linares M, Osatiashtiani A, Vila F, Alonso DM, Moreno J, García A, Iglesias J. Production of Methyl Lactate with Sn-USY and Sn-β: Insights into Real Hemicellulose Valorization. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:2771-2782. [PMID: 38389903 PMCID: PMC10880092 DOI: 10.1021/acssuschemeng.3c07356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/24/2024]
Abstract
Potassium exchanged Sn-β and Sn-USY zeolites have been tested for the transformation of various aldoses (hexoses and pentoses), exhibiting outstanding catalytic activity and selectivity toward methyl lactate. Insights into the transformation pathways using reaction intermediates-dihydroxyacetone and glycolaldehyde-as substrates revealed a very high catalytic proficiency of both zeolites in aldol and retro-aldol reactions, showcasing their ability to convert small sugars into large sugars, and vice versa. This feature makes the studied Sn-zeolites outstanding catalysts for the transformation of a wide variety of sugars into a limited range of commercially valuable alkyl lactates and derivatives. [K]Sn-β proved to be superior to [K]Sn-USY in terms of shape selectivity, exerting tight control on the distribution of produced α-hydroxy methyl esters. This shape selectivity was evident in the transformation of several complex sugar mixtures emulating different hemicelluloses-sugar cane bagasse, Scots pine, and white birch-that, despite showing very different sugar compositions, were almost exclusively converted into methyl lactate and methyl vinyl glycolate in very similar proportions. Moreover, the conversion of a real hemicellulose hydrolysate obtained from Scots pine through a simple GVL-based organosolv process confirmed the high activity and selectivity of [K]Sn-β in the studied transformation, opening new pathways for the chemical valorization of this plentiful, but underutilized, sugar feedstock.
Collapse
Affiliation(s)
- Jose M. Jiménez-Martin
- Chemical
& Environmental Engineering Group, Universidad
Rey Juan Carlos, C/Tulipan
s/n, 28933 Madrid, Spain
| | - Miriam El Tawil-Lucas
- Chemical
& Environmental Engineering Group, Universidad
Rey Juan Carlos, C/Tulipan
s/n, 28933 Madrid, Spain
| | - Maia Montaña
- Chemical
& Environmental Engineering Group, Universidad
Rey Juan Carlos, C/Tulipan
s/n, 28933 Madrid, Spain
| | - María Linares
- Chemical
& Environmental Engineering Group, Universidad
Rey Juan Carlos, C/Tulipan
s/n, 28933 Madrid, Spain
| | - Amin Osatiashtiani
- Energy
& Bioproducts Research Institute (EBRI), College of Engineering
and Physical Sciences, Aston University,
Aston Triangle, Birmingham B4 7ET, United
Kingdom
| | - Francisco Vila
- Energy
and Sustainable Chemistry (EQS) Group, Institute
of Catalysis and Petrochemistry, CSIC, C/Marie Curie 2, Campus de Cantoblanco, 28049 Madrid, Spain
| | - David Martín Alonso
- Energy
and Sustainable Chemistry (EQS) Group, Institute
of Catalysis and Petrochemistry, CSIC, C/Marie Curie 2, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Jovita Moreno
- Chemical
& Environmental Engineering Group, Universidad
Rey Juan Carlos, C/Tulipan
s/n, 28933 Madrid, Spain
| | - Alicia García
- Chemical
& Environmental Engineering Group, Universidad
Rey Juan Carlos, C/Tulipan
s/n, 28933 Madrid, Spain
| | - Jose Iglesias
- Chemical
& Environmental Engineering Group, Universidad
Rey Juan Carlos, C/Tulipan
s/n, 28933 Madrid, Spain
- Instituto
de Tecnologías para la Sostenibilidad. Universidad Rey Juan Carlos. C/Tulipan s/n, 28933. Madrid, Spain
| |
Collapse
|
9
|
Thoresen P, Delgado Vellosillo I, Lange H, Rova U, Christakopoulos P, Matsakas L. Furan Distribution as a Severity Indicator upon Organosolv Fractionation of Hardwood Sawdust through a Novel Ternary Solvent System. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:1666-1680. [PMID: 38303908 PMCID: PMC10828987 DOI: 10.1021/acssuschemeng.3c07236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/28/2023] [Accepted: 12/28/2023] [Indexed: 02/03/2024]
Abstract
Beech sawdust was treated with a ternary solvent system based on binary aqueous ethanol with partial substitution of ethanol by acetone at four different water contents (60, 50, 40, and 30%v/v). In addition to standard, i.e., noncatalyzed treatments, the application of inorganic acid in the form of 20 mm H2SO4 was evaluated. The various solvent systems were applied at 180 °C for 60 min. The obtained biomass fractions were characterized by standard biomass compositional methods, i.e., sugar monomer and oligomer contents, dehydration product contents of the aqueous product, and lignin, cellulose, and hemicellulose contents in isolated solid fractions. More advanced analyses were performed on the lignin fractions, including quantitative 13C NMR analyses, 1H-13C HSQC analysis, size exclusion chromatography, and pyrolysis-GC/MS, and the aqueous product, in the form of size exclusion chromatography and determination of total phenol contents. The picture emerging from the thorough analytical investigation performed on the lignin fractions is consistent with that resulting from the characterization of the other fractions: results point toward greater deconstruction of the lignocellulosic recalcitrance upon higher organic solvent content, replacing ethanol with acetone during the extraction, and upon addition of mineral acid. A pulp with cellulose content of 94.23 wt % and 95% delignification was obtained for the treatment employing a 55/30/15 EtOH/water/acetone mixture alongside 20 mm H2SO4. Furthermore, the results indicate the formation of two types of organosolv furan families during treatment, which differ in the substitution of their C1 and C5. While the traditional lignin aryl-ether linkages present themselves as indicators for process severity for the nonacid catalyzed systems, the distribution of these furan types can be applied as a severity indicator upon employment of H2SO4, including their presence in the isolated lignin fractions.
Collapse
Affiliation(s)
- Petter
Paulsen Thoresen
- Biochemical
Process Engineering, Division of Chemical Engineering, Department
of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Irene Delgado Vellosillo
- Biochemical
Process Engineering, Division of Chemical Engineering, Department
of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Heiko Lange
- Biochemical
Process Engineering, Division of Chemical Engineering, Department
of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
- Department
of Earth and Environmental Sciences, University
of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
- NBFC
− National Biodiversity Future Center, 90133 Palermo, Italy
| | - Ulrika Rova
- Biochemical
Process Engineering, Division of Chemical Engineering, Department
of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Paul Christakopoulos
- Biochemical
Process Engineering, Division of Chemical Engineering, Department
of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Leonidas Matsakas
- Biochemical
Process Engineering, Division of Chemical Engineering, Department
of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| |
Collapse
|
10
|
Lipilin DL, Zubkov MO, Kosobokov MD, Dilman AD. Direct conversion of carboxylic acids to free thiols via radical relay acridine photocatalysis enabled by N-O bond cleavage. Chem Sci 2024; 15:644-650. [PMID: 38179514 PMCID: PMC10762721 DOI: 10.1039/d3sc05513b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024] Open
Abstract
Carboxylic acids and thiols are basic chemical compounds with diverse utility and widespread reactivity. However, the direct conversion of unprotected acids to thiols is hampered due to a fundamental problem - free thiols are incompatible with the alkyl radicals formed on decarboxylation of carboxylic acids. Herein, we describe a concept for the direct photocatalytic thiolation of unprotected acids allowing unprotected thiols and their derivatives to be obtained. The method is based on the application of a thionocarbonate reagent featuring the N-O bond. The reagent serves both for the rapid trapping of alkyl radicals and for the facile regeneration of the acridine-type photocatalyst.
Collapse
Affiliation(s)
- Dmitry L Lipilin
- N. D. Zelinsky Institute of Organic Chemistry Leninsky Prosp. 47 119991 Moscow Russian Federation
| | - Mikhail O Zubkov
- N. D. Zelinsky Institute of Organic Chemistry Leninsky Prosp. 47 119991 Moscow Russian Federation
| | - Mikhail D Kosobokov
- N. D. Zelinsky Institute of Organic Chemistry Leninsky Prosp. 47 119991 Moscow Russian Federation
| | - Alexander D Dilman
- N. D. Zelinsky Institute of Organic Chemistry Leninsky Prosp. 47 119991 Moscow Russian Federation
| |
Collapse
|
11
|
Zeng W, Zhao Y, Zhang F, Li R, Tang M, Chang X, Wang Y, Wu F, Han B, Liu Z. A general strategy for recycling polyester wastes into carboxylic acids and hydrocarbons. Nat Commun 2024; 15:160. [PMID: 38167384 PMCID: PMC10761813 DOI: 10.1038/s41467-023-44604-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024] Open
Abstract
Chemical recycling of plastic wastes is of great significance for sustainable development, which also represents a largely untapped opportunity for the synthesis of value-added chemicals. Herein, we report a novel and general strategy to degrade polyesters via directly breaking the Calkoxy-O bond by nucleophilic substitution of halide anion of ionic liquids under mild conditions. Combined with hydrogenation over Pd/C, 1-butyl-2,3-dimethylimidazolium bromide can realize the deconstruction of various polyesters including aromatic and aliphatic ones, copolyesters and polyester mixtures into corresponding carboxylic acids and alkanes; meanwhile, tetrabutylphosphonium bromide can also achieve direct decomposition of the polyesters with β-H into carboxylic acids and alkenes under hydrogen- and metal-free conditions. It is found that the hydrogen-bonding interaction between ionic liquid and ester group in polyester enhances the nucleophilicity of halide anion and activates the Calkoxy-O bond. The findings demonstrate how polyester wastes can be a viable feedstock for the production of carboxylic acids and hydrocarbons.
Collapse
Affiliation(s)
- Wei Zeng
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yanfei Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Fengtao Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Rongxiang Li
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Minhao Tang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiaoqian Chang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Ying Wang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Fengtian Wu
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zhimin Liu
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
12
|
Price CAH, Torres-Lopez A, Evans R, Hondow NS, Isaacs MA, Jamal AS, Parlett CMA. Impact of Porous Silica Nanosphere Architectures on the Catalytic Performance of Supported Sulphonic Acid Sites for Fructose Dehydration to 5-Hydroxymethylfurfural. Chempluschem 2023; 88:e202300413. [PMID: 37796663 DOI: 10.1002/cplu.202300413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/07/2023]
Abstract
5-hydroxymethylfurfural represents a key chemical in the drive towards a sustainable circular economy within the chemical industry. The final step in 5-hydroxymethylfurfural production is the acid catalysed dehydration of fructose, for which supported organoacids are excellent potential catalyst candidates. Here we report a range of solid acid catalysis based on sulphonic acid grafted onto different porous silica nanosphere architectures, as confirmed by TEM, N2 porosimetry, XPS and ATR-IR. All four catalysts display enhanced active site normalised activity and productivity, relative to alternative silica supported equivalent systems in the literature, with in-pore diffusion of both substrate and product key to both performance and humin formation pathway. An increase in-pore diffusion coefficient of 5-hydroxymethylfurfural within wormlike and stellate structures results in optimal productivity. In contrast, poor diffusion within a raspberry-like morphology decreases rates of 5-hydroxymethylfurfural production and increases its consumption within humin formation.
Collapse
Affiliation(s)
- Cameron-Alexander H Price
- Department of Chemical Engineering, The University of Manchester, Manchester, M13 9PL, UK
- UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Oxfordshire, OX11 0FA, UK
- University of Manchester at Harwell, Oxfordshire, OX11 0DE, UK
| | - Antonio Torres-Lopez
- Department of Chemical Engineering, The University of Manchester, Manchester, M13 9PL, UK
- UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Oxfordshire, OX11 0FA, UK
- University of Manchester at Harwell, Oxfordshire, OX11 0DE, UK
| | - Robert Evans
- Aston Institute of Materials Research, Aston University, Birmingham, B4 7ET, UK
| | - Nicole S Hondow
- School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Mark A Isaacs
- HarwellXPS, Research Complex at Harwell, Rutherford Appleton Lab, Didcot, OX11 0FA, UK
- Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Aina Syahida Jamal
- Department of Chemical Engineering, The University of Manchester, Manchester, M13 9PL, UK
- UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Oxfordshire, OX11 0FA, UK
- University of Manchester at Harwell, Oxfordshire, OX11 0DE, UK
| | - Christopher M A Parlett
- Department of Chemical Engineering, The University of Manchester, Manchester, M13 9PL, UK
- UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Oxfordshire, OX11 0FA, UK
- University of Manchester at Harwell, Oxfordshire, OX11 0DE, UK
- Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire, OX11 0DE, UK
| |
Collapse
|
13
|
Cioc RC, Harsevoort E, Lutz M, Bruijnincx PCA. Efficient synthesis of fully renewable, furfural-derived building blocks via formal Diels-Alder cycloaddition of atypical addends. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2023; 25:9689-9694. [PMID: 38028818 PMCID: PMC10680129 DOI: 10.1039/d3gc02357e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/30/2023] [Indexed: 12/01/2023]
Abstract
Diels-Alder (DA) cycloaddition of furanics is emerging as a key transformation in circular chemistry, providing access to highly versatile, biobased platform molecules. Further development of this technology into viable industrial applications faces major challenges, a notorious one being the lack of reactivity of the most readily available furans, i.e. the furfural derivatives. Herein we describe the remarkably-facile intramolecular DA reaction of allyl acetals of different furfurals to efficiently afford formal DA adducts with the atypical, unreactive dienophile allyl alcohol. Our methodology gives access to unprecedented oxanorbornene derivatives in high chemo-, regio- and stereoselectivity, which can be readily diversified into valuable products. This offers the potential of scalable production of renewable chemical building blocks from cheap, bioderived platform molecules.
Collapse
Affiliation(s)
- Răzvan C Cioc
- Organic Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry, Faculty of Science, Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Eva Harsevoort
- Organic Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry, Faculty of Science, Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Martin Lutz
- Dr M. Lutz, Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Faculty of Science, Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| | - Pieter C A Bruijnincx
- Organic Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry, Faculty of Science, Utrecht University Universiteitsweg 99 3584 CG Utrecht The Netherlands
| |
Collapse
|
14
|
Wang C, Liu K, Jin Y, Huang S, Chun-Ho Lam J. Amorphous RuO 2 Catalyst for Medium Size Carboxylic Acid to Alkane Dimer Selective Kolbe Electrolysis in an Aqueous Environment. CHEMSUSCHEM 2023; 16:e202300222. [PMID: 37431196 DOI: 10.1002/cssc.202300222] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/24/2023] [Indexed: 07/12/2023]
Abstract
The catalytic transformation of biomass-derived volatile carboxylic acids in an aqueous environment is crucial to developing a sustainable biorefinery. To date, Kolbe electrolysis remains arguably the most effective means to convert energy-diluted aliphatic carboxylic acids (carboxylate) to alkane for biofuel production. This paper reports the use of a structurally disordered amorphous RuO2 (a-RuO2 ) that is synthesized facilely in a hydrothermal method. The a-RuO2 is highly effective towards electrocatalytic oxidative decarboxylation of hexanoic acid and is able to produce the Kolbe product, decane, with a yield 5.4 times greater than that of commercial RuO2 . A systematic study of the reaction temperature, current intensity, and electrolyte concentration reveals the enhanced Kolbe product yield is attributable to the more efficient oxidation of the carboxylate anions for the alkane dimer formation. Our work showcases a new design idea for establishing an efficient electrocatalysts for decarboxylation coupling reaction, providing a new electrocatalyst candidate for Kolbe electrolysis.
Collapse
Affiliation(s)
- Chong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Kaixin Liu
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Yangxin Jin
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Shuquan Huang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, 650000, China
| | - Jason Chun-Ho Lam
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
- Shenzhen Research Institute of City University of Hong Kong, Nanshan District, Shenzhen, China
| |
Collapse
|
15
|
Mathison R, Ramos Figueroa AL, Bloomquist C, Modestino MA. Electrochemical Manufacturing Routes for Organic Chemical Commodities. Annu Rev Chem Biomol Eng 2023; 14:85-108. [PMID: 36930876 DOI: 10.1146/annurev-chembioeng-101121-090840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Electrochemical synthesis of organic chemical commodities provides an alternative to conventional thermochemical manufacturing and enables the direct use of renewable electricity to reduce greenhouse gas emissions from the chemical industry. We discuss electrochemical synthesis approaches that use abundant carbon feedstocks for the production of the largest petrochemical precursors and basic organic chemical products: light olefins, olefin oxidation derivatives, aromatics, and methanol. First, we identify feasible routes for the electrochemical production of each commodity while considering the reaction thermodynamics, available feedstocks, and competing thermochemical processes. Next, we summarize successful catalysis and reaction engineering approaches to overcome technological challenges that prevent electrochemical routes from operating at high production rates, selectivity, stability, and energy conversion efficiency. Finally, we provide an outlook on the strategies that must be implemented to achieve large-scale electrochemical manufacturing of major organic chemical commodities.
Collapse
Affiliation(s)
- Ricardo Mathison
- Department of Chemical and Biomolecular Engineering, New York University, Brooklyn, New York, USA; , , ,
| | - Alexandra L Ramos Figueroa
- Department of Chemical and Biomolecular Engineering, New York University, Brooklyn, New York, USA; , , ,
| | - Casey Bloomquist
- Department of Chemical and Biomolecular Engineering, New York University, Brooklyn, New York, USA; , , ,
| | - Miguel A Modestino
- Department of Chemical and Biomolecular Engineering, New York University, Brooklyn, New York, USA; , , ,
| |
Collapse
|
16
|
Zhang N, Chen X, Liu S, Meng J, Armbrüster M, Liang C. PtFeCoNiCu High-Entropy Alloy Catalyst for Aqueous-Phase Hydrogenation of Maleic Anhydride. ACS APPLIED MATERIALS & INTERFACES 2023; 15:23276-23285. [PMID: 37148281 DOI: 10.1021/acsami.3c02810] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
High-entropy alloys (HEAs), as new heterogeneous catalytic materials, possess remarkable catalytic performance in numerous reactions. However, rational and controllable synthesis of these complex structures remains a challenge. In this work, bulk and carbon nanotube (CNT)-supported ultrasmall PtFeCoNiCu HEA nanoparticles with an average particle size of 1.58 nm are prepared by lithium naphthalenide-driven reduction under mild conditions. The supported PtFeCoNiCu/CNT catalyst exhibits high catalytic activity in the aqueous-phase hydrogenation of maleic anhydride to succinic acid with a selectivity of 98% at full conversion of maleic acid (the hydrolysis product of maleic anhydride), a low apparent activation energy (Ea = 49 kJ mol-1), and excellent stability. Moreover, a much higher mass-specific activity of Pt in the catalyst is displayed over PtFeCoNiCu/CNT (1515.4 mmolmaleic acid gPt-1 h-1) than that of 5 wt % Pt/CNT (388.0 mmolmaleic acid gPt-1 h-1). This work provides a strong support for HEAs as advanced heterogeneous catalysts and will be of great significance for promoting the research and application of HEAs in the field of selective hydrogenation.
Collapse
Affiliation(s)
- Nannan Zhang
- State Key Laboratory of Fine Chemicals, Laboratory of Advanced Materials and Catalytic Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xiao Chen
- State Key Laboratory of Fine Chemicals, Laboratory of Advanced Materials and Catalytic Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Shiyao Liu
- State Key Laboratory of Fine Chemicals, Laboratory of Advanced Materials and Catalytic Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jipeng Meng
- State Key Laboratory of Fine Chemicals, Laboratory of Advanced Materials and Catalytic Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Marc Armbrüster
- Faculty of Natural Sciences, Institute of Chemistry, Materials for Innovative Energy Concepts, Chemnitz University of Technology, Chemnitz 09107, Germany
| | - Changhai Liang
- State Key Laboratory of Fine Chemicals, Laboratory of Advanced Materials and Catalytic Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
17
|
Wang W, Qu R, Suo H, Gu Y, Qin Y. Biodegradable polycarbonates from lignocellulose based 4-pentenoic acid and carbon dioxide. Front Chem 2023; 11:1202735. [PMID: 37214483 PMCID: PMC10192569 DOI: 10.3389/fchem.2023.1202735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
The production of biodegradable polycarbonate by copolymerizing CO2 with epoxides has emerged as an effective method to utilize CO2 in response to growing concerns about CO2 emissions and plastic pollution. Previous studies have mainly focused on the preparation of CO2-based polycarbonates from petrochemical-derived propylene oxide (PO) or cyclohexene oxide (CHO). However, to reduce dependence on fossil fuels, the development of 100% bio-based polymers has gained attention in polymer synthesis. Herein, we reported the synthesis of glycidyl 4-pentenoate (GPA) from lignocellulose based 4-pentenoic acid (4-PA), which was further copolymerized with CO2 using a binary catalyst SalenCoCl/PPNCl to produce bio-based polycarbonates with vinyl side chains and molecular weights up to 17.1 kg/mol. Introducing a third monomer, PO, allows for the synthesis of the GPA/PO/CO2 terpolymer, and the glass transition temperature (T g) of the terpolymer can be adjusted from 2°C to 19°C by controlling the molar feeding ratio of GPA to PO from 7:3 to 3:7. Additionally, post-modification of the vinyl side chains enables the production of functional polycarbonates, providing a novel approach to the preparation of bio-based materials with diverse side chains and functions.
Collapse
|
18
|
Wang J, Shirvani H, Zhao H, Kibria MG, Hu J. Lignocellulosic biomass valorization via bio-photo/electro hybrid catalytic systems. Biotechnol Adv 2023; 66:108157. [PMID: 37084800 DOI: 10.1016/j.biotechadv.2023.108157] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/23/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023]
Abstract
Lignocellulosic biomass valorization is regarded as a promising approach to alleviate energy crisis and achieve carbon neutrality. Bioactive enzymes have attracted great attention and been commonly applied for biomass valorization owing to their high selectivity and catalytic efficiency under environmentally benign reaction conditions. Same as biocatalysis, photo-/electro-catalysis also happens at mild conditions (i.e., near ambient temperature and pressure). Therefore, the combination of these different catalytic approaches to benefit from their resulting synergy is appealing. In such hybrid systems, harness of renewable energy from the photo-/electro-catalytic compartment can be combined with the unique selectivity of biocatalysts, therefore providing a more sustainable and greener approach to obtain fuels and value-added chemicals from biomass. In this review, we firstly introduce the pros/cons, classifications, and the applications of photo-/electro-enzyme coupled systems. Then we focus on the fundamentals and comprehensive applications of the most representative biomass-active enzymes including lytic polysaccharide monooxygenases (LPMOs), glucose oxidase (GOD)/dehydrogenase (GDH) and lignin peroxidase (LiP), together with other biomass-active enzymes in the photo-/electro- enzyme coupled systems. Finally, we propose current deficiencies and future perspectives of biomass-active enzymes to be applied in the hybrid catalytic systems for global biomass valorization.
Collapse
Affiliation(s)
- Jiu Wang
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, Canada
| | - Hamed Shirvani
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, Canada
| | - Heng Zhao
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, Canada
| | - Md Golam Kibria
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, Canada.
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, Canada.
| |
Collapse
|
19
|
Xu Z, Peng C, Zheng G. Coupling Value-Added Anodic Reactions with Electrocatalytic CO 2 Reduction. Chemistry 2023; 29:e202203147. [PMID: 36380419 DOI: 10.1002/chem.202203147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 11/17/2022]
Abstract
Electrocatalytic CO2 reduction features a promising approach to realize carbon neutrality. However, its competitiveness is limited by the sluggish oxygen evolution reaction (OER) at anode, which consumes a large portion of energy. Coupling value-added anodic reactions with CO2 electroreduction has been emerging as a promising strategy in recent years to enhance the full-cell energy efficiency and produce valuable chemicals at both cathode and anode of the electrolyzer. This review briefly summarizes recent progresses on the electrocatalytic CO2 reduction, and the economic feasibility of different CO2 electrolysis systems is discussed. Then a comprehensive summary of recent advances in the coupled electrolysis of CO2 and potential value-added anodic reactions is provided, with special focus on the specific cell designs. Finally, current challenges and future opportunities for the coupled electrolysis systems are proposed, which are targeted to facilitate progress in this field and push the CO2 electrolyzers to a more practical level.
Collapse
Affiliation(s)
- Zikai Xu
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Chen Peng
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Gengfeng Zheng
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| |
Collapse
|
20
|
Shimizu Y, Kanai M. Boron-Catalyzed α-Functionalizations of Carboxylic Acids. CHEM REC 2023:e202200273. [PMID: 36639245 DOI: 10.1002/tcr.202200273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/24/2022] [Indexed: 01/15/2023]
Abstract
Catalytic, chemoselective, and asymmetric α-functionalizations of carboxylic acids promise up-grading simple feedstock materials to value-added functional molecules, as well as late-stage structural diversifications of multifunctional molecules, such as drugs and their leads. In this personal account, we describe boron-catalyzed α-functionalizations of carboxylic acids developed in our group (five reaction types). The reversible boron carboxylate formation is key to the acidification of the α-protons and enolization using mild organic bases, allowing for chemoselective and asymmetric bond formations of carboxylic acids. The ligand effects on reactivity and stereoselectivity, substrate scopes, and mechanistic insights are summarized.
Collapse
Affiliation(s)
- Yohei Shimizu
- Department of Chemistry, Faculty of Sciences Hokkaido University, Kita 10 Nishi 8, 060-0810, Kita-ku, Sapporo, Hokkaido, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 10 Nishi 8, 001-0021, Kita-ku, Sapporo, Hokkaido, Japan
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-0033, Tokyo, Japan
| |
Collapse
|
21
|
Yu L, Ren Z, Yang Y, Wei M. Directed Preparation of Biomass-based Polyester Monomers by Catalytic Conversion. ACTA CHIMICA SINICA 2023. [DOI: 10.6023/a22110459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
22
|
Dynamic materials derived from biobased furans: towards the ‘sleeping giant’ awakening. MENDELEEV COMMUNICATIONS 2023. [DOI: 10.1016/j.mencom.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
23
|
Zeolitic Imidazolate Framework-8 as an Efficient and Facile Heterogeneous Catalyst for the Acceptorless Alcohol Dehydrogenation to Carboxylates. J Catal 2022. [DOI: 10.1016/j.jcat.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Almhofer L, Paulik C, Bammer D, Schlackl K, Bischof RH. Contaminations Impairing an Acetic Acid Biorefinery: Liquid-Liquid Extraction of Lipophilic Wood Extractives with Fully Recyclable Extractants. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Zhou L, Cheng K, Liu T, Li N, Zhang H, He Y. Fully bio-based poly (pentamethylene glutaramide) with high molecular weight and less glutaric acid cyclization via direct solid-state polymerization. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
26
|
Cioc RC, Crockatt M, van der Waal JC, Bruijnincx PCA. Targeting Valuable Chemical Commodities: Hydrazine-mediated Diels-Alder Aromatization of Biobased Furfurals. CHEMSUSCHEM 2022; 15:e202201139. [PMID: 35833422 PMCID: PMC9804822 DOI: 10.1002/cssc.202201139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/13/2022] [Indexed: 06/15/2023]
Abstract
A hydrazine-mediated approach towards renewable aromatics production via Diels-Alder aromatization of readily available, biobased furfurals was explored as alterative to the more classical approaches that rely on reactive but uneconomical reduced dienes (e. g., 2,5-dimethylfuran). To enable cycloaddition chemistry with these otherwise unreactive formyl furans, substrate activation by N,N-dimethyl hydrazone formation was investigated. The choice of the reaction partner was key to the success of the transformation, and in this respect acrylic acid showed the most promising results in the synthesis of aromatics. This strategy allowed for selectivities up to 60 % for a complex transformation consisting of Diels-Alder cycloaddition, oxabridge opening, decarboxylation, and dehydration. Exploration of the furfural scope yielded generic structure-reactivity-stability relationships. The proposed methodology enabled the redox-efficient, operationally simple, and mild synthesis of renewable (p-disubstituted) aromatics of commercial importance under remarkably mild conditions.
Collapse
Affiliation(s)
- Răzvan C. Cioc
- Organic Chemistry and CatalysisDebye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrecht (TheNetherlands
| | - Marc Crockatt
- Department of Sustainable Process and Energy Systems, TNOLeeghwaterstraat 442628 CADelft (TheNetherlands
| | - Jan C. van der Waal
- Department of Sustainable Process and Energy Systems, TNOLeeghwaterstraat 442628 CADelft (TheNetherlands
| | - Pieter C. A. Bruijnincx
- Organic Chemistry and CatalysisDebye Institute for Nanomaterials ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrecht (TheNetherlands
| |
Collapse
|
27
|
Ahmadi M, Nasri Z, von Woedtke T, Wende K. d-Glucose Oxidation by Cold Atmospheric Plasma-Induced Reactive Species. ACS OMEGA 2022; 7:31983-31998. [PMID: 36119990 PMCID: PMC9475618 DOI: 10.1021/acsomega.2c02965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
The glucose oxidation cascade is fascinating; although oxidation products have high economic value, they can manipulate the biological activity through posttranslational modification such as glycosylation of proteins, lipids, and nucleic acids. The concept of this work is based on the ability of reactive species induced by cold atmospheric plasma (CAP) in aqueous liquids and the corresponding gas-liquid interface to oxidize biomolecules under ambient conditions. Here, we report the oxidation of glucose by an argon-based dielectric barrier discharge plasma jet (kINPen) with a special emphasis on examining the reaction pathway to pinpoint the most prominent reactive species engaged in the observed oxidative transformation. Employing d-glucose and d-glucose-13C6 solutions and high-resolution mass spectrometry and ESI-tandem MS/MS spectrometry techniques, the occurrence of glucose oxidation products, for example, aldonic acids and aldaric acids, glucono- and glucaro-lactones, as well as less abundant sugar acids including ribonic acid, arabinuronic acid, oxoadipic acid, 3-deoxy-ribose, glutaconic acid, and glucic acid were surveyed. The findings provide deep insights into CAP chemistry, reflecting a switch of reactive species generation with the feed gas modulation (Ar or Ar/O2 with N2 curtain gas). Depending on the gas phase composition, a combination of oxygen-derived short-lived hydroxyl (•OH)/atomic oxygen [O(3P)] radicals was found responsible for the glucose oxidation cascade. The results further illustrate that the presence of carbohydrates in cell culture media, gel formulations (agar), or other liquid targets (juices) modulate the availability of CAP-generated species in vitro. In addition, a glycocalyx is attached to many mammalian proteins, which is essential for the respective physiologic role. It might be questioned if its oxidation plays a role in CAP activity.
Collapse
Affiliation(s)
- Mohsen Ahmadi
- Leibniz
Institute for Plasma Science and Technology (INP Greifswald), Center
for Innovation Competence (ZIK) plasmatis, Felix-Hausdorff-Straße 2, Greifswald 17489, Germany
| | - Zahra Nasri
- Leibniz
Institute for Plasma Science and Technology (INP Greifswald), Center
for Innovation Competence (ZIK) plasmatis, Felix-Hausdorff-Straße 2, Greifswald 17489, Germany
| | - Thomas von Woedtke
- Leibniz
Institute for Plasma Science and Technology (INP Greifswald), Center
for Innovation Competence (ZIK) plasmatis, Felix-Hausdorff-Straße 2, Greifswald 17489, Germany
- Leibniz
Institute for Plasma Science and Technology (INP Greifswald), Felix-Hausdorff-Straße 2, Greifswald 17489, Germany
- University
Medicine Greifswald, Institute for Hygiene and Environmental Medicine, Walther-Rathenau-Straße 49A, Greifswald 17489, Germany
| | - Kristian Wende
- Leibniz
Institute for Plasma Science and Technology (INP Greifswald), Center
for Innovation Competence (ZIK) plasmatis, Felix-Hausdorff-Straße 2, Greifswald 17489, Germany
| |
Collapse
|
28
|
Jorea A, Ravelli D, Romarowski RM, Marconi S, Auricchio F, Fagnoni M. Photocatalyzed Functionalization of Alkenoic Acids in 3D-Printed Reactors. CHEMSUSCHEM 2022; 15:e202200898. [PMID: 35695876 PMCID: PMC9543820 DOI: 10.1002/cssc.202200898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/08/2022] [Indexed: 06/15/2023]
Abstract
The valorization of alkenoic acids possibly deriving from biomass (fumaric and citraconic acids) was carried out through conversion in important building blocks, such as γ-keto acids and succinic acid derivatives. The functionalization was carried out by addition onto the C=C double bond of radicals generated under photocatalyzed conditions from suitable hydrogen donors (mainly aldehydes) and by adopting a decatungstate salt as the photocatalyst. Syntheses were performed under batch (in a glass vessel) and flow (by using 3D-printed reactors) conditions. The design of the latter reactors allowed for an improved yield and productivity.
Collapse
Affiliation(s)
- Alexandra Jorea
- Department of Clinical Surgery, Diagnostics and PediatricsFondazione IRCCS Policlinico San MatteoViale Brambilla 7427100PaviaItaly
- PhotoGreen Lab, Department of ChemistryUniversity of PaviaViale Taramelli 1227100PaviaItaly
| | - Davide Ravelli
- PhotoGreen Lab, Department of ChemistryUniversity of PaviaViale Taramelli 1227100PaviaItaly
| | - Rodrigo M. Romarowski
- Computational Mechanics and Advanced Materials GroupUniversity of PaviaVia Ferrata 327100PaviaItaly
| | - Stefania Marconi
- Computational Mechanics and Advanced Materials GroupUniversity of PaviaVia Ferrata 327100PaviaItaly
| | - Ferdinando Auricchio
- Computational Mechanics and Advanced Materials GroupUniversity of PaviaVia Ferrata 327100PaviaItaly
| | - Maurizio Fagnoni
- PhotoGreen Lab, Department of ChemistryUniversity of PaviaViale Taramelli 1227100PaviaItaly
| |
Collapse
|
29
|
Huang J, Li H, Su Y, Yang S. Editorial: Sustainable catalytic production of bio-based heteroatom-containing compounds — volume II. Front Chem 2022; 10:1008895. [PMID: 36132430 PMCID: PMC9484520 DOI: 10.3389/fchem.2022.1008895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jinshu Huang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China
| | - Hu Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China
- *Correspondence: Hu Li, ; Song Yang,
| | - Yaqiong Su
- School of Chemistry, Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an, China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China
- *Correspondence: Hu Li, ; Song Yang,
| |
Collapse
|
30
|
Liu Y, Zhang W, Hao C, Wang S, Liu H. Unveiling the mechanism for selective cleavage of C-C bonds in sugar reactions on tungsten trioxide-based catalysts. Proc Natl Acad Sci U S A 2022; 119:e2206399119. [PMID: 35984900 PMCID: PMC9407445 DOI: 10.1073/pnas.2206399119] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/05/2022] [Indexed: 01/19/2023] Open
Abstract
Conversion of naturally occurring sugars, the most abundant biomass resources on Earth, to fuels and chemicals provides a sustainable and carbon-neutral alternative to the current fossil resource-based processes. Tungsten-based catalysts (e.g., WO3) are efficient for selectively cleaving C-C bonds of sugars to C2,3 oxygenate intermediates (e.g., glycolaldehyde) that can serve as platform molecules with high viability and versatility in the synthesis of various chemicals. Such C-C bond cleavage follows a mechanism distinct from the classical retro-aldol condensation. Kinetic, isotope 13C-labeling, and spectroscopic studies and theoretical calculations, reveal that the reaction proceeds via a surface tridentate complex as the critical intermediate on WO3, formed by chelating both α- and β-hydroxyls of sugars, together with the carbonyl group, with two adjacent tungsten atoms (W-O-W) contributing to the β-C-C bond cleavage. This mechanism provides insights into sugar chemistry and enables the rational design of catalytic sites and reaction pathways toward the efficient utilization of sugar-based feedstocks.
Collapse
Affiliation(s)
- Yue Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wei Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Cong Hao
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shuai Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Haichao Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
31
|
Podolean I, Fergani ME, Candu N, Coman SM, Parvulescu VI. Selective oxidation of glucose over transitional metal oxides based magnetic core-shell nanoparticles. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Okada M, Takeuchi K, Matsumoto K, Oku T, Yoshimura T, Hatanaka M, Choi JC. Hydroxycarbonylation of Alkenes with Formic Acid Catalyzed by a Rhodium(III) Hydride Diiodide Complex Bearing a Bidentate Phosphine Ligand. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Masaki Okada
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
- Research Association of High-Throughput Design and Development for Advanced Functional Materials (ADMAT), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
- Research Center, Nippon Shokubai Co., Ltd., 5-8 Nishi Otabi-cho, Suita, Osaka 564-0034, Japan
| | - Katsuhiko Takeuchi
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Kazuhiro Matsumoto
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Tomoharu Oku
- Research Center, Nippon Shokubai Co., Ltd., 5-8 Nishi Otabi-cho, Suita, Osaka 564-0034, Japan
| | - Takayoshi Yoshimura
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Miho Hatanaka
- Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Jun-Chul Choi
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| |
Collapse
|
33
|
Messori A, Fasolini A, Mazzoni R. Advances in Catalytic Routes for the Homogeneous Green Conversion of the Bio-Based Platform 5-Hydroxymethylfurfural. CHEMSUSCHEM 2022; 15:e202200228. [PMID: 35385607 PMCID: PMC9401906 DOI: 10.1002/cssc.202200228] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/01/2022] [Indexed: 06/14/2023]
Abstract
5-Hydroxymethylfufural (HMF) is an intriguing platform molecule that can be obtained from biomasses and that can lead to the production of a wide range of products, intermediates, or monomers. The presence of different moieties in HMF (hydroxy, aldehyde, furan ring) allows to carry out different transformations such as selective oxidations and hydrogenations, reductive aminations, etherifications, decarbonylations, and acetalizations. This is a great chance in a biorefinery perspective but requires the development of active and highly selective catalysts. In this view, homogeneous catalysis can lead to efficient conversion of HMF at mild reaction conditions. This Review discussed the recent achievements in homogeneous catalysts development and application to HMF transformations. The effects of metal nature, ligands, solvents, and reaction conditions were reported and critically reviewed. Current issues and future chances have been presented to drive future studies toward more efficient and scalable processes.
Collapse
Affiliation(s)
- Alessandro Messori
- Department of Industrial Chemistry “Toso Montanari”University of BolognaViale Risorgimento, 440136BolognaItaly
- Center for Chemical Catalysis – C3University of BolognaViale Risorgimento, 440136BolognaItaly
| | - Andrea Fasolini
- Department of Industrial Chemistry “Toso Montanari”University of BolognaViale Risorgimento, 440136BolognaItaly
- Center for Chemical Catalysis – C3University of BolognaViale Risorgimento, 440136BolognaItaly
| | - Rita Mazzoni
- Department of Industrial Chemistry “Toso Montanari”University of BolognaViale Risorgimento, 440136BolognaItaly
- Center for Chemical Catalysis – C3University of BolognaViale Risorgimento, 440136BolognaItaly
| |
Collapse
|
34
|
Harth FM, Celis J, Taubert A, Rössler S, Wagner H, Goepel M, Wilhelm C, Gläser R. Ru/C-Catalyzed Hydrogenation of Aqueous Glycolic Acid from Microalgae - Influence of pH and Biologically Relevant Additives. ChemistryOpen 2022; 11:e202200050. [PMID: 35822926 PMCID: PMC9278103 DOI: 10.1002/open.202200050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/04/2022] [Indexed: 12/05/2022] Open
Abstract
Ethylene glycol (EG) is obtained by a novel, two-step approach combining a biotechnological and a heterogeneously catalyzed step. First, microalgae are cultivated to photobiocatalytically yield glycolic acid (GA) by means of photosynthesis from CO2 and water. GA is continuously excreted into the surrounding medium. In the second step, the GA-containing algal medium is used as feedstock for catalytic reduction with H2 to EG over a Ru/C catalyst. The present study focuses on the conversion of an authentic algae-derived GA solution. After identification of the key characteristics of the algal medium (compared to pure aqueous GA), the influence of pH, numerous salt additives, pH buffers and other relevant organic molecules on the catalytic GA reduction was investigated. Nitrogen- and sulfur-containing organic molecules can strongly inhibit the reaction. Moreover, pH adjustment by acidification is required, for which H2 SO4 is found most suitable. In combination with a modification of the biotechnological process to mitigate the use of inhibitory compounds, and after acidifying the algal medium, over Ru/C a EG yield of up to 21 % even at non-optimized reaction conditions was achieved.
Collapse
Affiliation(s)
- Florian M. Harth
- Institute of Chemical TechnologyUniversität LeipzigLinnéstr. 304103LeipzigGermany
| | - Joran Celis
- Institute of Chemical TechnologyUniversität LeipzigLinnéstr. 304103LeipzigGermany
| | - Anja Taubert
- Department of Algal BiotechnologyUniversität LeipzigPermoserstr. 1504318LeipzigGermany
| | - Sonja Rössler
- Department of Algal BiotechnologyUniversität LeipzigPermoserstr. 1504318LeipzigGermany
| | - Heiko Wagner
- Department of Algal BiotechnologyUniversität LeipzigPermoserstr. 1504318LeipzigGermany
| | - Michael Goepel
- Institute of Chemical TechnologyUniversität LeipzigLinnéstr. 304103LeipzigGermany
| | - Christian Wilhelm
- Department of Algal BiotechnologyUniversität LeipzigPermoserstr. 1504318LeipzigGermany
| | - Roger Gläser
- Institute of Chemical TechnologyUniversität LeipzigLinnéstr. 304103LeipzigGermany
| |
Collapse
|
35
|
Eliminating the need for anodic gas separation in CO 2 electroreduction systems via liquid-to-liquid anodic upgrading. Nat Commun 2022; 13:3070. [PMID: 35654799 PMCID: PMC9163163 DOI: 10.1038/s41467-022-30677-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 05/09/2022] [Indexed: 11/22/2022] Open
Abstract
Electrochemical reduction of CO2 to multi-carbon products (C2+), when powered using renewable electricity, offers a route to valuable chemicals and fuels. In conventional neutral-media CO2-to-C2+ devices, as much as 70% of input CO2 crosses the cell and mixes with oxygen produced at the anode. Recovering CO2 from this stream adds a significant energy penalty. Here we demonstrate that using a liquid-to-liquid anodic process enables the recovery of crossed-over CO2 via facile gas-liquid separation without additional energy input: the anode tail gas is directly fed into the cathodic input, along with fresh CO2 feedstock. We report a system exhibiting a low full-cell voltage of 1.9 V and total carbon efficiency of 48%, enabling 262 GJ/ton ethylene, a 46% reduction in energy intensity compared to state-of-art single-stage CO2-to-C2+ devices. The strategy is compatible with today’s highest-efficiency electrolyzers and CO2 catalysts that function optimally in neutral and alkaline electrolytes. In the electrified conversion of CO2 to multicarbon products, CO2 crossover to the O2-rich anodic stream adds a further, energy-intensive, chemical separation step. Here, the authors demonstrate a strategy that eliminates the separation requirement.
Collapse
|
36
|
Lu T, Yang Z, Li H, Chen H, Xu J, Xu CC, Wang J, Li Z, Zhang Y. Selective oxidation of ethyl lactate to ethyl pyruvate by a photocatalytic strategy under room temperature. J Catal 2022. [DOI: 10.1016/j.jcat.2022.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Morales G, Melero JA, Paniagua M, López-Aguado C, Vidal N. Beta zeolite as an efficient catalyst for the synthesis of diphenolic acid (DPA) from renewable levulinic acid. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
38
|
Cioc RC, Crockatt M, van der Waal JC, Bruijnincx PCA. The Interplay between Kinetics and Thermodynamics in Furan Diels-Alder Chemistry for Sustainable Chemicals Production. Angew Chem Int Ed Engl 2022; 61:e202114720. [PMID: 35014138 PMCID: PMC9304315 DOI: 10.1002/anie.202114720] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Indexed: 01/21/2023]
Abstract
Biomass-derived furanic platform molecules have emerged as promising building blocks for renewable chemicals and functional materials. To this aim, the Diels-Alder (DA) cycloaddition stands out as a versatile strategy to convert these renewable resources in highly atom-efficient ways. Despite nearly a century worth of examples of furan DA chemistry, clear structure-reactivity-stability relationships are still to be established. Detailed understanding of the intricate interplay between kinetics and thermodynamics in these very particular [4+2] cycloadditions is essential to push further development and truly expand the scope beyond the ubiquitous addend combinations of electron-rich furans and electron-deficient olefins. Herein, we provide pertinent examples of DA chemistry, taken from various fields, to highlight trends, establish correlations and answer open questions in the field with the aim to support future efforts in the sustainable chemicals and materials production.
Collapse
Affiliation(s)
- Răzvan C. Cioc
- Organic Chemistry and CatalysisDebye Institute for Nanomaterials ScienceFaculty of ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Marc Crockatt
- Department of Sustainable Process and Energy Systems, TNOLeeghwaterstraat 442628CADelftThe Netherlands
| | - Jan C. van der Waal
- Department of Sustainable Process and Energy Systems, TNOLeeghwaterstraat 442628CADelftThe Netherlands
| | - Pieter C. A. Bruijnincx
- Organic Chemistry and CatalysisDebye Institute for Nanomaterials ScienceFaculty of ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| |
Collapse
|
39
|
Yang M, Li Y, Dang X. An eco-friendly wood adhesive based on waterborne polyurethane grafted with gelatin derived from chromium shavings waste. ENVIRONMENTAL RESEARCH 2022; 206:112266. [PMID: 34688642 DOI: 10.1016/j.envres.2021.112266] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/01/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
An environmentally friendly wood adhesive developed from waterborne polyurethane (WPU) grafted gelatin (G) was investigated in this research. First, the G was extracted from chromium shavings waste, and then mixed with a prepolymer emulsion of WPU to synthesis the graft copolymer (WPUG) via a solvent-free emulsion copolymerization. The synthesized copolymer was characterized using the mechanical properties test, TGA, FT-IR, and other analysis technology. The results indicated that the WPUG had a good overall performance. Specifically, the contact angle reached 111.5°, the tensile strength reached 32.91 MPa, the temperature of the maximum weight loss was greater than 350 °C. The WPUG adhesive had excellent bonding power and mechanical properties; the dry bonding strength reached 4.21 MPa when the ratio between free amino groups of the G and isocyanate-groups of the WPU (the R value) was 1.5. This preparation of the graft copolymer not only satisfies the need of environment-friendly wood adhesives, but it also effectively improves the recyclability of chromium shavings waste.
Collapse
Affiliation(s)
- Mao Yang
- School of Light Industry and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| | - Yanchun Li
- School of Light Industry and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Xugang Dang
- Institute for Biomass and Function Materials & National Demonstration Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| |
Collapse
|
40
|
Gao L, Du K, Yan T, Li H, Pan D, Zhang Y, Tang Y. One-pot two-step process directly converting biomass-derived carbohydrate to lactide. Chem Commun (Camb) 2022; 58:4627-4630. [PMID: 35311879 DOI: 10.1039/d2cc00093h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study proposed a strategy for the production of lactide from biomass-derived carbohydrate with excellent yield, involving sugar to racemic lactic acid conversion over Sn-containing Beta zeolite and racemic lactic acid to lactide conversion over H-Beta zeolite. Structural characteristics of the resulting lactide and extensive applicability for various substrates are also presented.
Collapse
Affiliation(s)
- Lou Gao
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China.
| | - Ke Du
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China.
| | - Tianlan Yan
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China.
| | - He Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China.
| | - Di Pan
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China.
| | - Yahong Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China.
| | - Yi Tang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China.
| |
Collapse
|
41
|
Wolzak LA, van Gemert R, van den Berg KJ, Reek JNH, Tromp M, Korstanje TJ. Kinetic studies on Lewis acidic metal polyesterification catalysts - hydrolytic degradation is a key factor for catalytic performance. Catal Sci Technol 2022; 12:2056-2060. [PMID: 35444794 PMCID: PMC8978806 DOI: 10.1039/d1cy02306c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 03/11/2022] [Indexed: 11/21/2022]
Abstract
Kinetic analysis of polyesterification reactions using Lewis-acidic metal catalysts have been performed. While Sn-based catalysts are superior to Ti-based catalysts under neat polycondensation conditions (high [H2O]), the result is inverted under azeotropic conditions (low [H2O]). These findings show that the catalytic activity is crucially determined by the robustness of the catalyst against hydrolytic degradation. Kinetic studies of Lewis acidic metal-catalyzed polyesterification reactions unveiled that titanium-based catalyst are prone to hydrolytic degradation, while n-BuSnOOH proved to be a robust catalyst.![]()
Collapse
Affiliation(s)
- Lukas A Wolzak
- Sustainable Materials Characterization, van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands .,Bio-inspired, Homogeneous and Supramolecular Catalysis, van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Rogier van Gemert
- Akzo Nobel Car Refinishes BV Rijksstraatweg 31 2171 AJ Sassenheim The Netherlands
| | | | - Joost N H Reek
- Bio-inspired, Homogeneous and Supramolecular Catalysis, van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Moniek Tromp
- Sustainable Materials Characterization, van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands .,Faculty of Science and Engineering, Materials Chemistry - Zernike Institute for Advanced Materials, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Ties J Korstanje
- Sustainable Materials Characterization, van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| |
Collapse
|
42
|
Dong W, Ou M, Qu D, Shi X, Guo M, Liu G, Wang S, Wang F, Chen Y. Rare‐Earth Metal Yttrium‐Modified Composite Metal Oxide Catalysts for High Selectivity Synthesis of Biomass‐Derived Lactic Acid from Cellulose. ChemCatChem 2022. [DOI: 10.1002/cctc.202200265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wendi Dong
- Nanjing University of Technology - Jiangpu Campus: Nanjing Tech University College of Chemical Engineering CHINA
| | - Man Ou
- Nanjing Tech University School of Energy Science and Engineering CHINA
| | - Dongxue Qu
- Nanjing Tech University Collage of Chemical Engineering CHINA
| | - Xingshan Shi
- Nanjing Tech University School of Energy Science and Engineering CHINA
| | - Ming Guo
- University of Helsinki: Helsingin Yliopisto Deparment of Chemistry CHINA
| | - Guojun Liu
- Nanjing Tech University School of Energy Science and Engineering CHINA
| | - Shaoshuai Wang
- Nanjing Tech University College of Chemical Engineering CHINA
| | - Fenfen Wang
- Nanjing Tech University School of Energy Science and Engineering NO.30 Puzhu Road(S),Nanjing,China 211816 Nanjing CHINA
| | - Yuhui Chen
- Nanjing Tech University School of Energy Science and Engineering CHINA
| |
Collapse
|
43
|
Lee MH, Byeon H, Jang HY. Synthesis of α-Hydroxy Acids via Dehydrogenative Cross-Coupling of a Sustainable C 2 Chemical (Ethylene Glycol) with Alcohols. J Org Chem 2022; 87:4631-4639. [PMID: 35294196 DOI: 10.1021/acs.joc.1c02981] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ir(NHC) (NHC, N-heterocyclic carbene)-catalyzed dehydrogenative coupling of sustainable ethylene glycol and various bioalcohols can produce industrially valuable α-hydroxy acids (AHAs). This study is the first to report the sustainable synthesis of higher Cn AHAs, in addition to glycolic acid (C2 AHA) and lactic acid (C3 AHA). This catalytic system can be recycled to the seventh cycle while maintaining good yields. A reaction mechanism, including facile dehydrogenation of each alcohol and fast cross-coupling of dehydrogenated aldehydes forming products, was proposed based on 18O- and 2H-labeling experiments and electron spray ionization-mass spectrometry (ESI-MS) and NMR spectral analyses.
Collapse
Affiliation(s)
- Mi-Hyun Lee
- Department of Energy Systems Research, Ajou University, Suwon 16499, Korea
| | - Heemin Byeon
- Department of Energy Systems Research, Ajou University, Suwon 16499, Korea
| | - Hye-Young Jang
- Department of Energy Systems Research, Ajou University, Suwon 16499, Korea
| |
Collapse
|
44
|
Scholten PBV, Figueirêdo MB. Back to the Future with Biorefineries: Bottom‐Up and Top‐Down Approaches toward Polymers and Monomers. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Philip B. V. Scholten
- Bloom Biorenewables Route de l'Ancienne Papeterie 106 Case postal 146 Marly 1723 Switzerland
| | - Monique B. Figueirêdo
- Bloom Biorenewables Route de l'Ancienne Papeterie 106 Case postal 146 Marly 1723 Switzerland
| |
Collapse
|
45
|
Quattrosoldi S, Guidotti G, Soccio M, Siracusa V, Lotti N. Bio-based and one-day compostable poly(diethylene 2,5-furanoate) for sustainable flexible food packaging: Effect of ether-oxygen atom insertion on the final properties. CHEMOSPHERE 2022; 291:132996. [PMID: 34808204 DOI: 10.1016/j.chemosphere.2021.132996] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
In the present work, the effect of ether oxygen atom introduction in a furan ring-containing polymer has been evaluated. Solvent-free polycondensation process permitted the preparation of high molecular weight poly(diethylene 2,5-furandicarboxylate) (PDEF), by reacting the dimethyl ester of 2,5-furandicarboxylic acid with diethylene glycol. After molecular and thermal characterization, PDEF mechanical response and gas barrier properties to O2 and CO2, measured at different temperatures and humidity, were studied and compared with those of poly(butylene 2,5-furandicarboxylate) (PBF) and poly(pentamethylene 2,5-furanoate) (PPeF) previously determined. Both PDEF and PPeF films were amorphous, differently from PBF one. Glass transition temperature of PDEF (24 °C) is between those of PBF (39 °C) and PPeF (13 °C). As concerns mechanical response, PDEF is more flexible (elastic modulus [E] = 673 MPa) than PBF (E = 1290 MPa) but stiffer than PPeF (E = 9 MPa). Moreover, PDEF is the most thermally stable (temperature of maximum degradation rate being 418 for PDEF, 407 for PBF and 414 °C for PPeF) and hydrophilic (water contact angle being 74° for PDEF, 90° for PBF and 93° for PPeF), with gas barrier performances very similar to those of PPeF (O2 and CO2 transmission rate being 0.0022 and 0.0018 for PDEF and, 0.0016 and 0.0014 cm3 cm/m2 d atm for PPeF). Lab scale composting experiments indicated that PDEF and PPeF were compostable, the former degrading faster, in just one day. The results obtained are explained on the basis of the high electronegativity of ether oxygen atom with respect to the carbon one, and the consequent increase of dipoles along the macromolecule.
Collapse
Affiliation(s)
- Silvia Quattrosoldi
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Giulia Guidotti
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Michelina Soccio
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy; Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, CIRI-MAM, University of Bologna, Bologna, Italy.
| | - Valentina Siracusa
- Chemical Science Department, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Nadia Lotti
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy; Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, CIRI-MAM, University of Bologna, Bologna, Italy; Interdepartmental Center for Agro-Food Research, CIRI-AGRO, University of Bologna, Bologna, Italy
| |
Collapse
|
46
|
Dutta S, Bhat NS. Chemocatalytic value addition of glucose without carbon-carbon bond cleavage/formation reactions: an overview. RSC Adv 2022; 12:4891-4912. [PMID: 35425469 PMCID: PMC8981328 DOI: 10.1039/d1ra09196d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/02/2022] [Indexed: 01/22/2023] Open
Abstract
As the monomeric unit of the abundant biopolymer cellulose, glucose is considered a sustainable feedstock for producing carbon-based transportation fuels, chemicals, and polymers. The chemocatalytic value addition of glucose can be broadly classified into those involving C-C bond cleavage/formation reactions and those without. The C6 products obtained from glucose are particularly satisfying because their syntheses enjoy a 100% carbon economy. Although multiple derivatives of glucose retaining all six carbon atoms in their moiety are well-documented, they are somewhat dispersed in the literature and never delineated coherently from the perspective of their carbon skeleton. The glucose-derived chemical intermediates discussed in this review include polyols like sorbitol and sorbitan, diols like isosorbide, furanic compounds like 5-(hydroxymethyl)furfural, and carboxylic acids like gluconic acid. Recent advances in producing the intermediates mentioned above from glucose following chemocatalytic routes have been elaborated, and their derivative chemistry highlighted. This review aims to comprehensively understand the prospects and challenges associated with the catalytic synthesis of C6 molecules from glucose.
Collapse
Affiliation(s)
- Saikat Dutta
- Department of Chemistry, National Institute of Technology Karnataka (NITK) Surathkal Mangalore-575025 Karnataka India
| | - Navya Subray Bhat
- Department of Chemistry, National Institute of Technology Karnataka (NITK) Surathkal Mangalore-575025 Karnataka India
| |
Collapse
|
47
|
Chen Z, Zeng X, Li X, Lv Z, Li J, Zhang Y. Strong Metal Phosphide-Phosphate Support Interaction for Enhanced Non-Noble Metal Catalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106724. [PMID: 34791708 DOI: 10.1002/adma.202106724] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Strong metal-support interaction (SMSI) is crucial for supported catalysts in heterogeneous catalysis. Here is the first report on strong metal phosphide-phosphate support interaction (SMPSI). The key to SMPSI is the activation of P species on the support, which leads to simultaneous generation of metal phosphide nanoparticles (NPs) and core-shell nanostructures formed by support migration onto the NPs. The encapsulation state of metal phosphide and charge transfer are identical to those of classical SMSIs and can be optimally regulated. Furthermore, the strong interactions of Co2 PL /MnP-3 not only significantly enhance the anti-oxidation and anti-acid capability of non-noble metal but also exhibit excellent catalytic activity and stability toward hydrogenating a wide range of compounds into value-added fine chemicals with 100% selectivity, which is even better than Pd/C and Pt/C. The SMPSI construction can be generally extended to other systems such as Ni2 PL /Mn3 (PO4 )2 , Co2 PL /LaPO4 , and CoPL /CePO4 . This study provides a new approach for the rational design of advanced non-noble metal catalysts and introduce a novel paradigm for the strong interaction between NPs and support.
Collapse
Affiliation(s)
- Zemin Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, Anhui Province Key Laboratory for Biomass Clean Energy, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xiang Zeng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, Anhui Province Key Laboratory for Biomass Clean Energy, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xinyu Li
- CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Zhenxing Lv
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Jiong Li
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Ying Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, Anhui Province Key Laboratory for Biomass Clean Energy, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
48
|
Cioc R, Crockatt M, Van der Waal JC, Bruijnincx P. The Interplay between Kinetics and Thermodynamics in Furan Diels‐Alder Chemistry for Sustainable Chemicals Production. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Razvan Cioc
- Utrecht University: Universiteit Utrecht Chemistry NETHERLANDS
| | - Marc Crockatt
- TNO Sustainable Process and Energy Systems NETHERLANDS
| | | | - Pieter Bruijnincx
- Utrecht University Chemistry Universiteitsweg99Netherlands 3584 CG Utrecht NETHERLANDS
| |
Collapse
|
49
|
Lang M, Li H. Sustainable Routes for the Synthesis of Renewable Adipic Acid from Biomass Derivatives. CHEMSUSCHEM 2022; 15:e202101531. [PMID: 34716751 DOI: 10.1002/cssc.202101531] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/28/2021] [Indexed: 06/13/2023]
Abstract
Adipic acid (AA) is a key industrial dicarboxylic acid intermediate used in nylon manufacturing. Unfortunately, the traditional process technology is accompanied by serious environmental pollution. Given the growing demand for adipic acid and the desire to reduce its negative impact on the environment, considerable efforts have been devoted to developing more green and friendly routes. This Review is focused on the latest advances in the sustainable preparation of AA from biomass-based platform molecules, including 5-hydroxymethylfufural, glucose, γ-valerolactone, and phenolic compounds, through biocatalysis, chemocatalysis, and the combination of both. Additionally, the development of state-of-the-art catalysts for different catalytic systems systematically is discussed and summarized, as well as their reaction mechanisms. Finally, the prospects for all preparation routes are critically evaluated and key technical challenges in the development of green and sustainable processes for the manufacture of AA are highlighted. It is hoped that the green adipic acid synthesis pathways presented can provide insights and guidance for further research into other industrial processes for the production of nylon precursors in the future.
Collapse
Affiliation(s)
- Man Lang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Road, Tianjin, 300130, P. R. China
| | - Hao Li
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Road, Tianjin, 300130, P. R. China
| |
Collapse
|
50
|
Waste Apple Pomace Conversion to Acrylic Acid: Economic and Potential Environmental Impact Assessments. FERMENTATION 2022. [DOI: 10.3390/fermentation8010021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The global demand for acrylic acid (AA) is increasing due to its wide range of applications. Due to this growing demand, alternative AA production strategies must be explored to avoid the exacerbation of prevailing climate and global warming issues since current AA production strategies involve fossil resources. Investigations regarding alternative strategies for AA production therefore constitute an important research interest. The present study assesses waste apple pomace (WAP) as a feedstock for sustainable AA production. To undertake this assessment, process models based on two production pathways were designed, modelled and simulated in ASPEN plus® software. The two competing production pathways investigated included a process incorporating WAP conversion to lactic acid (LA) prior to LA dehydration to generate AA (denoted as the fermentation–dehydration, i.e., FD, pathway) and another process involving WAP conversion to propylene prior to propylene oxidation to generate AA (denoted as the thermochemical–fermentation–oxidation, i.e., TFO, pathway). Economic performance and potential environmental impact of the FD and TFO pathways were assessed using the metrics of minimum selling price (MSP) and potential environmental impacts per h (PEI/h). The study showed that the FD pathway presented an improved economic performance (MSP of AA: USD 1.17 per kg) compared to the economic performance (MSP of AA: USD 1.56 per kg) of the TFO pathway. Crucially, the TFO process was determined to present an improved environmental performance (2.07 kPEI/h) compared to the environmental performance of the FD process (8.72 kPEI/h). These observations suggested that the selection of the preferred AA production pathway or process will require a tradeoff between economic and environmental performance measures via the integration of a multicriteria decision assessment in future work.
Collapse
|