1
|
Zhong J, Xu Z, Peng J, Guan L, Li J, Zhou Z, Zhang Y, Zhang J, Liu S, Yang Y, Hao X. A CRISPR/Cas13a system based on a dumbbell-shaped hairpin combined with DNA-PAINT to establish the DCP-platform for highly sensitive detection of Hantaan virus RNA. Talanta 2025; 291:127852. [PMID: 40054218 DOI: 10.1016/j.talanta.2025.127852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/24/2025]
Abstract
Rapid and sensitive detection of specific RNA sequences is crucial for clinical diagnosis, surveillance, and biotechnology applications. Currently, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) is the gold standard for RNA detection; however, it is associated with long processing time, complex procedures, and a high false-positive rate. To address these challenges, we developed a novel sensing platform based on CRISPR/Cas13a that incorporates a dumbbell-shaped hairpin and DNA-PAINT for rapid, highly specific, and sensitive RNA analysis. By leveraging the CRISPR/Cas13a system, this platform enables the cleavage of dumbbell-shaped hairpins, which subsequently allows the cleaved primers to initiate cyclic amplification of fluorescent signals. These signals are further enhanced by the binding and dissociation phenomena inherent to DNA-PAINT technology, ultimately achieving remarkable triple signal amplification. Additionally, the system effectively discriminates Hantaan virus RNA from Seoul virus in real samples. Importantly, the platform can be easily adapted for the detection of other RNAs by simply reconfiguring the hybridization region of crRNA. In conclusion, this platform represents a "five-in-one" RNA detection approach that integrates reliability, versatility, robustness, high specificity, and superior quantitative capabilities. It provides novel insights for direct RNA detection based on CRISPR/Cas13a and demonstrates significant potential for advancement in viral diagnostics.
Collapse
Affiliation(s)
- Jiamei Zhong
- School of Public Health &Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330031, PR China
| | - Ziyue Xu
- School of Public Health &Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330031, PR China
| | - Jiawei Peng
- School of Public Health &Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330031, PR China
| | - Liwen Guan
- School of Public Health &Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330031, PR China
| | - Jianxiong Li
- Laboratory of Viral Infectious Disease, The Key Laboratory of Important and Emerging Viral Infectious Diseases of Jiangxi Health Commission, Jiangxi Provincial Center for Disease Control and Prevention, Nanchang, Jiangxi, 330029, PR China
| | - Zhuoxun Zhou
- School of Public Health &Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330031, PR China
| | - Yu Zhang
- School of Public Health &Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330031, PR China
| | - Jie Zhang
- School of Public Health &Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330031, PR China
| | - Shiwen Liu
- Laboratory of Viral Infectious Disease, The Key Laboratory of Important and Emerging Viral Infectious Diseases of Jiangxi Health Commission, Jiangxi Provincial Center for Disease Control and Prevention, Nanchang, Jiangxi, 330029, PR China.
| | - Yifei Yang
- School of Public Health &Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330031, PR China.
| | - Xian Hao
- School of Public Health &Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330031, PR China.
| |
Collapse
|
2
|
Li M, Zhou Z, Tian G, Liu C. A machine-learning-integrated portable electrochemiluminescence sensing platform for the visualization and high-throughput immunoassays. Talanta 2025; 287:127639. [PMID: 39879798 DOI: 10.1016/j.talanta.2025.127639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/05/2025] [Accepted: 01/23/2025] [Indexed: 01/31/2025]
Abstract
Electrochemiluminescence (ECL)-based point-of-care testing (POCT) has the potential to facilitate the rapid identification of diseases, offering advantages such as high sensitivity, strong selectivity, and minimal background interference. However, as the throughput of these devices increases, the issues of increased energy consumption and cross-contamination of samples remain. In this study, a high-throughput ECL biosensor platform with the assistance of machine learning algorithms is developed by combining a microcolumn array electrode, a microelectrochemical workstation, and a smartphone with custom software. The microcolumn array electrode is modified with gold nanoparticles by the electrodeposition method to enhance the electrical conductivity and effectively catalyze the luminescence reaction, leading to a significantly enhanced ECL intensity. The support vector machine (SVM) algorithm is employed to analyze the signals from luminescent images captured by the smartphone, enabling the quantitative detection of the SARS-CoV-2 nucleocapsid (SARS-CoV-2 N) protein with a linear detection range from 0.001 to 10 ng/mL and a limit of detection as low as 0.86 pg/mL. The application of the SVM model and a backpropagation (BP) neural network algorithm, both leveraging RGB feature extraction, has demonstrated the capability to effectively classify and predict the concentration of the target protein with high accuracy. This machine learning-assisted ECL-POCT platform significantly reduces cross-contamination and signal interference in traditional high-throughput ECL systems, providing great potential for large-scale and simultaneous disease screening.
Collapse
Affiliation(s)
- Mengmeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, PR China
| | - Zhongzeng Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, PR China
| | - Guang Tian
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, PR China
| | - Conghui Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, PR China.
| |
Collapse
|
3
|
Wu H, Ling X, Huang S, Zhao Q, Zhang D, Wang H. Direct Fluorescence Anisotropy Detection of miRNA Based on Duplex-Specific Nuclease Signal Amplification. Anal Chem 2025. [PMID: 40205322 DOI: 10.1021/acs.analchem.5c00723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
The dysregulation of microRNAs (miRNAs) is associated with various diseases, including cancer, so miRNAs are considered a potential biomarker candidate for disease diagnosis and therapy. However, the direct, rapid, sensitive, and specific detection of miRNAs remains quite challenging due to their short length, sequence homology, and low abundance. Herein, we propose a simple and homogeneous fluorescence anisotropy (FA) strategy for the direct and rapid (∼35 min) quantification of miRNA-21 based on duplex-specific nuclease (DSN)-assisted signal amplification. In the presence of target miRNA-21, the complementary single-stranded DNA (ssDNA) probes labeled with a single fluorophore, tetramethylrhodamine (TMR), are specifically hydrolyzed into small fragments by endonuclease DSN upon formation of the DNA/RNA hybrid, which leads to a reduction in FA due to the decrease in molecular size. However, the target miRNA remains intact during the enzymatic digestion process and is released in solution for the next round of binding, hydrolysis, and release for recycling. It is observed that the ssDNA probe labeled with TMR at the 5'-end, in which the fluorophore is nine nucleotides away from the nearest dG base to eliminate/reduce photoinduced electron transfer interaction between TMR and the dG base, exhibits the maximum FA change in response to the target miRNA-21. The change in FA enables the sensitive detection of miRNA-21 ranging from 0.050 to 2.0 nM, with a detection limit of 40 pM. In addition, this amplification strategy exhibits high selectivity and can even discriminate single-base mutations between miRNA family members. We further applied this method to detect miRNA-21 in the extract of various cancer cell lines. Therefore, this method holds great potential for miRNA analysis in tissues or cells, providing valuable information for biomedical research, clinical diagnostics, and therapeutic applications.
Collapse
Affiliation(s)
- Huilan Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoting Ling
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shoulong Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dapeng Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hailin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Jang W, Kim YJ, Roh HK, Song EL, Bong KW. Hydrogel-Based In Situ DNA Extension Assay for Multiplexed and Rapid Detection of MicroRNA. Anal Chem 2025; 97:7317-7324. [PMID: 40148761 DOI: 10.1021/acs.analchem.4c06995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
MicroRNAs (miRNAs) are important biomarkers for liquid biopsy, with extensive applicability to diverse diseases. Among diverse miRNA sensing platforms, graphically encoded hydrogel-based miRNA detection technology is a highly promising diagnostic tool, in terms of sensitivity, specificity, and multiplexing capability. However, the conventional hydrogel-based miRNA detection process suffers from a long assay time (more than 3 h) and redundant assay steps, limiting the practical applicability to actual clinical fields. In this study, we develop a hydrogel-based in situ DNA extension assay for rapid, simple, and multiplexed miRNA detection. Unlike typical hydrogel-based assays, the target hybridization and biotinylation for fluorophore labeling are integrated into a single step via target miRNA-primed DNA extension in hydrogel microparticles. Therefore, multiple microRNA targets can be quantitatively detected within 45 min by two assay steps composed of (1) target capture/biotinylation and (2) fluorophore labeling via streptavidin-biotin interaction. We validate robust sensitivities (down to the low picomolar level) and specificities (single-nucleotide level) by conducting singleplex assays for breast cancer-related miRNA markers (miR-16, miR-92a, and let-7a). Furthermore, multiplexed detection of these miRNA markers is conducted to validate robust multiplexing capacity with negligible nonspecific signal expression. Finally, multiple types of miRNAs in the lysate of breast cancer cells (MCF-7) are successfully detected using the developed assay. We expect the developed hydrogel-based assay can contribute to biomedical and omic fields, enabling high-throughput profiling of multiple miRNAs.
Collapse
Affiliation(s)
- Wookyoung Jang
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Yu Jin Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Hyun Kyo Roh
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - E Loomee Song
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Ki Wan Bong
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
5
|
Yu K, Wu Z, Yang L. Product-induced catalytic amplification strategy based on DNA tetrahedron for detection of miRNA-21 in colorectal cancer. Talanta 2025; 285:127354. [PMID: 39671996 DOI: 10.1016/j.talanta.2024.127354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 12/15/2024]
Abstract
A product-induced catalytic amplification (PICA) strategy had been developed for miRNA-21 detection based on DNA tetrahedron module (DTM). The produced DNA fragment could open hairpin structure and increase the concentration of catalyst, accelerating the circular cleavage reaction on DTM by DNAzyme cleavage. The continuously cleavage of DNAzyme on DTM resulted the greatly enhancement of signal. A favorable linear range was achieved from 20 pM to 5 nM with a limit of detection of 7 pM. Furthermore, through the implementation of the PICA strategy, the overall reaction time experienced a noticeable decrease to 30 min. The assessments of the amplification rate and kinetic constant of the PICA strategy were also conducted. These results highlighted the promising potential of the PICA strategy for practical utilization in serum samples.
Collapse
Affiliation(s)
- Kaihang Yu
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Zhiyi Wu
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Lizhu Yang
- State Key Laboratory of Macromolecular Drugs and Large-scale Manufacturing, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
6
|
D'Antonio F, Spinello Z, Bargiacchi L, Splendiani E, Rossi S, Masuelli L, Mastronuzzi A, Locatelli F, Ferretti E, Catanzaro G. Circulating microRNAs: A remarkable opportunity as non-invasive biomarkers from adult to pediatric brain tumor patients. Crit Rev Oncol Hematol 2025; 208:104650. [PMID: 39914569 DOI: 10.1016/j.critrevonc.2025.104650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/23/2025] [Accepted: 02/02/2025] [Indexed: 02/10/2025] Open
Abstract
Central nervous system (CNS) tumors represent the most frequent solid tumors among adolescents and children, and the leading cause of cancer-related death in men < 40 and women < 20 years of age. Brain tumors are challenging to diagnose, monitor, and treat. The current diagnostic approach involves magnetic resonance imaging (MRI), tumor histology, molecular characterization and cytologic analysis of cerebrospinal fluid (CSF). However, surgical procedures pose potential risks to the patient's health, not achieving good accuracy. For these reasons, it is crucial to identify new non-invasive disease biomarkers to improve patients' stratification at diagnosis and during follow-up and prognosis. MicroRNAs (miRNAs) are a class of short RNA molecules that have been demonstrated in numerous studies to be dysregulated in brain tumor patients. As a result, they may be used as biomarkers of brain tumors. Additionally, miRNAs can be analyzed in liquid biopsy samples, such as blood and CSF, providing a non-invasive source of biomolecular data on patients' disease status. This review aims to highlight the role of miRNAs in liquid biopsy, also known as circulating miRNAs, as potential non-invasive cancer biomarkers in both adult and pediatric populations and to suggest their potential impact on clinical trials.
Collapse
Affiliation(s)
- Federica D'Antonio
- Department of Experimental Medicine, Sapienza University of Rome, Rome 00161, Italy; Department of Haematology-Oncology and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Zaira Spinello
- Department of Experimental Medicine, Sapienza University of Rome, Rome 00161, Italy
| | - Lavinia Bargiacchi
- Morphologic and Molecular Pathology Unit, Sant'Andrea University Hospital, Rome 00189, Italy
| | - Elena Splendiani
- Department of Experimental Medicine, Sapienza University of Rome, Rome 00161, Italy
| | - Sabrina Rossi
- Pathology Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Laura Masuelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome 00161, Italy
| | - Angela Mastronuzzi
- Department of Haematology-Oncology and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Franco Locatelli
- Department of Haematology-Oncology and Cell and Gene Therapy, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Elisabetta Ferretti
- Department of Experimental Medicine, Sapienza University of Rome, Rome 00161, Italy.
| | - Giuseppina Catanzaro
- Department of Life, Health and Health Professions Sciences, Link Campus University, Rome 00165, Italy.
| |
Collapse
|
7
|
Chen J, Luo M, Xing Z, Chen Y, Peng C, Li D. Start small, think big: MicroRNAs in diabetes mellitus and relevant cardiorenal-liver metabolic health spectrum. Metabolism 2025; 165:156153. [PMID: 39914482 DOI: 10.1016/j.metabol.2025.156153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 02/02/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
Diabetes mellitus (DM), co-existing with metabolic disorder of cardio-renal-liver, is one of the most difficult problems in medicine that attracts global concern with high mortality. MicroRNAs (miRNAs) are a class of small non-coding RNA molecules that negatively regulates gene expression and exerts active against a large proportion of the transcriptome, due to their high evolutionary conservation. Emerging evidence prove that miRNAs are involved in the pathogenesis of DM and associated metabolic disorders, manifested by their variable alteration in the blood, urine, tissues, or organs, principally contributing to modulate the interconnections between DM and cardio-renal-liver metabolism. Mechanistically, miRNAs regulate various biological processes, such as metabolism of insulin, lipid, glucose, inflammatory response, fibrosis, oxidative stress, apoptosis, and angiogenesis, etc. This review emphasizes the function of miRNAs and highlights the physiopathological regulation of miRNA in DM and related complications, especially the dysfunction of cardiovascular system, kidneys, and liver, with the aim of providing promising biomarkers for assisting early diagnosis of DM with cardio-renal-liver- specific metabolic disorders, as well as for the development of miRNA-targeting agents.
Collapse
Affiliation(s)
- Junren Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Maozhu Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ziwei Xing
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
8
|
Xie Z, Tang Z, Zhuang X, Li X, Wang B, Wang H, Zhang Y. A dual-switch fluorescence biosensor with an entropy-driven and DNA walker cascade amplification circuit for sensitive microRNA detection. NANOSCALE 2025; 17:8153-8160. [PMID: 40047714 DOI: 10.1039/d5nr00159e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
To achieve precise diagnosis of tumor cells, designing nucleic acid amplification circuits with intelligent multi-switch responsiveness for the specific and sensitive detection of miRNA within tumor cells is an important strategy. Here, we developed a dual-switch fluorescence biosensor that integrates a two-step cascade signal amplification circuit of an entropy-driven circuit (EDC) and DNA walkers onto gold nanoparticles for highly sensitive and quantitative detection of target miRNA in tumor cells. The dual switches that trigger the fluorescence signal are miRNA and the APE1 enzyme, both of which are upregulated in tumor cells. To be specific, the target miRNA21 triggers the upstream EDC, releasing strands that serve as walkers for the downstream circuit. Under the cleavage-driven action of the APE1 enzyme, the walker strands walk along the track strands on the surface of AuNPs, releasing a strong fluorescence signal and presenting good linearity in the target miRNA concentration range of 40 pM-100 nM. This biosensor presents good specificity, strong anti-interference ability against multiple RNAs and enzymes and can effectively distinguish cancer cells from normal cell lysates. Overall, this dual-switch fluorescence biosensor provides a precise recognition and efficient amplification strategy for miRNA detection within tumors, indicating its potential for clinical applications in disease diagnosis.
Collapse
Affiliation(s)
- Zikang Xie
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Zhaolong Tang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xindie Zhuang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xinhao Li
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Baozheng Wang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Hong Wang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yingwei Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
9
|
Zhai F, Yun B, Ming J, Yu T, Li B, Liu X, Wang X, Chen ZH, Song C, Zhao M, Li W, Liu Z, Liang A, Li J, Zhang F. Non-Invasive Diagnosis of Early Colorectal Cancerization via Amplified Sensing of MicroRNA-21 in NIR-II Window. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2501378. [PMID: 40123304 DOI: 10.1002/adma.202501378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/04/2025] [Indexed: 03/25/2025]
Abstract
Accurate, sensitive, and in situ visualization of aberrant expression level of low-abundant biomolecules is crucial for early colorectal cancer (CRC) detection ahead of tumor morphology change. However, the clinical used colonoscopy and biopsy methods are invasive and lack of sensitivity at early-stage of cancerization. Here, an amplified sensing strategy is developed in the second near-infrared long-wavelength subregion (NIR-II-L, 1500-1900 nm) by integrating DNAzyme-triggered signal amplification technology and lanthanide-dye hybrid system. In the early-stage of CRC, the overexpressed biomarker microRNA-21 initiates the NIR-II-L luminescence ratiometric signal amplification of the CRCsensor. The high sensitivity with a limit of detection (LOD) of 1.26 pm allows non-invasive visualization of orthotopic colorectal cancerization via rectal administration, which achieves early and accurate in situ diagnosis at 2 weeks ahead of the in vitro histological results. This innovative approach offers a promising tool for early diagnosis and long-term monitoring of carcinogenesis progression, with potential applications in other cancer-related biomarkers.
Collapse
Affiliation(s)
- Fuheng Zhai
- Department of Oncology, Huadong Hospital, Fudan University, Shanghai, 200040, P. R. China
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200433, P. R. China
| | - Baofeng Yun
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200433, P. R. China
| | - Jiang Ming
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200433, P. R. China
| | - Tianyu Yu
- Department of Oncology, Huadong Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Benhao Li
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200433, P. R. China
| | - Xiao Liu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200433, P. R. China
| | - Xusheng Wang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200433, P. R. China
| | - Zi-Han Chen
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200433, P. R. China
| | - Changfeng Song
- Department of Oncology, Huadong Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Mengyao Zhao
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200433, P. R. China
| | - Wenlin Li
- Department of Cell Biology, Naval Medical University, Shanghai, 200433, P. R. China
| | - Zhebin Liu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200433, P. R. China
| | - Aibin Liang
- Department of Hematology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, P. R. China
| | - Jiyu Li
- Department of Oncology, Huadong Hospital, Fudan University, Shanghai, 200040, P. R. China
- Department of Oncology, Pudong Hospital, Fudan University, Shanghai, 201399, P. R. China
| | - Fan Zhang
- Department of Oncology, Huadong Hospital, Fudan University, Shanghai, 200040, P. R. China
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200433, P. R. China
- Department of Hematology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, P. R. China
| |
Collapse
|
10
|
Chen Y, Lv B, Wang W, Wu Y, Li D. Structure-switching G-quadruplex: An efficient CRISPR/Cas12a signal reporter for label-free colorimetric biosensing. Int J Biol Macromol 2025; 307:142410. [PMID: 40122420 DOI: 10.1016/j.ijbiomac.2025.142410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/14/2025] [Accepted: 03/20/2025] [Indexed: 03/25/2025]
Abstract
G-quadruplex is widely used as a signal reporter for colorimetric biosensor construction. However, the effectiveness of CRISPR/Cas12a in trans-cleaving G-quadruplexes is significantly influenced by their resistance to nuclease, resulting in a weak colorimetric signal response. Herein, a structure-switching G-quadruplex regulated by transducer DNA is used as a signal reporter to construct CRISPR/Cas12a-based biosensors. The transducer DNA lacks a stable secondary structure, enabling efficient cleavage by CRISPR/Cas12a, which subsequently affects the catalytic activity of the G-quadruplex/hemin DNAzyme. We used microRNAs (miRNAs) and ATP as model targets to develop a label-free colorimetric detection platform. By optimizing the DNA sequences and reaction conditions, the biosensors exhibit excellent detection selectivity and sensitivity. The reliability of the proposed method was validated by its consistency with RT-qPCR for miRNAs detection and a commercial chemiluminescence kit for ATP assay, demonstrating its potential in clinical diagnosis and bioanalytical studies. The assay is concise and cost-effective because it does not require DNA labeling, magnetic separation, or enzymatic DNA amplification. Our design strategy avoids the use of G-quadruplex as a cleavage substrate for CRISPR/Cas12a while ensuring an efficient response of the G-quadruplex/hemin DNAzyme to CRISPR/Cas12a system, addressing the issue of G-quadruplex resistance to CRISPR/Cas12a nuclease activity.
Collapse
Affiliation(s)
- Yang Chen
- Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Bei Lv
- Key Lab of Innovative Applications of Bioresources and Functional Molecules of Jiangsu Province, College of Life Science and Chemistry, Jiangsu Second Normal University, Nanjing 210013, China
| | - Wenzhu Wang
- Key Lab of Innovative Applications of Bioresources and Functional Molecules of Jiangsu Province, College of Life Science and Chemistry, Jiangsu Second Normal University, Nanjing 210013, China
| | - Yapeng Wu
- Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Dawei Li
- Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
11
|
Zhang Z, Liu X, Peng C, Du R, Hong X, Xu J, Chen J, Li X, Tang Y, Li Y, Liu Y, Xu C, Liu D. Machine Learning-Aided Identification of Fecal Extracellular Vesicle microRNA Signatures for Noninvasive Detection of Colorectal Cancer. ACS NANO 2025; 19:10013-10025. [PMID: 40033785 DOI: 10.1021/acsnano.4c16698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Colorectal cancer (CRC) remains a formidable threat to human health, with considerable challenges persisting in its diagnosis, particularly during the early stages of the malignancy. In this study, we elucidated that fecal extracellular vesicle microRNA signatures (FEVOR) could serve as potent noninvasive CRC biomarkers. FEVOR was first revealed by miRNA sequencing, followed by the construction of a CRISPR/Cas13a-based detection platform to interrogate FEVOR expression across a diverse spectrum of clinical cohorts. Machine learning-driven models were subsequently developed within the realms of CRC diagnostics, prognostics, and early warning systems. In a cohort of 38 CRC patients, our diagnostic model achieved an outstanding accuracy of 97.4% (37/38), successfully identifying 37 of 38 CRC cases. This performance significantly outpaced the diagnostic efficacy of two clinically established biomarkers, CEA and CA19-9, which showed accuracies of mere 26.3% (10/38) and 7.9% (3/38), respectively. We also examined the expression levels of FEVOR in several CRC patients both before and after surgery, as well as in patients with colorectal adenomas (CA). Impressively, the results showed that FEVOR could serve as a robust prognostic indicator for CRC and a potential predictor for CA. This endeavor aimed to harness the predictive power of FEVOR for enhancing the precision and efficacy of CRC management paradigms. We envision that these findings will propel both foundational and preclinical research on CRC, as well as clinical studies.
Collapse
Affiliation(s)
- Zhaowei Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Recognition and Biosensing, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xuyang Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Recognition and Biosensing, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chuanyue Peng
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin Institute of Coloproctology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Rui Du
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Recognition and Biosensing, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiaoqin Hong
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Recognition and Biosensing, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jia Xu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Recognition and Biosensing, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jiaming Chen
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Recognition and Biosensing, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiaomin Li
- Medical and Hygienic Materials Research Institute, SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China
| | - Yujing Tang
- Medical and Hygienic Materials Research Institute, SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing 100013, China
| | - Yuwei Li
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin Institute of Coloproctology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Yang Liu
- Department of Hepatobiliary Cancer, Liver Cancer Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
- Department of Hepatobiliary and Pancreatic Oncology, Tianjin Cancer Hospital Airport Hospital, National Clinical Research Center for Cancer, Tianjin 300308, China
| | - Chen Xu
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin Institute of Coloproctology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Dingbin Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Molecular Recognition and Biosensing, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
12
|
Liu H, Lv MM, Li X, Su M, Nie YG, Ying ZM. Ligation-recognition triggered RPA-Cas12a cis-cleavage fluorogenic RNA aptamer for one-pot and label-free detection of MicroRNA in breast cancer. Biosens Bioelectron 2025; 272:117106. [PMID: 39740588 DOI: 10.1016/j.bios.2024.117106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/21/2024] [Accepted: 12/26/2024] [Indexed: 01/02/2025]
Abstract
"One-pot" assays which combine amplification with CRISPR/Cas12a system are in constant attracted for biosensors development. Herein, we present a one-pot isothermal assay that Ligation-recognition triggered Recombinase Polymerase Amplification (RPA)-CRISPR/Cas12a cis-cleavage (LRPA-CRISPR) fluorescent biosensor for sensitive, specific, and label-free miRNA detection. Firstly, we reveal the programmed double-stranded DNA amplicons, which utilized the ligation-recognition and polymerization to form and amplified by the RPA system. Meanwhile, we enabled exponential ligation-recognition triggered recombinase polymerase amplification of miRNA-21 sequences and exploited the cis-cleavage mechanism of Cas12a with transcription to generate functional Mango RNA for signal output. This assay can be completed within 40 min and can allow a limit of detection of 3.43 aM for miRNA-21 detection, owing to the RPA with transcription amplification and enables to product the functional Mango RNA aptamer by in vitro transcription that binds to the TO1-Biotin fluorogenic dye. Moreover, our method exhibits the advantages of self-supply crRNA, label-free, excellent specificity, and universal detection platform via the design of one-pot detection in serum and cell samples, showing tremendous potential in biomarkers diagnostics of breast cancer.
Collapse
Affiliation(s)
- Hao Liu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Meng-Mei Lv
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defect Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, Hunan, 410000, China
| | - Xiang Li
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Mei Su
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Yin-Gang Nie
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Zhan-Ming Ying
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China.
| |
Collapse
|
13
|
Osman E, L'Heureux-Hache J, Li P, Soleymani L. Design and simulation of biomimetic microfluidic designs to achieve uniform flow and DNA capture for high-throughput multiplexing. LAB ON A CHIP 2025; 25:1462-1473. [PMID: 39935300 DOI: 10.1039/d4lc01023j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
High-throughput multi-analyte point-of-care detection is often constrained by the limited number of analytes that can be effectively monitored. This study introduces bio-inspired microfluidic designs optimized for multi-analyte detection using 38-42 biosensors. Drawing inspiration from the human spinal cord and leaf vein networks, these perfusion-oriented designs ensure uniform flow velocity and consistent molecular capture while maintaining spatial separation to prevent cross-talk. In silico optimizations achieved velocity profile uniformity with coefficients of variance of 0.89% and 0.86% for the spine- and leaf-inspired designs, respectively. However, simulations revealed that velocity uniformity alone is insufficient for accurate molecular capture prediction without consistent reaction site channel dimensions. The bio-inspired designs demonstrated superior performance, stabilizing-coefficient of variance below 20%-in DNA capture within 10 minutes, compared to 68 minutes for a simple branched design. This work underscores the potential of bio-inspired microfluidics to enable scalable, uniform, and high-performance systems for multi-analyte detection.
Collapse
Affiliation(s)
- Enas Osman
- School of Biomedical Engineering, McMaster University, Hamilton L8S 4L8, Ontario, Canada.
| | | | - Phoebe Li
- Department of Engineering Physics, McMaster University, Hamilton L8S 4L8, Ontario, Canada
| | - Leyla Soleymani
- School of Biomedical Engineering, McMaster University, Hamilton L8S 4L8, Ontario, Canada.
- Department of Engineering Physics, McMaster University, Hamilton L8S 4L8, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton L8S 4L8, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton L8S 4L8, Ontario, Canada
| |
Collapse
|
14
|
Sui Z, Chen B, Zhao J, Yang H, Guo L, Xu J. Dual-Accelerated Signal Amplification in Biosensing via Spatial Confining Catalytic Hairpin Assembly-Activated Spherical CRISPR/Cas12a System for Trans-Cleavage of Hairpin DNA Reporters. Anal Chem 2025; 97:4668-4677. [PMID: 39982896 DOI: 10.1021/acs.analchem.4c07111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2025]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression and are implicated in various diseases, including cancer. Due to their critical role in diagnostics, there is a growing need for sensitive, specific, and rapid detection methods for miRNAs. In this study, we present a dual-accelerated signal amplification platform for miRNA biosensing, which integrates spatial confining catalytic hairpin assembly (SC-CHA) with spherical CRISPR/Cas12a (S-CRISPR/Cas12a) system for (SC-CHA@S-CRISPR/Cas12a) trans-cleavage of hairpin DNA reporters. The method employs a biotinylated palindrome-rich assembly sequence (PAS) to form DNA nanoballs, which serve as a scaffold for the operation of SC-CHA upon miRNA binding. The SC-CHA products bind with crRNA and Cas 12a protein, activating S-CRISPR/Cas12a system to cleave the hairpin DNA reporter and generate a detectable fluorescence signal. The uniqueness of this system lies in the combined use of DNA nanoballs and hairpin DNA reporters, both of which significantly accelerate reaction kinetics, resulting in rapid signal generation. Additionally, the spherical DNA nanostructure, integrated with the S-CRISPR/Cas12a system, greatly enhances biostability and accelerating reaction kinetics. These features enable the platform to exhibit high sensitivity, with a limit of detection (LOD) as low as 13.75 fM, and excellent specificity, successfully distinguishing miRNA-21 from other miRNAs. The assay is also biostable, demonstrating reliable performance in complex biological samples such as human serum. This dual-acceleration approach offers a promising solution for sensitive, rapid, and specific miRNA biosensing, with potential applications in early cancer diagnosis and clinical monitoring.
Collapse
Affiliation(s)
- Zhuqi Sui
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological and Chemical Engineering, Jiaxing University, Jiaxing 314001, China
| | - Baoqiang Chen
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological and Chemical Engineering, Jiaxing University, Jiaxing 314001, China
| | - Jia Zhao
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological and Chemical Engineering, Jiaxing University, Jiaxing 314001, China
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Haidong Yang
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological and Chemical Engineering, Jiaxing University, Jiaxing 314001, China
| | - Longhua Guo
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological and Chemical Engineering, Jiaxing University, Jiaxing 314001, China
| | - Jianguo Xu
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological and Chemical Engineering, Jiaxing University, Jiaxing 314001, China
| |
Collapse
|
15
|
Benke EH, Boegner DJ, Bogusch AM, White IM. Sample-to-answer detection of miRNA from whole blood using thermally responsive alkane partitions. Biosens Bioelectron 2025; 271:117052. [PMID: 39675942 DOI: 10.1016/j.bios.2024.117052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/27/2024] [Accepted: 12/08/2024] [Indexed: 12/17/2024]
Abstract
Circulating miRNA offers a tremendous opportunity as a biomarker paradigm for many applications in disease diagnostics, including point-of-care diagnostics for global health needs. However, despite the numerous miRNA detection schemes reported, there still does not exist a solution for highly sensitive sample-to-answer detection of miRNA directly from complex samples, such as whole blood. We recently developed thermally responsive alkane partitions (TRAPs), which - when combined with magnetic microbeads - enable the complete assay automation from whole blood. Here we apply TRAPs with ligation-LAMP to automate the detection of miRNA in whole blood samples. MBs and a TRAP enable the automated purification of miRNA from blood, while a novel displacement-ligation method is utilized to trigger the ligation-LAMP reaction, which is streamlined into one step by a second TRAP. Using easily manufacturable TRAP-enabled assay cassettes and a custom low-cost handheld instrument, we report the specific detection of miR-155 at concentrations as low as 15 fM in whole blood with no intermediate steps by the user. This new approach creates the opportunity for point-of-care miRNA-based diagnostics with global health applications.
Collapse
Affiliation(s)
- Evan H Benke
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - David J Boegner
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Alejandra M Bogusch
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Ian M White
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
16
|
Alizadeh M, Ghasemi H, Bazhan D, Mohammadi Bolbanabad N, Rahdan F, Arianfar N, Vahedi F, Khatami SH, Taheri-Anganeh M, Aiiashi S, Armand N. MicroRNAs in disease States. Clin Chim Acta 2025; 569:120187. [PMID: 39938625 DOI: 10.1016/j.cca.2025.120187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/08/2025] [Accepted: 02/08/2025] [Indexed: 02/14/2025]
Abstract
This review highlights the role of miRNAs in various diseases affecting major organ systems. miRNAs are small, non-coding RNA molecules that regulate numerous genes. Dysregulation of miRNAs is linked to many pathological conditions due to their involvement in gene silencing and cellular pathways. We discuss miRNA expression patterns, their physiological and pathological roles, and how changes in miRNA levels contribute to disease. Notably, miRNAs like miR-499 and miR-21 are implicated in heart failure and atherosclerosis. miRNA dysregulation is also associated with colorectal and gastric cancers, influencing tumorigenesis and chemoresistance. In neurological diseases, miRNAs exhibit diverse profiles that affect neurodevelopment and degeneration. Additionally, miRNAs modulate cell function in reproductive organs, impacting fertility and cancer progression. miRNAs such as miR-192 and miR-204 serve as biomarkers for nephropathy and acute kidney injury. These miRNAs are involved in skeletal muscle diseases, contributing to conditions like osteoporosis and sarcopenia. miRNAs function as oncogenes or tumor suppressors in cancer, highlighting their potential in diagnostics and therapy. Further research is needed to develop miRNA-based diagnostics and treatments.
Collapse
Affiliation(s)
- Mehdi Alizadeh
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Ghasemi
- Research Center for Environmental Contaminants (RCEC), Abadan University of Medical Sciences, Abadan, Iran
| | - Donya Bazhan
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Fereshteh Rahdan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narges Arianfar
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzaneh Vahedi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Seyyed Hossein Khatami
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | - Saleh Aiiashi
- Abadan University of Medical Sciences, Abadan, Iran.
| | - Nezam Armand
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
17
|
Wu Z, Zheng Y, Lin L, Xing G, Xie T, Lin J, Wang X, Lin JM. Construction of Multiplexed Assays on Single Anisotropic Particles Using Microfluidics. ACS CENTRAL SCIENCE 2025; 11:294-301. [PMID: 40028365 PMCID: PMC11868959 DOI: 10.1021/acscentsci.4c02009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 03/05/2025]
Abstract
Considerable efforts have been made to develop microscale multiplexing strategies. However, challenges remain due to the difficulty in deploying functional objects and decoding high-density signals on anisotropic microcarriers. Here, we report a microfluidic method to fabricate architecture-marked anisotropic particles for performing designable multiplexed assays in a label-free manner. By controlling fluid assembly and rapid in-air cross-linking, the particles are endowed with multiple functional regions and a unique architecture identifier. The marked architecture enables an addressing mechanism that allows the profiling of embedded label-free objects by mapping a well-defined reference architecture onto the target particle. By loading analytes of interest, such as molecular probes or cells, we showed the potential of these structurally flexible particles for detecting microRNAs and studying cell interactions. The architecture-marked particles represent a new approach for single-entity assays and can be the basis for exploring more advanced microscale multiplexed applications.
Collapse
Affiliation(s)
- Zengnan Wu
- Beijing
Key Laboratory of Microanalytical Methods and Instrumentation, Key
Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology
(Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yajing Zheng
- Beijing
Key Laboratory of Microanalytical Methods and Instrumentation, Key
Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology
(Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ling Lin
- MOE
Key Laboratory of Geriatric Nutrition and Health and Department of
Bioengineering, Beijing Technology and Business
University, Beijing 100048, China
| | - Gaowa Xing
- Beijing
Key Laboratory of Microanalytical Methods and Instrumentation, Key
Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology
(Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Tianze Xie
- Beijing
Key Laboratory of Microanalytical Methods and Instrumentation, Key
Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology
(Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jiaxu Lin
- Beijing
Key Laboratory of Microanalytical Methods and Instrumentation, Key
Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology
(Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xiaorui Wang
- MOE
Key Laboratory of Geriatric Nutrition and Health and Department of
Bioengineering, Beijing Technology and Business
University, Beijing 100048, China
| | - Jin-Ming Lin
- Beijing
Key Laboratory of Microanalytical Methods and Instrumentation, Key
Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology
(Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
18
|
Li W, Liu WJ, Lu J, Ma F, Zhang CY. A Programmable Automatic Cascade Machinery for Single-Molecule Profiling of Multiple Noncoding RNAs in Breast Tissues. Anal Chem 2025; 97:4224-4232. [PMID: 39930751 DOI: 10.1021/acs.analchem.4c07017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Noncoding RNAs (ncRNAs) are identified as critical regulatory molecules in tumorigenesis and progression. Investigating the expression patterns of multiple ncRNAs in living cells and tissues may facilitate the diagnosis of cancers. Herein, we develop a programmable automatic cascade machinery for single-molecule profiling of multiple ncRNAs. This method involves two successive amplification events that can convert extremely low-abundance target ncRNAs into abundant FAM/Cy5 molecules for the generation of amplified fluorescence signals. The subsequent single-molecule detection can identify piR-36026 with the FAM signal and DSCAM-AS1 with the Cy5 signal. Due to the high efficiency of automatic cascade machinery and the high signal-to-noise ratio of single-molecule imaging, this method can achieve sensitive detection of multiple ncRNAs with a detection limit of 44.67 aM for piR-36026 and 45.71 aM for DSCAM-AS1, and it can measure endogenous piR-36026 and DSCAM-AS1 at the single-cell level. Moreover, the profiling of piR-36026 and DSCAM-AS1 in healthy tissues and breast cancer tissues demonstrates the feasibility of the proposed method in cancer diagnostics. By programming the recognition sequences of dumbbell probes, this method can be extended to measure other cancer-related ncRNAs, with great prospects in clinical applications.
Collapse
Affiliation(s)
- Wen Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China
| | - Wen-Jing Liu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China
| | - Jun Lu
- Auckland Bioengineering Institute, University of Auckland, Auckland 1142, New Zealand
| | - Fei Ma
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
19
|
Wang X, Zhu J, Shu P, Wang J, Huang M, Chen H, Ma H. Integrating an entropy-driven DNA circuit with a tetrahedral scaffold as a generic in situ electrochemical biosensor for amplified detection of microRNAs. Analyst 2025; 150:982-988. [PMID: 39925032 DOI: 10.1039/d4an01528b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Detection of carcinogenesis-related miRNAs presents significant challenges due to their low abundance and high specificity, necessitating highly sensitive and reliable analytical methods. Herein, we propose a generic in situ electrochemical biosensor for the sensitive and effective detection of miRNAs by rationally integrating an entropy-driven DNA circuit (EDC) with a tetrahedral scaffold. The key advancement of this work is the implementation of tetrahedral DNA nanostructures (TDNs) as both a scaffold and substrate for the EDC directly on the electrode surface. TDNs, which are readily decorated with ordered orientation and well-controlled spacing, enhance hybridization efficiency and facilitate essential structural interactions within the EDC, achieving a performance comparable to that of homogeneous liquid-phase reactions. Identifying a target miRNA is achieved with complementary probes that trigger a cascade of structural rearrangements leading to the immobilization of numerous biotin-labeled signal strands on the electrode surface. This accumulation of biotinylated strands ensures that the initial interfacial hybridization event is subsequently amplified and translated into electrochemical signals via cascaded signal amplification. The resulting electrochemical signals are directly proportional to the concentration of the target miRNA, offering a highly sensitive detection platform with a detection limit as low as 74 aM and a dynamic range spanning from 100 aM to 100 pM. The biosensor's performance is validated using biological samples derived from B[a]PDE-exposed cells, where significantly elevated miR-96 levels are detected, consistent with qRT-PCR results. This demonstrates the potential of the proposed biosensor for early cancer diagnosis and monitoring of cancer-related miRNA biomarkers.
Collapse
Affiliation(s)
- Xuyao Wang
- Precision Medicine Research Center, Beilun District People's Hospital, Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch, Ningbo, 315800, PR China.
| | - Junlan Zhu
- Precision Medicine Research Center, Beilun District People's Hospital, Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch, Ningbo, 315800, PR China.
| | - Peng Shu
- Precision Medicine Research Center, Beilun District People's Hospital, Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch, Ningbo, 315800, PR China.
| | - Jiajing Wang
- Department of Clinical Laboratory, Beilun District People's Hospital, Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch, Ningbo, 315800, PR China
| | - Maowen Huang
- Department of Clinical Laboratory, Beilun District People's Hospital, Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch, Ningbo, 315800, PR China
| | - Hengchao Chen
- Department of Pathology, Beilun District People's Hospital, Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch, Ningbo, 315800, PR China
| | - Haifen Ma
- Department of Pathology, Beilun District People's Hospital, Zhejiang University School of Medicine First Affiliated Hospital Beilun Branch, Ningbo, 315800, PR China
| |
Collapse
|
20
|
Huang Z, Xie X, Wu Y, Liu R, Lv Y. Breaking Barcode Limits: Metal Nanoparticle Lego Brick Self-Assembly for High-Throughput Screening. J Am Chem Soc 2025; 147:4904-4914. [PMID: 39745059 DOI: 10.1021/jacs.4c13706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
As precision medicine increasingly reveals the biological diversity among individuals, the demand for higher-throughput screening techniques, particularly suspension array technologies capable of more multiplexing from smaller samples in a single run, is intensifying. However, advancements in the multiplexing capability of current suspension platforms have lagged with limited alleviation, necessitating breakthroughs for innovative solutions that enable larger-scale measurements. Here, we introduce such a breakthrough with a novel mass-cytometric barcode engineering by metal nanoparticle-based "Lego Brick"-like self-assembly for high-throughput barcode design and capacity amplification. The suspension array capacity can be expanded to over 20,500 unique barcodes by flexibly assembling just 10 types of barcoding units (metal nanoparticles) onto the surface of the barcoding center (magnetic spheres) through a universal biotin-streptavidin binding template, significantly enhancing both throughput and versatility. Further multiplexed immunoassay, termed MassMAP, demonstrates high-throughput profiling of cancer biomarkers, highlighting the revolutionary potential of Lego Brick self-assembly in massive cytometric screening for higher-throughput applications.
Collapse
Affiliation(s)
- Zili Huang
- Analytical & Testing Center, Sichuan University, Chengdu 610064, P. R. China
| | - Xiaobo Xie
- Analytical & Testing Center, Sichuan University, Chengdu 610064, P. R. China
| | - Yi Wu
- Analytical & Testing Center, Sichuan University, Chengdu 610064, P. R. China
| | - Rui Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Yi Lv
- Analytical & Testing Center, Sichuan University, Chengdu 610064, P. R. China
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| |
Collapse
|
21
|
Feng T, Zhang L, Wang D, Zuo C, Zhang Y, Wu D, Wang W, Yu H, Bai D, Zhao H, Guo Y, Xie G. Logical Analysis of Multiple miRNAs with Isothermal Molecular Classifiers Based on LATE-RCA. NANO LETTERS 2025; 25:2576-2585. [PMID: 39882572 DOI: 10.1021/acs.nanolett.5c00089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Logical analysis of multiple-miRNA expression information and immediate output of diagnostic results facilitates early cancer detection. In this work, we constructed an isothermal molecular classifier capable of performing computations on multiple miRNAs and directly providing diagnosis results. First, we developed linear-after-the-exponential rolling circle amplification (LATE-RCA), a nearly linear isothermal amplification that does not destroy the original quantitative information about miRNAs. By designing different numbers of weighted coding sequences on the circular template, we naturally implemented multiplication in the LATE-RCA process. Summation, subtraction, and reporting were then carried out by strand displacement reactions. The entire workflow of the classifier was validated using synthetic gastric cancer and healthy miRNA samples with an accuracy of 100%, demonstrating its robustness and accuracy. Compared with existing molecular classifiers, our approach performs under isothermal conditions, streamlines computational procedures, and simplifies probe design. We believe that this isothermal molecular classifier has promising prospects in personalized precision medicine.
Collapse
Affiliation(s)
- Tong Feng
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Li Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Ding Wang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P. R. China
- Shanghai Upper Bio Tech Pharma Company, Ltd., Shanghai 201399, P. R. China
| | - Chen Zuo
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Yaoyi Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Di Wu
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Weitao Wang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Hongyan Yu
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Dan Bai
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Huaixin Zhao
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Yongcan Guo
- Clinical Laboratory of Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou 646000, P. R. China
| | - Guoming Xie
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P. R. China
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 40016, P. R. China
| |
Collapse
|
22
|
Lin Y, Xing G, Wu Z, Lin JM, Lin J, Hou Y, Zheng Y, Xu Y, Lin L. Microfluidic-Enabled Self-Directed Hydrogel Microspheres for Multiplexed MicroRNA Assays. Anal Chem 2025; 97:1972-1976. [PMID: 39865587 DOI: 10.1021/acs.analchem.4c05349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Multiplexed microRNA (miRNA) detection has proven valuable in disease diagnosis; yet, the development of advanced tools for their analysis remains a subject of broad interest. Here, we propose a novel single-particle method for multiplexed miRNA detection using self-directed hydrogel microspheres, which feature supersegmented compartments for loading analyte probes and an air-encapsulated region that grants the microsphere a unique preferred posture in aqueous solutions. By exploiting microfluidic technology, we can widely adjust the size of the microspheres and the number of compartments can be widely adjusted. The air-encapsulated region is located at the edge of the microsphere's symmetry axis, resulting in a spontaneous orientation that facilitates efficient multitarget signal readout in a standard manner without requiring active energy input. The microspheres exhibit excellent temperature stability, ensuring consistent performance under varying thermal conditions. Additionally, signal amplification strategies, such as hybridization chain reaction, are compatible with microspheres, enabling sensitive miRNA quantification. As a concept of proof, precise miRNA detection was demonstrated using these features. We hope that the proposed biocompatible microsphere tools will find broader application prospects in various clinical diagnostic settings.
Collapse
Affiliation(s)
- Yongning Lin
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
- MOE Key Laboratory of Geriatric Nutrition and Health, Department of Bioengineering, Beijing Technology and Business University, Beijing 100048, China
| | - Gaowa Xing
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zengnan Wu
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jin-Ming Lin
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jiaxu Lin
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ying Hou
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yajing Zheng
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yan Xu
- Department of Chemical Engineering, Graduate School of Engineering, Osaka Metropolitan University, 1-2, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
| | - Ling Lin
- MOE Key Laboratory of Geriatric Nutrition and Health, Department of Bioengineering, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
23
|
Li C, Xu T, Hou G, Wang Y, Fu Q. DNA nanotechnology-based strategies for gastric cancer diagnosis and therapy. Mater Today Bio 2025; 30:101459. [PMID: 39866794 PMCID: PMC11762204 DOI: 10.1016/j.mtbio.2025.101459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/22/2024] [Accepted: 01/03/2025] [Indexed: 01/28/2025] Open
Abstract
Gastric cancer (GC) is a formidable adversary in the field of oncology. The low early diagnosis rate of GC results in a low overall survival rate. Therefore, early accurate diagnosis and effective treatment are the key to reduce the mortality of GC. With the advent of nanotechnology, researchers continue to explore new possibilities for accurate diagnosis and effective treatment. One such breakthrough is the application of DNA nanotechnology. In this paper, the application of exciting DNA nanomaterials in the diagnosis and treatment of GC is discussed in depth. Firstly, the biomarkers related to GC and the diagnostic strategies related to DNA nanotechnology are summarized. Second, the latest research progress of DNA nanomaterials in the GC targeted therapy are summarized. Finally, the challenges and opportunities of DNA nanomaterials in the research and clinical application of GC are prospected.
Collapse
Affiliation(s)
- Congcong Li
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266073, China
| | - Tongyang Xu
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266073, China
| | - Guopeng Hou
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266073, China
| | - Yin Wang
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266073, China
| | - Qinrui Fu
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao, 266073, China
| |
Collapse
|
24
|
Zhang Y, Su R, Zhang Z, Jiang Y, Miao Y, Zhou S, Ji M, Hsu CW, Xu H, Li Z, Wang G. An ultrasensitive one-pot Cas13a-based microfluidic assay for rapid multiplexed detection of microRNAs. Biosens Bioelectron 2025; 274:117212. [PMID: 39893949 DOI: 10.1016/j.bios.2025.117212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/22/2025] [Accepted: 01/27/2025] [Indexed: 02/04/2025]
Abstract
Aberrant microRNA expression is associated with tumor progression in various organs. Detecting microRNAs as clinical cancer biomarkers can facilitate early cancer diagnosis and monitoring. However, the rapid and accurate quantification of microRNAs from biological samples remains a significant challenge. Here we developed a one-pot isothermal assay utilizing a molecular circuit with CRISPR/Cas13a (CRISPR-circuit) to rapidly convert, amplify and report different microRNAs within 15 min at the attomolar (aM) level. Then the full process was performed on an active centrifugal microfluidic chip and its corresponding portable equipment for parallel detection of multiple microRNAs, including miR-21, miR-141, miR-196a, and miR-1246. We also demonstrated its application for identifying cell lines and clinical samples of cancer patients with varying microRNA levels, which showed a strong correlation with the RT-qPCR. The assay can be easily adapted for the detection of any microRNA by simply modifying the converter primer, thereby holding significant potential for accurate disease detection and clinical diagnosis.
Collapse
Affiliation(s)
- Ya Zhang
- College of Engineering and Applied Sciences, Nanjing University, Jiangsu, 210093, China; Key Laboratory of Intelligent Optical Sensing and Integration of the Ministry of Education, Nanjing University, Jiangsu, 210009, China
| | - Rouyu Su
- College of Engineering and Applied Sciences, Nanjing University, Jiangsu, 210093, China; Key Laboratory of Intelligent Optical Sensing and Integration of the Ministry of Education, Nanjing University, Jiangsu, 210009, China
| | - Zheng Zhang
- College of Engineering and Applied Sciences, Nanjing University, Jiangsu, 210093, China; Key Laboratory of Intelligent Optical Sensing and Integration of the Ministry of Education, Nanjing University, Jiangsu, 210009, China
| | - Yiyue Jiang
- Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yejia Miao
- Department of health, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, 210002, China
| | - Shiqi Zhou
- College of Engineering and Applied Sciences, Nanjing University, Jiangsu, 210093, China; Key Laboratory of Intelligent Optical Sensing and Integration of the Ministry of Education, Nanjing University, Jiangsu, 210009, China
| | - Miaomiao Ji
- College of Engineering and Applied Sciences, Nanjing University, Jiangsu, 210093, China; Key Laboratory of Intelligent Optical Sensing and Integration of the Ministry of Education, Nanjing University, Jiangsu, 210009, China
| | - Chih-Wen Hsu
- College of Engineering and Applied Sciences, Nanjing University, Jiangsu, 210093, China; Key Laboratory of Intelligent Optical Sensing and Integration of the Ministry of Education, Nanjing University, Jiangsu, 210009, China
| | - Hongpan Xu
- Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Zhiyang Li
- Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Guanghui Wang
- College of Engineering and Applied Sciences, Nanjing University, Jiangsu, 210093, China; Key Laboratory of Intelligent Optical Sensing and Integration of the Ministry of Education, Nanjing University, Jiangsu, 210009, China.
| |
Collapse
|
25
|
Wang W, Xing Y, Liu L, Wu M, Huang P, Li B, Wu Z. Color-Coded Traffic Signal Method Combined with Nanodiamond Quantum Sensing for Accurate miRNA Detection. ACS Sens 2025; 10:310-319. [PMID: 39714924 DOI: 10.1021/acssensors.4c02511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Background noise interferes with the accurate detection of early tumor biomarkers. This study introduces a method that effectively reduces background noise to enhance detection accuracy by combining a color-coded signaling approach with the unique fluorescent properties and room-temperature tunable quantum spin characteristics of fluorescent diamonds (FNDs) with nitrogen-vacancy centers. In this approach, a red signal indicates the presence of the target analyte within the spectral region, a green signal indicates its absence, and a yellow signal indicates the need for further analysis using FNDs' quantum spin properties for optical detection magnetic resonance (ODMR) to distinguish the FND signal from background noise. Preliminary results demonstrate that this method enables the detection of breast cancer-related miRNA-21 and miRNA-96 concentrations as low as 1 fM within a 100 × 100 μm2 area, achieving single-molecule detection capability. This method is suitable for accurate biomarker identification and detection under high-background fluorescence conditions.
Collapse
Affiliation(s)
- Wei Wang
- School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
- Suzhou Research Institute of Southeast University, Suzhou 215123, People's Republic of China
| | - Youqiang Xing
- School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
- Suzhou Research Institute of Southeast University, Suzhou 215123, People's Republic of China
| | - Lei Liu
- School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
- Suzhou Research Institute of Southeast University, Suzhou 215123, People's Republic of China
| | - Min Wu
- School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
- Suzhou Research Institute of Southeast University, Suzhou 215123, People's Republic of China
| | - Peng Huang
- School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
- Suzhou Research Institute of Southeast University, Suzhou 215123, People's Republic of China
| | - Bingjue Li
- School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
- Suzhou Research Institute of Southeast University, Suzhou 215123, People's Republic of China
| | - Ze Wu
- School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
- Suzhou Research Institute of Southeast University, Suzhou 215123, People's Republic of China
| |
Collapse
|
26
|
Busato F, Ursuegui S, Deleuze JF, Tost J. Multiplex digital PCR for the simultaneous quantification of a miRNA panel. Anal Chim Acta 2025; 1335:343440. [PMID: 39643296 DOI: 10.1016/j.aca.2024.343440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/07/2024] [Accepted: 11/18/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND microRNAs (miRNAs) are small non-coding RNAs regulating gene expression. They have attracted significant interest as biomarkers for early diagnosis, prediction and monitoring of treatment response in many diseases. As individual miRNAs often lack the required sensitivity and specificity, miRNA signatures are developed for clinical applications. Digital PCR (dPCR) is a sensitive fluorescent-based quantification method, that can be used to detect the expression of miRNAs in patient samples. Our study presents the first proof-of-concept of a multiplexed dPCR assay for the simultaneous analysis and quantification of multiple miRNAs. RESULTS After reverse transcription (RT) using a pool of miRNA-specific stem-loop primers, dPCR was performed with a universal reverse primer and miRNA-specific forward primers along with fluorescently-labelled hydrolysis probes. Multiple experimental parameters were evaluated and strategies for modulating the observed signals were devised. The optimised assay was applied to the analysis of miRNAs from cell lines and biological samples. Although absolute quantification was lost, due to the reverse transcription step, quantification was linear for the dilution series and results were highly reproducible for independent dPCR and RT reactions. Our results confirmed the high sensitivity of dPCR for patient samples. CONCLUSIONS We demonstrate the feasibility and reliability of multiplexed detection and quantification of miRNAs by dPCR that can be applied in a clinical setting to evaluate miRNA signatures.
Collapse
Affiliation(s)
- Florence Busato
- Laboratory for Epigenetics & Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, Université Paris-Saclay, Evry, France
| | - Sylvain Ursuegui
- Stilla Technologies, Biopark 1, Mail du Professeur Georges Mathé, 94800, Villejuif, France
| | - Jean-François Deleuze
- Laboratory for Epigenetics & Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, Université Paris-Saclay, Evry, France
| | - Jorg Tost
- Laboratory for Epigenetics & Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, Université Paris-Saclay, Evry, France.
| |
Collapse
|
27
|
Chen D, Wang Y, Wei Y, Lu Z, Ju H, Yan F, Liu Y. Size-Coded Hydrogel Microbeads for Extraction-Free Serum Multi-miRNAs Quantifications with Machine-Learning-Aided Lung Cancer Subtypes Classification. NANO LETTERS 2025; 25:453-460. [PMID: 39680719 DOI: 10.1021/acs.nanolett.4c05233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Classifying lung cancer subtypes, which are characterized by multi-microRNAs (miRNAs) upregulation, is important for therapy and prognosis evaluation. Liquid biopsy is a promising approach, but the pretreatment of RNA extraction is labor-intensive and impairs accuracy. Here we develop size-coded hydrogel microbeads for extraction-free quantification of miR-21, miR-205, and miR-375 directly from serum. The hydrogel microbead is immobilized with an miRNA capture probe, which well retains target miRNA and provides good nonfouling capability for nonspecific biomolecules in serum. The porous structure of microbeads allows efficient DNA cascade amplification reaction and generates a fluorescence signal. The microbeads are clustered into three groups according to size via flow cytometry sorting, and the group fluorescence is integrated for the corresponding miRNA quantification. With machine-learning-assisted data analysis, it achieves good lung cancer diagnosis accuracy and 80% accuracy for subtype classification for 108 serum samples, including lung cancer patients and healthy controls.
Collapse
Affiliation(s)
- Dayu Chen
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu cancer hospital, Jiangsu Institute of cancer research, Nanjing 210009, China
| | - Yingfei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Ying Wei
- College of Engineering and Applied Science, Nanjing University, Nanjing 210023, China
| | - Zhenda Lu
- College of Engineering and Applied Science, Nanjing University, Nanjing 210023, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Feng Yan
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu cancer hospital, Jiangsu Institute of cancer research, Nanjing 210009, China
| | - Ying Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| |
Collapse
|
28
|
Takiguchi S, Takeuchi N, Shenshin V, Gines G, Genot AJ, Nivala J, Rondelez Y, Kawano R. Harnessing DNA computing and nanopore decoding for practical applications: from informatics to microRNA-targeting diagnostics. Chem Soc Rev 2025; 54:8-32. [PMID: 39471098 PMCID: PMC11521203 DOI: 10.1039/d3cs00396e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Indexed: 11/01/2024]
Abstract
DNA computing represents a subfield of molecular computing with the potential to become a significant area of next-generation computation due to the high programmability inherent in the sequence-dependent molecular behaviour of DNA. Recent studies in DNA computing have extended from mathematical informatics to biomedical applications, with a particular focus on diagnostics that exploit the biocompatibility of DNA molecules. The output of DNA computing devices is encoded in nucleic acid molecules, which must then be decoded into human-recognizable signals for practical applications. Nanopore technology, which utilizes an electrical and label-free decoding approach, provides a unique platform to bridge DNA and electronic computing for practical use. In this tutorial review, we summarise the fundamental knowledge, technologies, and methodologies of DNA computing (logic gates, circuits, neural networks, and non-DNA input circuity). We then focus on nanopore-based decoding, and highlight recent advances in medical diagnostics targeting microRNAs as biomarkers. Finally, we conclude with the potential and challenges for the practical implementation of these techniques. We hope that this tutorial will provide a comprehensive insight and enable the general reader to grasp the fundamental principles and diverse applications of DNA computing and nanopore decoding, and will inspire a wide range of scientists to explore and push the boundaries of these technologies.
Collapse
Affiliation(s)
- Sotaro Takiguchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo 184-8588, Japan.
| | - Nanami Takeuchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo 184-8588, Japan.
| | - Vasily Shenshin
- Laboratoire Gulliver, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, Paris, 75005, France.
| | - Guillaume Gines
- Laboratoire Gulliver, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, Paris, 75005, France.
| | - Anthony J Genot
- LIMMS, CNRS-Institute of Industrial Science, University of Tokyo, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Jeff Nivala
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA.
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, USA
| | - Yannick Rondelez
- Laboratoire Gulliver, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, Paris, 75005, France.
| | - Ryuji Kawano
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei-shi, Tokyo 184-8588, Japan.
| |
Collapse
|
29
|
Uno H, Takeuchi H, Abe I, Yoshino T, Taguchi T, Hirakawa Y, Matsunaga T, Tanaka T. PCR- and wash-free detection of serum miRNA via signaling probe hybridization. Biotechnol Bioeng 2025; 122:159-166. [PMID: 39397338 DOI: 10.1002/bit.28859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024]
Abstract
Detection of microRNAs (miRNAs) in the serum is an effective liquid biopsy technique for cancer diagnosis. However, conventional diagnostic methods are time-consuming and complex. Therefore, in this study, we established a signaling probe-based DNA microarray system for miRNA detection. PCR, fluorescence labeling, and washing are not necessary for signaling probes. Four probes were designed using different miRNAs as diagnostic cancer markers. The developed system is useful for various miRNAs, regardless of their target lengths (18-26-mer) and GC content (36%-89%). Here, all the assays were performed within 40 min. Overall, our signaling probe-based DNA hybridization system facilitates the simple and rapid detection of serum miRNAs without the need for gene amplification, fluorescence labeling and washing.
Collapse
Affiliation(s)
- Haruka Uno
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Hiyori Takeuchi
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Ishin Abe
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Tomoko Yoshino
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | | | - Yuko Hirakawa
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Yokogawa Electric Corporation, Tokyo, Japan
| | - Tadashi Matsunaga
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Tsuyoshi Tanaka
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
30
|
Rouhi S, Ghasemi H, Alizadeh M, Movahedpour A, Vahedi F, Fattahi M, Aiiashi S, Khatami SH. miRNA-based electrochemical biosensors for ovarian cancer. Clin Chim Acta 2025; 564:119946. [PMID: 39214394 DOI: 10.1016/j.cca.2024.119946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/22/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Ovarian cancer, a prevalent and deadly cancer among women, presents a significant challenge for early detection due to its heterogeneous nature. MicroRNAs, short non-coding regulatory RNA fragments, play a role in various cellular processes. Aberrant expression of these microRNAs has been observed in the carcinogenesis-related processes of many cancer types. Numerous studies highlight the critical role of microRNAs in the initiation and progression of ovarian cancer. Given their clinical importance and predictive value, there has been considerable interest in developing simple, prompt, and sensitive miRNA biosensor strategies. Among these, electrochemical sensors have demonstrated advantageous characteristics such as simplicity, sensitivity, low cost, and scalability. These microRNA-based electrochemical biosensors are valuable tools for early detection and point-of-care applications. This article discusses the potential role of microRNAs in ovarian cancer and recent advances in the development of electrochemical biosensors for miRNA detection in ovarian cancer samples.
Collapse
Affiliation(s)
- Saber Rouhi
- Resident of Large Animal Internal Medicine, Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Iran
| | | | - Mehdi Alizadeh
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Movahedpour
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Farzaneh Vahedi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mehdi Fattahi
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; School of Engineering & Technology, Duy Tan University, Da Nang, Viet Nam
| | - Saleh Aiiashi
- Abadan University of Medical Sciences, Abadan, Iran.
| | - Seyyed Hossein Khatami
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
31
|
Kim J, Lee GH, Nam D, Park KS. Enhancing multiplex detection capabilities of the Cas12a/blocker DNA system. Talanta 2025; 281:126864. [PMID: 39270605 DOI: 10.1016/j.talanta.2024.126864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/27/2024] [Accepted: 09/08/2024] [Indexed: 09/15/2024]
Abstract
In the field of molecular diagnostics, the demand for multiplex detection, aimed at reducing overall analysis costs and streamlining procedures, is on the rise, prompting ongoing developments in various technologies. In this study, we developed a novel system, the split T7 promoter-based three-way junction-transcription, coupled with Cas12a/Blocker DNA (T3-CaB), for the multiplex detection of target nucleic acids. The T3-CaB system builds upon the foundation of the T3 system, generating numerous RNA transcripts upon encountering target nucleic acids. Subsequently, these RNA transcripts displace the blocker DNA from reporter DNA, allowing active Cas12a to engage in efficient trans-cleavage reaction on the reporter DNA, resulting in a strong fluorescence signal. Importantly, the proposed system operates at the isothermal condition (37 °C), with the entire analysis completed within 90 min. Further, the detection performance of the proposed system surpasses that of the preceding Cas12a/Blocker DNA system. Model targets, namely the 16S rRNA of Staphylococcus aureus and Escherichia coli, were selected, and a successful demonstration of multiplex detection was achieved. This technology holds promise for broadening the applicability of CRISPR/Cas-based diagnostics, especially in settings necessitating multiplex detection capabilities.
Collapse
Affiliation(s)
- Junhyeong Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Gun Haeng Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Daehan Nam
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Ki Soo Park
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea.
| |
Collapse
|
32
|
Sun Y, Peng Y, Sun Y, Xu D. An enzyme-free and label-free multiplex detection of miRNAs by entropy-driven circuit coupled with capillary electrophoresis. Talanta 2025; 281:126850. [PMID: 39276573 DOI: 10.1016/j.talanta.2024.126850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/23/2024] [Accepted: 09/07/2024] [Indexed: 09/17/2024]
Abstract
MicroRNAs (miRNAs) are currently recognized as important biomarkers for the early diagnosis and prognostic treatment of cancer. Herein, we developed a simple and label-free method for the multiplex detection of miRNAs, based on entropy-driven circuit (EDC) amplification and non-gel sieving capillary electrophoresis-LED induced fluorescence detection (NGCE-LEDIF) platform. In this system, three different lengths of fuel chains were designed to catalyze three EDC, targeting miRNA-21, miRNA-155, and miRNA-10b, respectively. In the presence of target miRNA, the EDC cycle amplification reaction was triggered, generating numerous stable double-strands products (F-DNA/L-DNA). Since the three miRNAs correspond to three different lengths of F-DNA/L-DNA, they can be easily isolated and detected by NGCE. This strategy has good sensitivity, with detection limits of 68 amol, 292.2 amol, and 394 amol for miRNA-21, miRNA-155, and miRNA-10b, respectively. Additionally, this method has good specificity and can effectively distinguish single-base mismatches of miRNA. The recoveries of the three miRNAs in deproteinized healthy human serum ranged from 91.28 % to 108.4 %, with a relative standard deviation (RSD) of less than 7.9 %. This method was further applied to detect cellular miRNAs in human breast cancer (MCF-7) cell extracts, revealing an up-regulation of miRNA-21, miRNA-155, and miRNA-10b in MCF-7 cells. The successful spiked recovery in human serum and RNA extraction from MCF-7 cells underscores the practicality of this method. Therefore, this strategy has broad application prospects in biomedical research.
Collapse
Affiliation(s)
- Yanyan Sun
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, No 163, Xianlin Avenue, Nanjing, 210023, PR China
| | - Yufei Peng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, No 163, Xianlin Avenue, Nanjing, 210023, PR China
| | - Yunlong Sun
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, No 163, Xianlin Avenue, Nanjing, 210023, PR China
| | - Danke Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, No 163, Xianlin Avenue, Nanjing, 210023, PR China.
| |
Collapse
|
33
|
Li X, Xu M, Gan F, Zhao H. Triple-Branch Catalytic Assembly DNAzyme Motivated DNA Tweezer for Sensitive and Reliable mecA Gene Detection in Staphylococcus aureus. J Microbiol Biotechnol 2024; 34:2450-2456. [PMID: 39467691 PMCID: PMC11729337 DOI: 10.4014/jmb.2409.09008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/21/2024] [Accepted: 09/29/2024] [Indexed: 10/30/2024]
Abstract
Staphylococcus aureus (S. aureus, SA) is one of the most common bacteria in nosocomial infections. Sensitive and efficient analysis of methicillin-resistance of SA is crucial for improving the nursing performance of pneumonia. However, methicillin-resistance analysis with favorable sensitivity and specificity in an enzyme-free manner remains a huge challenge. This paper presents the development of a new fluorescent biosensor for detecting mecA gene using a triple-branch catalytic hairpin assembly (CHA) triggered DNAzyme switch-based DNA tweezer. The SA from the samples are immobilized on the plate's surface using the protein A antibody. The biosensor possesses several key features. Firstly, it utilizes dual signal amplification processes, specifically the triple-branch CHA and DNAzyme controlled DNA tweezer-based signal recycling, to enable mecA detection on the plate. This design enhances the method's sensitivity, resulting in a low limit of detection of 1.5 fM. Secondly, the biosensor does not rely on enzymes for mecA analysis, ensuring a high level of stability during target analysis. Lastly, the method demonstrates a remarkable selectivity by accurately distinguishing target sequences from non-target sequences. The proposed biosensor, which does not require enzymes and has a high level of sensitivity, offers a viable platform for the rapid and simple quantification of mecA in SA.
Collapse
Affiliation(s)
- Xiaoyang Li
- Infectious Department, People’s Hospital of Yueqing City, Yueqing City, Wenzhou City, Zhejiang Province 325600, P.R. China
| | - Meiyan Xu
- Infectious Department, People’s Hospital of Yueqing City, Yueqing City, Wenzhou City, Zhejiang Province 325600, P.R. China
| | - Fangmin Gan
- Infectious Department, People’s Hospital of Yueqing City, Yueqing City, Wenzhou City, Zhejiang Province 325600, P.R. China
| | - Hui Zhao
- Infectious Department, People’s Hospital of Yueqing City, Yueqing City, Wenzhou City, Zhejiang Province 325600, P.R. China
| |
Collapse
|
34
|
Luan L, Yang L, Zhang Y, Liu J, Hu B, Ye L, Ye W, Shen J, Chen H, Qu X, Yang H, Li Y. Highly Sensitive Multiplexed Sensing of miRNAs in a Gastric Cancer Patient's Liquid Biopsy. Anal Chem 2024; 96:20015-20025. [PMID: 39641615 DOI: 10.1021/acs.analchem.4c04639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Gastric cancer (GC) is one of the leading causes of cancer mortality in the world. Most patients are in the advanced stage of the disease at the time of diagnosis because the symptoms of early gastric cancer patients are not obvious. Early diagnosis of gastric cancer is still challenging due to the high cost, invasiveness, and low accuracy of traditional diagnostic methods such as endoscopy and biopsy. Herein, we develop clinically accurate and highly sensitive detection of multiple GC miRNA biomarkers in human serum using an isothermal nucleic acid primer exchange reaction (PER). The isothermal nucleic acid primer exchange reaction demonstrates high sensitivity and robustness, exemplified by a one-pot reaction achieving a detection limit of 28.71 fM. By quantifying the levels of three miRNA biomarkers selected through bioinformatics analysis in gastric cancer serum samples, the diagnostic approach effectively distinguished between clinical gastric cancer patients (n = 25) and noncancer controls (n = 10). The performance of our three-miRNA signature in discriminating between GC and controls was as follows: area under the curve (AUC): 0.808, sensitivity: 89%, specificity: 88%, positive predictive value (PPV): 96%, and negative predictive value (NPV): 70%.
Collapse
Affiliation(s)
- Liang Luan
- Department of Laboratory Medical Center, General Hospital of Northern Theater Command, No. 83, Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Lin Yang
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province and School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China
| | - Yating Zhang
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province and School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China
| | - Jing Liu
- Department of Laboratory Medical Center, General Hospital of Northern Theater Command, No. 83, Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Bingtao Hu
- Department of Laboratory Medical Center, General Hospital of Northern Theater Command, No. 83, Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Lingzhi Ye
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province and School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China
| | - Wei Ye
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province and School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China
| | - Jienan Shen
- Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hong Chen
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen 361005, Fujian, China
| | - Xiangmeng Qu
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province and School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China
| | - Hui Yang
- Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yunhui Li
- Department of Laboratory Medical Center, General Hospital of Northern Theater Command, No. 83, Wenhua Road, Shenhe District, Shenyang 110016, China
| |
Collapse
|
35
|
Min YH, Hong Y, Kim CH, Lee KH, Shin YB, Byun JY. Split Probe-Induced Protein Translational Amplification for Nucleic Acid Detection. ACS APPLIED BIO MATERIALS 2024; 7:8389-8397. [PMID: 39546461 DOI: 10.1021/acsabm.4c01187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Nucleic acid detection is important in a wide range of applications, including disease diagnosis, genetic testing, biotechnological research, environmental monitoring, and forensic science. However, the application of nucleic acid detection in various fields is hindered by the lack of sensitive, accurate, and inexpensive methods. This study introduces a simple approach to enhance the sensitivity for the accurate detection of nucleic acids. Our approach combined a split-probe strategy with in vitro translational amplification of reporter protein for signal generation to detect nucleic acids with high sensitivity and selectivity. This approach enables target-mediated translational amplification of reporter proteins by linking split probes in the presence of a target microRNA (miRNA). In particular, the fluorescence split-probe sensor adopts a reporter protein with various fluorescence wavelength regions, enabling the simultaneous detection of multiple target miRNAs. Moreover, luminescence detection by merely altering the reporter protein sequence can substantially enhance the sensitivity of detection of target miRNAs. Using this system, we analyzed and quantified target miRNAs in the total RNA extracted from cell lines and cell-derived extracellular vesicles with high specificity and accuracy. This split-probe sensor has potential as a powerful tool for the simple, sensitive, and specific detection of various target nucleic acids.
Collapse
Affiliation(s)
- Yoo-Hong Min
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Department of Biology, Chungnam National University, Daejeon 34134, Korea
| | - Yoonseo Hong
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon 34134, Korea
| | - Kyung-Ho Lee
- Apteasy MJ Inc., 333 Cheomdangwagi-ro, Technopark, Gwangju 61008, Korea
| | - Yong-Beom Shin
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- BioNano Health Guard Research Center (H-GUARD), Daejeon 34109, Korea
| | - Ju-Young Byun
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| |
Collapse
|
36
|
Yao C, Wang Q, Lu X, Chen X, Li Z. Hydrogel-Based Microdroplet Ensembles Encapsulating Multiplexed EXPAR Assays for Trichromic Digital Profiling of MicroRNAs and in-Depth Classification of Primary Urethral Cancers. NANO LETTERS 2024; 24:15861-15869. [PMID: 39585792 DOI: 10.1021/acs.nanolett.4c04898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
The primary challenge in microarray-based biological analysis lies in achieving the sensitive and specific detection of single-molecule targets while ensuring high reproducibility. A user-friendly digital imaging platform has been developed for the encoded trichromic profiling of circulating microRNAs (miRNAs). This platform replaces the traditional exponential polymerase amplification reaction (EXPAR) conducted on the microliter scale with a system that confines the amplification process within thousands of femtoliter-sized microdroplet reactors, cross-linked from tetra-armed poly(ethylene glycol) acrylate (Tetra-PEGA) and poly(ethylene glycol) dithiol (HS-PEG-SH), thus offering significant advantages, including minimal sample input, enhanced reactivity, and simplified analytical procedures. The quantitative analysis relies on digital counting of fluorescently positive microdroplets, each containing an individual miRNA sequence. This approach significantly reduces nonspecific amplification and improves sensitivity by over 2 orders of magnitude. The system has shown great potential in differentiating between subtypes of primary urethral carcinoma, suggesting its practical application in routine cancer diagnostics through simple urinalysis.
Collapse
Affiliation(s)
- Chanyu Yao
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Qiang Wang
- Department of Radiology, Shenzhen University First Affiliated Hospital, Shenzhen, Guangdong 518000, People's Republic of China
| | - Xiaohui Lu
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Xiaofeng Chen
- School of Life and Health Sciences, Hainan University, Haikou, Hainan 570228, People's Republic of China
| | - Zheng Li
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| |
Collapse
|
37
|
Zhong J, Wu X, Guo C, Liu C, Zhang Q, Chen Y, Liu Y. A Single-Tube, Single-Enzyme Clustered Regularly Interspaced Short Palindromic Repeats System (UNISON) with Internal Controls for Accurate Nucleic Acid Detection. Anal Chem 2024; 96:19348-19353. [PMID: 39575850 DOI: 10.1021/acs.analchem.4c03403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) proteins have been widely applied in molecular diagnostics. Unlike the Ct value quantification method of PCR, the CRISPR system mainly relies on the rise of the rate of the fluorescence signal to indicate the concentration of the target nucleic acid, which is susceptible to system errors caused by various factors, such as reaction conditions and instrument performance. Therefore, establishing internal controls is essential to improve the accuracy, reliability, and commercial feasibility of the CRISPR system. However, the nonspecific trans-cleavage activity of Cas proteins presents a challenge in establishing internal controls. In this study, we developed unified nucleic acid detection with a single-tube, one-enzyme system (UNISON) for accurate nucleic acid detection with internal controls. By extending the crRNA and modifying it with different fluorophores and quenchers, we achieved that the specific target can only specifically cleave the corresponding folded crRNA and generate a corresponding fluorescence signal. With this design, we established an internal control, achieving accurate and reliable detection of clinical samples of the hepatitis B virus. Integrating internal controls into the CRISPR/Cas system demonstrates significant potential in medical diagnostics and virus monitoring.
Collapse
Affiliation(s)
- Jialing Zhong
- Research Center for Nanosensor Molecular Diagnostic & Treatment Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, P. R. China
- Shenzhen Key Laboratory of Nano-Biosensing Technology, Shenzhen 518060, Guangdong, P. R. China
| | - Xiaolong Wu
- Research Center for Nanosensor Molecular Diagnostic & Treatment Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, P. R. China
- Shenzhen Key Laboratory of Nano-Biosensing Technology, Shenzhen 518060, Guangdong, P. R. China
| | - Chuanghao Guo
- Research Center for Nanosensor Molecular Diagnostic & Treatment Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, P. R. China
- Shenzhen Key Laboratory of Nano-Biosensing Technology, Shenzhen 518060, Guangdong, P. R. China
| | - Conghui Liu
- Research Center for Nanosensor Molecular Diagnostic & Treatment Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, P. R. China
- Shenzhen Key Laboratory of Nano-Biosensing Technology, Shenzhen 518060, Guangdong, P. R. China
| | - Qianling Zhang
- Environmental Engineering and Graphene Composite, Research Center, College of Chemistry and Environmental, Engineering, Shenzhen University, Shenzhen 518060, Guangdong, P. R. China
| | - Yong Chen
- Research Center for Nanosensor Molecular Diagnostic & Treatment Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, P. R. China
- Environmental Engineering and Graphene Composite, Research Center, College of Chemistry and Environmental, Engineering, Shenzhen University, Shenzhen 518060, Guangdong, P. R. China
| | - Yizhen Liu
- Research Center for Nanosensor Molecular Diagnostic & Treatment Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, P. R. China
- Shenzhen Key Laboratory of Nano-Biosensing Technology, Shenzhen 518060, Guangdong, P. R. China
| |
Collapse
|
38
|
Van Der Hofstadt M, Cardinal A, Lepeltier M, Boulestreau J, Ouedraogo A, Kahli M, Champigneux P, Molina L, Molina F, Van TNN. Assessment of salivary microRNA by RT-qPCR: Facing challenges in data interpretation for clinical diagnosis. PLoS One 2024; 19:e0314733. [PMID: 39656703 PMCID: PMC11630609 DOI: 10.1371/journal.pone.0314733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/14/2024] [Indexed: 12/17/2024] Open
Abstract
Salivary microRNAs (miRNAs) have been recently revealed as the next generation of non-invasive biomarkers for the diagnostics of diverse diseases. However, their short and highly homologous sequences make their quantification by RT-qPCR technique highly heterogeneous and study dependent, thus limiting their implementation for clinical applications. In this study, we evaluated the use of a widely used commercial RT-qPCR kit for quantification of salivary miRNAs for clinical diagnostics. Saliva from ten healthy volunteers were sampled four times within a three month time course and submitted for small RNA extraction followed by RT-qPCR analysed. Six miRNAs with different sequence homologies were analysed. Sensitivity and specificity of the tested miRNA assays were corroborated using synthetic miRNAs to evaluate the reliability of all tested assays. Significant variabilities in expression profiles of six miRNAs from ten healthy participants were revealed, yet the poor specificity of the assays offered insufficient performance to associate these differences to biological context. Indeed, as the limit of quantification (LOQ) concentrations are from 2-4 logs higher than that of the limit of detection (LOD) ones, the majority of the analysis for salivary miRNAs felt outside the quantification region. Most importantly, a remarkable number of crosstalk reactions exhibiting considerable OFF target signal intensities was detected, indicating their poor specificity and limited reliability. However, the spike-in of synthetic target miRNA increased the capacity to discriminate endogenous salivary miRNA at the LOQ concentrations from those that were significantly lower. Our results demonstrate that comparative analyses for salivary miRNA expression profiles by this commercial RT-qPCR kit are most likely associated to technical limitations rather than to biological differences. While further technological breakthroughs are still required to overcome discrepancies, standardization of rigorous sample handling and experimental design according to technical parameters of each assay plays a crucial role in reducing data inconsistencies across studies.
Collapse
Affiliation(s)
| | - Anna Cardinal
- Sys2Diag UMR9005 CNRS/ALCEN, Cap Gamma, Parc Euromédecine, Montpellier, France
| | - Morgane Lepeltier
- Sys2Diag UMR9005 CNRS/ALCEN, Cap Gamma, Parc Euromédecine, Montpellier, France
| | - Jérémy Boulestreau
- Sys2Diag UMR9005 CNRS/ALCEN, Cap Gamma, Parc Euromédecine, Montpellier, France
| | - Alimata Ouedraogo
- Sys2Diag UMR9005 CNRS/ALCEN, Cap Gamma, Parc Euromédecine, Montpellier, France
| | - Malik Kahli
- Sys2Diag UMR9005 CNRS/ALCEN, Cap Gamma, Parc Euromédecine, Montpellier, France
| | - Pierre Champigneux
- Sys2Diag UMR9005 CNRS/ALCEN, Cap Gamma, Parc Euromédecine, Montpellier, France
| | - Laurence Molina
- Sys2Diag UMR9005 CNRS/ALCEN, Cap Gamma, Parc Euromédecine, Montpellier, France
| | - Franck Molina
- Sys2Diag UMR9005 CNRS/ALCEN, Cap Gamma, Parc Euromédecine, Montpellier, France
| | - Thi Nhu Ngoc Van
- Sys2Diag UMR9005 CNRS/ALCEN, Cap Gamma, Parc Euromédecine, Montpellier, France
- SkillCell/ALCEN, Cap Gamma, Parc Euromédecine, Montpellier, France
| |
Collapse
|
39
|
Lu Y, Xu J, Liu S, Tian B, Long F. A facile optical fiber-embedded microfluidic biochip for rapid and sensitive detection of microRNA-let-7a in serum. Mikrochim Acta 2024; 192:9. [PMID: 39641831 DOI: 10.1007/s00604-024-06865-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
A novel hybridization chain reaction (HCR) powered optical fiber-embedded microfluidic biochip (HCR-FMB) has been constructed for ultrafast and sensitive detection of lethal-7a (let-7a) in serum. By integrating HCR, fluorescence energy resonant transfer, and evanescent wave fluorescence principle, the HCR-FMB enables detecting let-7a with satisfactory limit of detection of 100.0 pM within 6 min at room temperature, and demonstrates excellent specificity. The HCR-FMB can directly detect let-7a in serum with high sensitivity and without any pre-treatment, and good recoveries were observed for let-7a in serum samples, demonstrating their potential application to the analysis of serum samples. The HCR-FMB exhibits several advantages, including rapidity, enzyme-free, miniaturization, ease-of-operation, field-deployment applicability, minimal-equipment, and cost-effectiveness. The HCR-FMB can be considered a revolutionary detection device that rapidly adapts and deploys in various settings, especially in low medical resource regions.
Collapse
Affiliation(s)
- Yongkai Lu
- School of Chemistry and Life Resources, Renmin University of China, Beijing, 100872, China
| | - Jiaxin Xu
- School of Chemistry and Life Resources, Renmin University of China, Beijing, 100872, China
| | - Siyan Liu
- School of Chemistry and Life Resources, Renmin University of China, Beijing, 100872, China
| | - Baochun Tian
- Beijing Daxing Xinkang Hospital, Beijing, 102600, China
| | - Feng Long
- School of Chemistry and Life Resources, Renmin University of China, Beijing, 100872, China.
| |
Collapse
|
40
|
Réu P, Gaudenzi G, Nanjebe D, Svedberg G, Nyehangane D, Iturritza MU, Mlotshwa P, Hadjineophytou C, Karlsson J, Gantelius J, Mwanga-Amumpaire J, Loh E, Svahn HA, Kumbakumba E, Alfvén T, Boum II Y, Russom A. Multiplex detection of meningitis pathogens by a vertical flow paper microarray and signal enhancement suitable for low-resource settings: Proof of concept. TALANTA OPEN 2024; 10:100357. [DOI: 10.1016/j.talo.2024.100357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
|
41
|
Ji J, Shi G, Jiang J, Wu S, Su H, Pan H, Zeng D. Hybrid layer-by-layer assembly of AuNPs/NSF composite for electrochemical detection of miRNA-196a. DISCOVER NANO 2024; 19:194. [PMID: 39589592 PMCID: PMC11599500 DOI: 10.1186/s11671-024-04127-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/14/2024] [Indexed: 11/27/2024]
Abstract
Detection of microRNA-196a (miRNA-196a) is crucial in cancer research, enabling early diagnosis and providing guidance for individualized treatment. In this work, we employed a naturally occurring negatively charged nano silk fibroin (NSF) with high mechanical properties, biocompatibility, and conductivity to be encapsulated with a positively charged gold nanoparticles (AuNPs) were used as film-forming materials for electrostatic layer-by-layer self-assembly to modify the working electrode of the screen-printed carbon electrode (SPCE). Under the optimized experimental conditions, the uniformly distributed AuNPs on the surface of the multilayer film modified SPCE (AuNPs/NSF)5.5/SPCE combined with the sulfhydryl-modified capture probe cp-DNA through gold-sulfur bonds. Furthermore, miRNA-196a is specifically captured through complementary base pairing to achieve highly sensitive and specific detection. (AuNPs/NSF)5.5/SPCE electrode can detect miRNA-196a in a concentration range of 1.0 × 10-13 to 1.0 × 10-6 M, and the calculated detection limit is 4.63 × 10-14 M when the signal-to-noise ratio is 3. The obtained results showed that the (AuNPs/NSF)5.5/SPCE has excellent selectivity and good stability over time.
Collapse
Affiliation(s)
- Jun Ji
- Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
- University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Gaofan Shi
- Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
- University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Jiayi Jiang
- Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
- University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Shu Wu
- Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
- University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Haoyuan Su
- Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
- University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Hongzhi Pan
- Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| | - Dongdong Zeng
- Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| |
Collapse
|
42
|
Wang C, Song X, Shen J, Xie Y, Ju H, Liu Y. Recent Advances in DNA-Based Nanoprobes for In vivo MiRNA Imaging. Chemistry 2024; 30:e202402566. [PMID: 39145432 DOI: 10.1002/chem.202402566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/16/2024]
Abstract
As a post transcriptional regulator of gene expression, microRNAs (miRNA) is closely related to many major human diseases, especially cancer. Therefore, its precise detection is very important for disease diagnosis and treatment. With the advancement of fluorescent dye and imaging technology, the focus has shifted from in vitro miRNA detection to in vivo miRNA imaging. This concept review summarizes signal amplification strategies including DNAzyme catalytic reaction, hybrid chain reaction (HCR), catalytic hairpin assembly (CHA) to enhance detection signal of lowly expressed miRNAs; external stimuli of ultraviolet (UV) light or near-infrared region (NIR) light, and internal stimuli such as adenosine triphosphate (ATP), glutathione (GSH), protease and cell membrane protein to prevent nonspecific activation for the avoidance of false positive signal; and the development of fluorescent probes with emission in NIR for in vivo miRNA imaging; as well as rare earth nanoparticle based the second near-infrared window (NIR-II) nanoprobes with excellent tissue penetration and depth for in vivo miRNA imaging. The concept review also indicated current challenges for in vivo miRNA imaging including the dynamic monitoring of miRNA expression change and simultaneous in vivo imaging of multiple miRNAs.
Collapse
Affiliation(s)
- Caixia Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Xuefang Song
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jieyu Shen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yuxin Xie
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Ying Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
43
|
Shen X, Lin Z, Jiang X, Zhu X, Zeng S, Cai S, Liu H. Dumbbell probe initiated multi-rolling circle amplification assisted CRISPR/Cas12a for highly sensitive detection of clinical microRNA. Biosens Bioelectron 2024; 264:116676. [PMID: 39151261 DOI: 10.1016/j.bios.2024.116676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
A novel miRNA detection technique named Dumbbell probe initiated multi-Rolling Circle Amplification assisted CRISPR/Cas12a (DBmRCA) was developed relying on the ligation-free dumbbell probe and the high-sensitivity CRISPR/Cas12a signal out strategy. This DBmRCA assay streamlines miRNA quantification within a mere 30-min timeframe and with exceptional analytical precision. The efficacy of this method was validated by assessing miRNA levels in clinical samples, revealing distinct expression panel of miR-200a and miR-126 in lung cancer/adjacent/normal tissue specimens. Moreover, a predictive model was established to classify benign and malignant tumor. Due to its time efficiency, enhanced sensitivity, and streamlined workflow, this assay would be a reliable tool for miRNA analysis in clinical settings, offering potential guidance for early diagnosis and treatment of lung cancer.
Collapse
Affiliation(s)
- Xudan Shen
- Clinical Research Center, Sir Run Run Shaw Hospital, School of Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310020, Zhejiang, China
| | - Ziwei Lin
- Clinical Research Center, Sir Run Run Shaw Hospital, School of Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310020, Zhejiang, China
| | - Xianfeng Jiang
- Clinical Research Center, Sir Run Run Shaw Hospital, School of Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310020, Zhejiang, China
| | - Xinlan Zhu
- Clinical Research Center, Sir Run Run Shaw Hospital, School of Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310020, Zhejiang, China
| | - Su Zeng
- Clinical Research Center, Sir Run Run Shaw Hospital, School of Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310020, Zhejiang, China
| | - Sheng Cai
- Clinical Research Center, Sir Run Run Shaw Hospital, School of Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310020, Zhejiang, China; Jinhua Institute of Zhejiang University, Jinhua, 321299, Zhejiang, China.
| | - Hui Liu
- Clinical Research Center, Sir Run Run Shaw Hospital, School of Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310020, Zhejiang, China.
| |
Collapse
|
44
|
Meng X, Petrou L, Kenaan A, Khan D, O'Hare D, Ladame S. Pitfalls and challenges of peptide nucleic acid immobilisation on carbon surfaces for sequence-specific capturing of nucleic acid biomarkers. Biosens Bioelectron 2024; 264:116634. [PMID: 39154509 DOI: 10.1016/j.bios.2024.116634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/25/2024] [Accepted: 08/03/2024] [Indexed: 08/20/2024]
Abstract
Nucleic acid sensors based on a peptide nucleic acid (PNA) probe have seen a surge in interest since their discovery in the 1990s, and after the patent protecting them expired in 2013. The appeal of PNA as capture and/or sensing probes as an alternative to standard DNA or RNA oligonucleotides originates from their superior chemical stability and affinity for complementary oligonucleotides, as well as their increased responsiveness to single base mismatches. The implementation of PNA probes onto optical and electrochemical sensors has showed great promise although progress has been hampered by issues mostly associated with surface chemistry, probe accessibility and non-specific binding. Herein, we report on a systematic comparison between various PNA immobilisation strategies on carbon substrates based on both covalent and non-covalent chemistries. Besides the use of standard electrochemical techniques to characterise the extent of surface modification, the ability of immobilised PNAs to engage in chemical interactions with freely diffusing molecules was also investigated. Using original chemical tags, this study provides a unique insight into the impact of immobilisation chemistries on PNA's (bio)availability. Rapid immobilisation of biotinylated PNA oligomers on screen-printed carbon electrode (SPCE) coated with adsorbed polystreptavidin (pSA) demonstrated highest efficiency and ease in the preparation process. An original nucleic acid sensor using this immobilisation chemistry is reported that is based on a sandwich assay between a surface bound PNA capture probe and a freely diffusing electrochemically active PNA sensing probe.
Collapse
Affiliation(s)
- Xiaotong Meng
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom; School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua university, Beijing 100084, China
| | - Loukia Petrou
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Ahmad Kenaan
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Daanyaal Khan
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Danny O'Hare
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom.
| | - Sylvain Ladame
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom.
| |
Collapse
|
45
|
Zhao L, Deng X, Li Y, Zhao Q, Xiao L, Xue J, Chen A, Cheng W, Zhao M. Binding-driven forward tearing protospacer activated CRISPR-Cas12a system and applications for microRNA detection. J Nanobiotechnology 2024; 22:684. [PMID: 39516870 PMCID: PMC11545271 DOI: 10.1186/s12951-024-02915-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
CRISPR-Cas12a system, characterized by its precise sequence recognition and cleavage activity, has emerged as a powerful and programmable tool for molecular diagnostics. However, current CRISPR-Cas12a-based nucleic acid detection methods, particularly microRNA (miRNA) detection, necessitate additional bio-engineering strategies to exert control over Cas12a activity. Herein, we propose an engineered target-responsive hairpin DNA activator (TRHDA) to mediate forward tearing protospacer activated CRISPR-Cas12a system, which enables direct miRNA detection with high specificity and sensitivity. Target miRNA specifically binding to hairpin DNA can drive forward tearing protospacer in the stem sequence of hairpin structure, facilitating the complementarity between crRNA spacer and protospacer to activate Cas12a. Upon the hairpin DNA as input-responsive activator of Cas12a, a universal biosensing method enables the multiple miRNAs (miR-21, let-7a, miR-30a) detection and also has exceptional capability in identifying single-base mismatches and distinguishing homologous let-7/miR-30 family members. Besides, TRHDA-mediated Cas12a-powered biosensing has realized the evaluation of miR-21 expression levels in diverse cellular contexts by intracellular imaging. Considering the easy programmability of hairpin DNA in responsive region, this strategy could expand for the other target molecules detection (e.g., proteins, micromolecules, peptides, exosomes), which offers significant implications for biomarkers diagnostics utilizing the CRISPR-Cas12a system toolbox.
Collapse
Affiliation(s)
- Lina Zhao
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Xiangyu Deng
- Department of Clinical Laboratory, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, China
| | - Yuqing Li
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Qing Zhao
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Lizhu Xiao
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Jianjiang Xue
- Department of Clinical Laboratory, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, China
| | - Anyi Chen
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China.
| | - Wei Cheng
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Min Zhao
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
46
|
Pont L, Vergara-Barberán M, Carrasco-Correa EJ. A Comprehensive Review on Capillary Electrophoresis-Mass Spectrometry in Advancing Biomolecular Research. Electrophoresis 2024. [PMID: 39508247 DOI: 10.1002/elps.202400122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024]
Abstract
This review provides an in-depth exploration of capillary electrophoresis-mass spectrometry (CE-MS) in biomolecular research from 2020 to 2024. CE-MS emerges as a versatile and powerful tool due to its numerous advantages, facilitating the analysis of various biomolecules, including proteins, peptides, oligonucleotides, and other metabolites, such as lipids, carbohydrates, or amines, among others. The review extends to various CE modes and interfaces for the CE-MS coupling, offering comprehensive insights into their applications within biomolecular research. Furthermore, it effectively summarizes the conditions employed in CE-MS while also addressing critical aspects such as sample preparation requirements. Despite its advantages, the review highlights a gap between discovery and practical implementation, underscoring the need for large-scale validation and method standardization to fully realize the potential of CE-MS in biomolecular research.
Collapse
Affiliation(s)
- Laura Pont
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, Barcelona, Spain
- Serra Húnter Program, Generalitat de Catalunya, Barcelona, Spain
| | - María Vergara-Barberán
- CLECEM Group, Department of Analytical Chemistry, University of Valencia, Valencia, Spain
| | | |
Collapse
|
47
|
Luo J, Zhang C, Wu M, Yao X, Duan Y, Li Y. Excitation/emission-enhanced heterostructure photonic crystal array synergizing with "DD-A" FRET entropy-driven circuit for high-resolution and ultrasensitive analysis of ctDNA. Biosens Bioelectron 2024; 263:116615. [PMID: 39106690 DOI: 10.1016/j.bios.2024.116615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/21/2024] [Accepted: 07/29/2024] [Indexed: 08/09/2024]
Abstract
Circulating tumor DNA (ctDNA) is an emerging biomarker of liquid biopsy for cancer. But it remains a challenge to achieve simple, sensitive and specific detection of ctDNA because of low abundance and single-base mutation. In this work, an excitation/emission-enhanced heterostructure photonic crystal (PC) array synergizing with entropy-driven circuit (EDC) was developed for high-resolution and ultrasensitive analysis of ctDNA. The donor donor-acceptor FÖrster resonance energy transfer ("DD-A" FRET) was integrated in EDC based on the introduction of simple auxiliary strand, which exhibited higher sensitivity than that of traditional EDC. The heterostructure PC array was constructed with the bilayer periodic nanostructures of nanospheres. Because the heterostructure PC has the adjustable dual photonic band gaps (PBGs) by changing nanosphere sizes, and the "DD-A" FRET can offer the excitation and emission peak with enough distance, it helps the successful matches between the dual PBGs of heterostructure PC and the excitation/emission peaks of "DD-A" FRET; thus, the fluorescence from EDC can be enhanced effectively from both of excitation and emission processes on heterostructure PC array. Besides, high-resolution of single-base mutation was obtained through the strict recognition of EDC. Benefiting from the specific spectrum-matched and synergetic amplification of heterostructure PC and EDC with "DD-A" FRET, the proposed array obtained ultrasensitive detection of ctDNA with LOD of 12.9 fM, and achieved the analysis of mutation frequency as low as 0.01%. Therefore, the proposed strategy has the advantages of simple operation, mild conditions (enzyme-free and isothermal), high-sensitivity, high-resolution and high-throughput analysis, showing potential in bioassay and clinical application.
Collapse
Affiliation(s)
- Jie Luo
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Chuyan Zhang
- Precision Medicine Translational Research Center, Medical Equipment Innovation Research Center, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Mengfan Wu
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu, Sichuan, 610065, PR China
| | - Xiuyuan Yao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu, Sichuan, 610065, PR China
| | - Yongxin Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China.
| |
Collapse
|
48
|
Duan M, Chang Y, Chen X, Wang Z, Wu S, Duan N. Recent advances in the construction strategy, functional properties, and biosensing application of self-assembled triangular unit-based DNA nanostructures. Biotechnol Adv 2024; 76:108436. [PMID: 39209178 DOI: 10.1016/j.biotechadv.2024.108436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/13/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Research on self-assembled deoxyribonucleic acid (DNA) nanostructures with different shapes, sizes, and functions has recently made rapid progress owing to its biocompatibility, programmability, and stability. Among these, triangular unit-based DNA nanostructures, which are typically multi-arm DNA tiles, have been widely applied because of their unique structural rigidity, spatial flexibility, and cell permeability. Triangular unit-based DNA nanostructures are folded from multiple single-stranded DNA using the principle of complementary base pairing. Its shape and size can be determined using pre-set scaffold strands, segmented base complementary regions, and sequence lengths. The resulting DNA nanostructures retain the desired sequence length to serve as binding sites for other molecules and obtain satisfactory results in molecular recognition, spatial orientation, and target acquisition. Therefore, extensive research on triangular unit-based DNA nanostructures has shown that they can be used as powerful tools in the biosensing field to improve specificity, sensitivity, and accuracy. Over the past few decades, various design strategies and assembly techniques have been established to improve the stability, complexity, functionality, and practical applications of triangular unit-based DNA nanostructures in biosensing. In this review, we introduce the structural design strategies and principles of typical triangular unit-based DNA nanostructures, including triangular, tetrahedral, star, and net-shaped DNA. We then summarize the functional properties of triangular unit-based DNA nanostructures and their applications in biosensing. Finally, we critically discuss the existing challenges and future trends.
Collapse
Affiliation(s)
- Mengxia Duan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yuting Chang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiaowan Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Shijia Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Nuo Duan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
49
|
Zhang C, Li T, Zhao Q, Ma R, Hong Z, Huang X, Gao P, Liu J, Zhao J, Wang Z. Advances and Prospects in Liquid Biopsy Techniques for Malignant Tumor Diagnosis and Surveillance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404709. [PMID: 39082395 DOI: 10.1002/smll.202404709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/07/2024] [Indexed: 11/02/2024]
Abstract
Liquid biopsy technology provides invaluable support for the early diagnosis of tumors and surveillance of disease course by detecting tumor-related biomarkers in bodily fluids. Currently, liquid biopsy techniques are mainly divided into two categories: biomarker and label-free. Biomarker liquid biopsy techniques utilize specific antibodies or probes to identify and isolate target cells, exosomes, or molecules, and these techniques are widely used in clinical practice. However, they have certain limitations including dependence on tumor markers, alterations in cell biological properties, and high cost. In contrast, label-free liquid biopsy techniques directly utilize physical or chemical properties of cells, exosomes, or molecules for detection and isolation. These techniques have the advantage of not needing labeling, not impacting downstream analysis, and low detection cost. However, most are still in the research stage and not yet mature. This review first discusses recent advances in liquid biopsy techniques for early tumor diagnosis and disease surveillance. Several current techniques are described in detail. These techniques exploit differences in biomarkers, size, density, deformability, electrical properties, and chemical composition in tumor components to achieve highly sensitive tumor component identification and separation. Finally, the current research progress is summarized and the future research directions of the field are discussed.
Collapse
Affiliation(s)
- Chengzhi Zhang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| | - Tenghui Li
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| | - Qian Zhao
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| | - Rui Ma
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| | - Zhengchao Hong
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| | - Xuanzhang Huang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| | - Peng Gao
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| | - Jingjing Liu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| | - Junhua Zhao
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155 N Nanjing Street, Shenyang, Liaoning, 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
- Institute of Health Sciences, China Medical University, No.77 Puhe Road, Shenyang, Liaoning, 110122, China
| |
Collapse
|
50
|
Ratre P, Thareja S, Mishra PK. Identification of cell-free circulating epigenomic biomarkers for early diagnosis and response to therapies in breast cancer patients. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 391:95-134. [PMID: 39939079 DOI: 10.1016/bs.ircmb.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2025]
Abstract
The increasing prevalence of breast cancer presents a significant global health challenge, highlighting the urgent need for improved diagnostic and treatment monitoring methods. The non-invasive nature of cell-free circulating epigenomic biomarkers, such as methylated DNA (metDNA) and microRNAs (miRNAs), offers a reassuring approach to identifying breast cancer patients in the early stages and assessing their response to therapy. This approach holds great promise for diagnosis and treatment evaluation, prioritizing patient comfort and well-being. Cell-free circulating metDNA and miRNAs are released into the bloodstream from dying tumor cells through apoptosis and necrosis, carrying tumor-specific genetic and epigenetic changes. These changes encompass alterations in DNA methylation patterns, are pivotal in regulating gene expression, and are frequently disrupted in cancer. The interplay between these processes and the dynamic release of epigenomic biomarkers provides a real-time snapshot of the genetic and epigenetic features of the tumor. Integrating the analysis of metDNA and miRNA biomarkers into clinical practice can facilitate the early detection of breast cancer and improve the precision of treatment monitoring. By tracking changes in these biological markers, healthcare professionals can make informed decisions regarding modifications to therapy, ultimately enhancing patient outcomes. Gaining insights into the underlying mechanisms of cell-free circulating epigenomic biomarkers offers a groundbreaking approach to diagnosing and treating breast cancer.
Collapse
Affiliation(s)
- Pooja Ratre
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | - Pradyumna Kumar Mishra
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India; Faculty of Medical Research, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|