1
|
Bagal MS, Zambare A, Sharma S, Sekar N. Synthesis, photophysical, linear, and non-linear optical properties of 4-methoxyphenyl dicyanovinylene dyes: DFT and TD-DFT studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 329:125484. [PMID: 39626512 DOI: 10.1016/j.saa.2024.125484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/02/2024] [Accepted: 11/21/2024] [Indexed: 01/29/2025]
Abstract
Dyes were synthesized via Knoevenagel condensation using various aldehydes of julolidine, n-hexylcarbazole, n-hexylphenothiazine, triphenylamine, and 7-N, N-diethylaminocoumarin named as MB1, MB2, MB3, MB4, and MB5. The dyes were characterized using FT-IR, 1H NMR, 13C NMR, and HRMS, which provided detailed structural information. Significant absorption, emission, and Stokes shift properties were observed through spectroscopic analysis. Notably, MB2, MB3, and MB4 exhibited solid-state and aggregation-induced emission (AIE) properties. MB1, MB3, and MB4 showed high viscosity sensitivity in polar solvents. Dyes containing nitrogen donors (MB1, MB2, and MB3) demonstrated acidochromism, responding to trifluoroacetic acid, while MB4 and MB5 remained neutral. Solvatochromic analysis indicated enhanced hyperpolarizabilities (αCT, βCT and γCT) in polar solvents, with MB1 exhibiting the highest linear and second-order hyperpolarizability, making it ideal for non-linear optical (NLO) applications. MB5 also showed a notable solvent polarity response. Computational studies using B3LYP and CAM-B3LYP functionals confirmed increased hyperpolarizabilities in polar environments. All dyes displayed solvatochromism and promising NLO properties, with MB3 and MB5 showing lower band gaps and higher dipole moments in polar solvents, indicating their potential for photonics, bioimaging, and sensors.
Collapse
Affiliation(s)
- Mayuri S Bagal
- Dyestuff Technology Department (Currently named as Department of Speciality Chemicals Technology), Institute of Chemical Technology, N. P. Marg, Matunga, Mumbai 400019, Maharashtra, India
| | - Aishwarya Zambare
- Dyestuff Technology Department (Currently named as Department of Speciality Chemicals Technology), Institute of Chemical Technology, N. P. Marg, Matunga, Mumbai 400019, Maharashtra, India
| | - Suryapratap Sharma
- Dyestuff Technology Department (Currently named as Department of Speciality Chemicals Technology), Institute of Chemical Technology, N. P. Marg, Matunga, Mumbai 400019, Maharashtra, India
| | - Nagaiyan Sekar
- Dyestuff Technology Department (Currently named as Department of Speciality Chemicals Technology), Institute of Chemical Technology, N. P. Marg, Matunga, Mumbai 400019, Maharashtra, India.
| |
Collapse
|
2
|
Elayan IA, Zhou M, Brown A. Two-photon absorption of BODIPY, BIDIPY, GADIPY, and SBDIPY. Phys Chem Chem Phys 2025. [PMID: 39898630 DOI: 10.1039/d4cp03915g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Substituted boron-dipyrromethene compounds (BODIPYs) have gained significant attention due to their tunable photophysical properties, including two-photon absorption (2PA), a nonlinear optical process where two photons are absorbed simultaneously. The tuning of BODIPY's photophysical properties has recently led to the synthesis of pnictogen-containing derivatives, such as SBDIPY and BIDIPY, where boron is replaced by antimony (Sb) or bismuth (Bi), respectively, as well as other analogues like GADIPY, which contain gallium (Ga). This study presents a computational investigation into their 2PA properties, exploring the impact of various substitutions across these systems. The 2PA cross-sections (σ2PA), electronic excitation energies (ΔE), and dipole moments (μ00, μ11, μ01, Δμ) were computed for 18 DIPY chromophores in the gas-phase with time-dependent density-functional theory (TD-DFT) using several functionals (CAM-B3LYP, ωB97X, M06-2X, M11, and MN15), and then compared to second-order approximate coupled-cluster with the resolution-of-identity approximation (RI-CC2) results. The computed mean absolute errors were small, with the MN15, CAM-B3LYP, and M06-2X functionals being among the best-performing for the properties analyzed. In general, for the parent (unsubstituted) compounds, replacing the core atom in DIPY chromophores results in negligible changes to their σ2PA. However, extending the conjugation through the addition of phenyl substituents significantly increases σ2PA values, and the nature of the core atom impacts the magnitude of this enhancement.
Collapse
Affiliation(s)
- Ismael A Elayan
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2.
| | - Mingmin Zhou
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2.
| | - Alex Brown
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, T6G 2G2.
| |
Collapse
|
3
|
Izadshenas Jahromi S, Słowik K. Molecular saturation determines distinct plasmonic enhancement scenarios for two-photon absorption signal. Sci Rep 2025; 15:3956. [PMID: 39890867 PMCID: PMC11785770 DOI: 10.1038/s41598-025-87198-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/16/2025] [Indexed: 02/03/2025] Open
Abstract
Two-photon absorption in molecules, of significance for high-resolution imaging applications, is typically characterised with low cross sections. To enhance the TPA signal, one effective approach exploits plasmonic enhancement. For this method to be efficient, it must meet several criteria, including broadband operational capability and a high fluorescence rate to ensure effective signal detection. In this context, we introduce a plus-shaped silver nanostructure designed to exploit the coupling of bright and dark plasmonic modes. This configuration considerably improves both the absorption and fluorescence of molecules across near-infrared and visible spectra. By fine-tuning the geometrical parameters of the nanostructure, we align the plasmonic resonances with the optical properties of specific TPA-active dyes, i.e., ATTO 700, Rhodamine 6G, and ATTO 610. The expected TPA signal enhancement is evaluated using classical estimations based on the assumption of independent enhancement of absorption and fluorescence. These results are then compared with outcomes obtained in a quantum-mechanical approach to evaluate the stationary photon emission rate. Our findings reveal the important role of molecular saturation determining the regimes where either absorption or fluorescence enhancement leads to an improved TPA signal intensity, considerably below the classical predictions. The proposed nanostructure design not only addresses these findings, but also might serve for their experimental verification, allowing for active polarization tuning of the plasmonic response targeting the absorption, fluorescence, or both. The insight into quantum-mechanical mechanisms of plasmonic signal enhancement provided in our work is a step forward in the more effective control of light-matter interactions at the nanoscale.
Collapse
Affiliation(s)
- Saeid Izadshenas Jahromi
- Institute of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University in Toruń, ul. Grudzikadzka 5, 87-100, Toruń, Poland.
| | - Karolina Słowik
- Institute of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University in Toruń, ul. Grudzikadzka 5, 87-100, Toruń, Poland
| |
Collapse
|
4
|
Hajda A, Guha R, Copp SM, Olesiak-Bańska J. Two-photon brightness of NIR-emitting, atomically precise DNA-stabilized silver nanoclusters. Chem Sci 2025; 16:1737-1745. [PMID: 39720144 PMCID: PMC11664824 DOI: 10.1039/d4sc05853d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 12/16/2024] [Indexed: 12/26/2024] Open
Abstract
Near-infrared (NIR) emitters with high two-photon absorption (2PA) cross-sections are of interest to enable in vivo imaging in the tissue transparency windows. This study explores the potential of DNA-stabilized silver nanoclusters (Ag N -DNAs) as water-soluble two-photon absorbers. We investigate 2PA of four different atomically precise Ag N -DNA species with far-red to NIR emission and varying nanocluster and ligand compositions. 2PA cross-sections, σ 2, were determined by two-photon excited luminescence (2PEL) technique for a wide wavelength range from 810 to 1400 nm. The Ag N -DNAs exhibited reversed strength of corresponding transitions in the two-photon regime, as compared to one-photon, which further demonstrates the complex photophysics of these emitters. Maximal 2PA cross-section value (∼582 GM) was observed for (DNA)3[Ag21]15+, which is stabilized by 3 DNA oligomers. (DNA)2[Ag16Cl2]8+ presented distinct 2PA behavior from the Ag N -DNAs without chlorido ligands, with a high 2PA of 176 GM at 1050 nm. Our findings support the potential of Ag N -DNAs as NIR-to-NIR two-photon probes that are both excited and emit in the NIR. Their high σ 2 and fluorescence quantum yield values result in superior two-photon brightness on the order of ∼102 GM, significantly higher than water-soluble organic fluorophores.
Collapse
Affiliation(s)
- Agata Hajda
- Institute of Advanced Materials, Wroclaw University of Science and Technology Wrocław Poland
| | - Rweetuparna Guha
- Department of Materials Science and Engineering, University of California Irvine CA 92697 USA
| | - Stacy Marla Copp
- Department of Materials Science and Engineering, University of California Irvine CA 92697 USA
- Department of Chemistry, University of California Irvine CA 92697 USA
- Department of Physics and Astronomy, University of California Irvine CA 92697 USA
- Department of Chemical and Biomolecular Engineering, University of California Irvine CA 92697 USA
| | - Joanna Olesiak-Bańska
- Institute of Advanced Materials, Wroclaw University of Science and Technology Wrocław Poland
| |
Collapse
|
5
|
Oleszak C, Ritterhoff CL, Meyer B, Jux N. β- meso-Fused pyrene-porphyrin scaffolds with panchromatic absorption features. Org Biomol Chem 2025; 23:793-798. [PMID: 39420588 DOI: 10.1039/d4ob01447b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The π-extension of porphyrins with pyrenes through the β-meso-fusion of five-membered rings is demonstrated. Three architectures resulting from combining up to two porphyrins and pyrenes were obtained straightforwardly in good overall yields. Although significantly planarized, the molecules retain excellent solubility and processability. Spectroscopic characterization and density-functional theory calculations reveal intriguing absorption features.
Collapse
Affiliation(s)
- Christoph Oleszak
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Chair of Organic Chemistry II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany.
| | - Christian L Ritterhoff
- Interdisciplinary Center for Molecular Materials (ICMM) & Computer Chemistry Center (CCC), Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstr. 25, 91052 Erlangen, Germany.
| | - Bernd Meyer
- Interdisciplinary Center for Molecular Materials (ICMM) & Computer Chemistry Center (CCC), Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstr. 25, 91052 Erlangen, Germany.
| | - Norbert Jux
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Chair of Organic Chemistry II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany.
| |
Collapse
|
6
|
Zeng LZ, Li XL, Deng YA, Zhao RY, Song R, Yan YF, Wang MF, Wang XH, Ren X, Gao F. Dinuclear Dicationic Iridium Complexes for Highly Synergistic Photodynamic and Photothermal Therapy to Chemoresistant Cancer. Inorg Chem 2025; 64:967-977. [PMID: 39772552 DOI: 10.1021/acs.inorgchem.4c04282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
A series of dinuclear Ir(III) complexes have been constructed for enhanced photodynamic and photothermal therapy (PDT and PTT) for cisplatin-resistant non-small-cell lung cancer. They enter cells via caveolar endocytosis, target mitochondria but not nuclear, generate both singlet oxygen and superoxide anion, and release heat when exposed to infrared (IR) irradiation, thus inducing reactive oxygen species (ROS)-associated cell disruption and thermal ablation. The IR-generated ROS can further activate caspases, triggering apoptosis. Additionally, the ROS deplete intracellular glutathione, lead to lipid peroxidation, and induce ferroptosis. The selected dinuclear Ir(III) complex Ir4 can completely eradicate cisplatin-resistant non-small-cell lung tumor in 75% of the phototreated mice with an inhibition rate of tumor growth above 96%. They have an extremely low toxicity to normal liver and kidney cells. After therapy, metal was not detected in the collected organs of mice except the tumor. A synergistic therapy consisting of potent IR-driven PDT and mild PTT accomplished by single-molecule dinuclear Ir(III) complexes is highly significant for the safe and effective PDT of large, deep-seated tumors as well as for overcoming the complicated drug resistance mechanisms of cancer.
Collapse
Affiliation(s)
- Li-Zhen Zeng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research and Development of Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| | - Xue-Lian Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research and Development of Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| | - Yu-Ang Deng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research and Development of Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| | - Run-Yu Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research and Development of Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| | - Ran Song
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research and Development of Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| | - Yu-Fei Yan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research and Development of Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| | - Meng-Fan Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research and Development of Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| | - Xiang-Han Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research and Development of Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| | - Xiaoxia Ren
- Animal Research and Resource Center, School of Life Sciences, Yunnan University, Kunming 650500, P. R. China
| | - Feng Gao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Provincial Center for Research and Development of Natural Products; School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| |
Collapse
|
7
|
Li D, Zhao W, Li G, Xu Y, Xu L, Tang B. S/Se-Annulated Star-Shaped Perylene Diimides (PDIs) with Large Two-Photon Absorption (TPA) Cross-Section in NIR-I Region. Chemistry 2025; 31:e202403510. [PMID: 39572399 DOI: 10.1002/chem.202403510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Indexed: 11/30/2024]
Abstract
Two-photon absorption (TPA) has attracted growing attention over recent years owing to the wide range of applications in organic nonlinear optical (NLO) materials. The quantitative sensitivity of a two-photon molecular entity is determined by its TPA cross-section (δTPA). Perylene diimides (PDIs) are excellent n-type organic semiconductor materials demonstrating distinguished thermal, optical, and chemical stability. Nonetheless, PDIs-based scaffolds exhibit poor δTPA in the NIR-I region (700-900 nm) due to the lack of suitable molecular design. Here, two novel star-shaped PDIs fluorophores, namely PDI-S and PDI-Se, were constructed by four periphery S/Se-fused PDIs connected with bicarbazole core. PDI-S manifested excellent δTPA of 3775 GM, which are among the highest values reported for PDIs excited in the NIR-I region.
Collapse
Affiliation(s)
- Dandan Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Materials and Clean Energy, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, China
| | - Wenrong Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Materials and Clean Energy, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, China
| | - Gang Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Materials and Clean Energy, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, China
| | - Yan Xu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Materials and Clean Energy, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, China
| | - Liang Xu
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Materials and Clean Energy, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, China
- Laoshan Laboratory, Qingdao, 266200, PR China
| |
Collapse
|
8
|
Liu J, Wang K, Wan L, Yang X, Li B. Ruthenium-catalyzed C-H bond activation and annulation of phenothiazine-3-carbaldehydes: facile access to dual-emission materials. Chem Sci 2025:d4sc07825j. [PMID: 39829976 PMCID: PMC11740230 DOI: 10.1039/d4sc07825j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025] Open
Abstract
Reported herein is the first example of a ruthenium-catalyzed C-H activation/annulation of phenothiazine-3-carbaldehydes to construct structurally diverse pyrido[3,4-c]phenothiazin-3-iums with dual-emission characteristics. Novel organic single-molecule white-light materials based on pyrido[3,4-c]phenothiazin-3-iums with dual-emission and thermally activated delayed fluorescence (TADF) characteristics have been developed for the first time herein. Furthermore, the dual-emission molecule could be fabricated as water-dispersed NPs, which could be applied in two-channel emission intensity ratio imaging to observe the intercellular structure and can specifically target the cell membrane.
Collapse
Affiliation(s)
- Junxiang Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| | - Kangmin Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| | - Liqiu Wan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| | - Xianhui Yang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| | - Bijin Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| |
Collapse
|
9
|
Desmedt E, Jacobs M, Alonso M, De Vleeschouwer F. Deciphering nonlinear optical properties in functionalized hexaphyrins via explainable machine learning. Phys Chem Chem Phys 2025; 27:1256-1273. [PMID: 39530876 DOI: 10.1039/d4cp03303e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Over the years, several studies have aimed to elucidate why certain molecules show more enhanced nonlinear optical (NLO) properties than others. This knowledge is particularly valuable in the design of new NLO switches, where the ON and OFF states of the switch display markedly different NLO behaviors. In the literature, orbital contributions, aromaticity, planarity, and intramolecular charge transfer have been put forward as key factors in this regard. Based on our previous work on functionalized hexaphyrin-based redox switches, we aim at identifying through explainable machine learning the driving forces of the first hyperpolarizability related to the hyper-Rayleigh scattering (βHRS) of meso-substituted and/or core-modified [26]- and [30]hexaphyrins. The significant correlation between βHRS and the HOMO-LUMO energy gap can be further improved by including other orbitals as well as charge-transfer features in a 6-fold cross-validated kernel-ridge-regression model. Our Shapley additive explanations (SHAP) analysis shows that the charge transfer excitation length is more important for 30R systems, whereas the transition dipole moment between the ground and first excited state is one of the main contributors for 26R systems. We also demonstrate that, besides various hexaphyrin-based redox states, the ML model can describe to a large degree the βHRS response of other hexaphyrins, differing in substitution pattern and topology (26D and 28M).
Collapse
Affiliation(s)
- Eline Desmedt
- Department of General Chemistry: Algemene Chemie (ALGC), Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium.
| | - Michiel Jacobs
- Department of General Chemistry: Algemene Chemie (ALGC), Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium.
| | - Mercedes Alonso
- Department of General Chemistry: Algemene Chemie (ALGC), Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium.
| | - Freija De Vleeschouwer
- Department of General Chemistry: Algemene Chemie (ALGC), Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium.
| |
Collapse
|
10
|
Yang G, Liu J, Yang Y, Bin Z, You J. Unveiling the Centrosymmetric Effect in the Design of Narrowband Fluorescent Emitters: From Single to Double Difluoroboron Cores. J Am Chem Soc 2025; 147:1251-1261. [PMID: 39721058 DOI: 10.1021/jacs.4c15233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Narrowband fluorescent emitters are receiving significant attention due to the great potential for creating ultrahigh-definition organic light-emitting diode displays (UHD-OLED). Unveiling innovative mechanisms to design new high-performance narrowband fluorescent emitters is a concerted endeavor in both academic and industrial circles. Theoretical calculations reveal that the centrosymmetric dianilido-bipyridine boron difluoride framework (cs-DAPBF2) exhibits significantly reduced structural relaxation compared to previously reported asymmetric structures with monofluoroboron cores, creating new opportunities for the development of narrowband fluorescent emitters. In this work, we present a dual chelation-assisted C-H/C-H homocoupling strategy to efficiently synthesize the 3,3'-amino-2,2'-bipyridine skeleton, enabling the straightforward construction of a series of symmetric cs-DAPBF2-based fluorescent emitters. Through molecular optimization, we have developed a high-performance narrowband green fluorescent emitter, cs-DMeAPBF2-MP, which demonstrates a narrow full width at half-maximum (fwhm) of 20 nm, a high photoluminescence quantum yield (ΦPL) of 98%, a large molar absorptivity (ε) of 2.10 × 104 M-1 cm-1, and a high horizontal dipole ratio (Θ//) of 77%. These properties make cs-DMeAPBF2-MP a promising candidate for fabricating high-efficiency, narrowband green organic light-emitting diodes (OLEDs) with minimal efficiency roll-off. This study represents the first successful application of the DAPBF2 architecture in the design of narrowband fluorescent emitters for high-performance OLEDs.
Collapse
Affiliation(s)
- Ge Yang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People's Republic of China
| | - Junjie Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People's Republic of China
| | - Yudong Yang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People's Republic of China
| | - Zhengyang Bin
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People's Republic of China
| | - Jingsong You
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People's Republic of China
| |
Collapse
|
11
|
Lu X, Huo Q, Li J, Li B, Yu X, Sun X, Cheng L, Zhou H, Tian Y, Li D. Elevating Nonlinear Optical Response Through D-Electron Modulation in Metal-Organic Frameworks. Chemistry 2025; 31:e202403564. [PMID: 39445652 DOI: 10.1002/chem.202403564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 10/25/2024]
Abstract
Electronic structure and excited state behavior is of pronounced influence on regulation of nonlinear optical (NLO) response. Herein, a serials of transition metal ions bearing different d-electron numbers were in situ coordinated within porphyrinic metal-organic frameworks (MOFs), creating NLO-responsive M-metal (metal=Fe, Co, Ni, Cu, and Zn) frameworks. It demonstrated that the NLO properties can be optimized with the increased occupancy of the d-shell, which enhances the degree of delocalization. Specifically, the full-filled (d10) electron configuration of Zn2+ stabilizes the electronic structure, combination with π-π* local excitation character of M-Zn, promoting charge transfer process and resulting in outstanding NLO properties. Moreover, parameters related to the nonlinear process (β, n2, Imχ(3), Reχ(3) and χ(3)) of M-Zn are calculated to be higher than those of other materials, consistent with theoretical calculations. This work paves the way for NLO modulation based on electronic analysis and provides a promising approach for constructing high-performance NLO materials.
Collapse
Affiliation(s)
- Xin Lu
- Institutes of Physical Science and Information Technology, Faculty of Materials Science and Engineering, School of Chemistry and Chemical Engineering, School of Life Sciences, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Qingwei Huo
- Institutes of Physical Science and Information Technology, Faculty of Materials Science and Engineering, School of Chemistry and Chemical Engineering, School of Life Sciences, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Jiaqi Li
- Institutes of Physical Science and Information Technology, Faculty of Materials Science and Engineering, School of Chemistry and Chemical Engineering, School of Life Sciences, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Bo Li
- Institutes of Physical Science and Information Technology, Faculty of Materials Science and Engineering, School of Chemistry and Chemical Engineering, School of Life Sciences, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Xinlei Yu
- Institutes of Physical Science and Information Technology, Faculty of Materials Science and Engineering, School of Chemistry and Chemical Engineering, School of Life Sciences, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Xianshun Sun
- Institutes of Physical Science and Information Technology, Faculty of Materials Science and Engineering, School of Chemistry and Chemical Engineering, School of Life Sciences, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Longjiu Cheng
- Institutes of Physical Science and Information Technology, Faculty of Materials Science and Engineering, School of Chemistry and Chemical Engineering, School of Life Sciences, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Hongping Zhou
- Institutes of Physical Science and Information Technology, Faculty of Materials Science and Engineering, School of Chemistry and Chemical Engineering, School of Life Sciences, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Yupeng Tian
- Institutes of Physical Science and Information Technology, Faculty of Materials Science and Engineering, School of Chemistry and Chemical Engineering, School of Life Sciences, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Dandan Li
- Institutes of Physical Science and Information Technology, Faculty of Materials Science and Engineering, School of Chemistry and Chemical Engineering, School of Life Sciences, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| |
Collapse
|
12
|
Pragti, Kundu BK, Chen R, Diao J, Sun Y. Near-Infrared Bioimaging Using Two-photon Fluorescent Probes. Adv Healthc Mater 2025; 14:e2403272. [PMID: 39573885 PMCID: PMC11774672 DOI: 10.1002/adhm.202403272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/07/2024] [Indexed: 01/29/2025]
Abstract
Near-infrared (NIR) bioimaging has emerged as a transformative technology in biomedical research. Among many fluorescent probes that are suitable for NIR imaging studies, two-photon absorption (TPA) ones represent a particularly promising category, because TPA fluorescent probes can overcome the inherent limitations of one-photon absorption (OPA) counterparts. By leveraging the unique properties of two-photon absorption, TPA fluorescent probes achieve superior tissue penetration, significantly reduced photodamage, and enhanced spatial resolution. This perspective article delves into the fundamental principles, design strategies, and representative TPA probes for various imaging applications. In particular, a number of molecular fluorescent probes, ranging from organic, inorganic, and COF/MOF-based systems are highlighted to showcase the vast scope of possible TPA probe design and application scenarios. In addition, the employment of stimulated TPA probes that are responsive to different external factors, including pH, redox species, enzymes, and hypoxia, is also discussed. In the end, the future perspectives for the continuous advancement of TPA fluorescent probes in the NIR bioimaging field are presented. For instance, it is essential to transition from cellular to in vivo imaging studies to obtain more physiologically relevant insights. Additionally, the development of "dual-function" TPA probes for both disease diagnosis and therapeutic treatment is particularly promising.
Collapse
Affiliation(s)
- Pragti
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, USA
| | - Bidyut Kumar Kundu
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, USA
| | - Rui Chen
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, USA
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Yujie Sun
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, USA
| |
Collapse
|
13
|
Yan YF, Li XL, Zeng LZ, Liu Q, Cai Z, Ren Y, Ren X, Gao F. Antitumor Cream: Transdermal Hydrogel Containing Liposome-Encapsulated Ruthenium Complex for Infrared-Controlled Multimodal Synergistic Therapy. Adv Healthc Mater 2025; 14:e2403563. [PMID: 39573860 DOI: 10.1002/adhm.202403563] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/15/2024] [Indexed: 01/29/2025]
Abstract
A transdermal drug delivery cream, which is non-invasive and painless, containing a liposome-encapsulated Ru(II) complex (LipoRu) is created for the treatment of skin cancer. This formulation capitalizes on the synergistic antitumor effects of two-photon excited photodynamic therapy (PDT), photothermal therapy (PTT), and chemotherapy. LipoRu exhibits effective tumor accumulation, efficient cellular uptake, pH-sensitive and infrared-accelerated release, and dual localization to the nucleus and mitochondria. The released Ru(II) complexes within cells exert multiple antitumor mechanisms, such as DNA topoisomerase and RNA polymerase inhibition, Type I and II PDT, PTT, DNA photodamage, and apoptosis and ferroptosis induction. The biodistribution and therapeutic efficacy of LipoRu in vivo are systematically compared via three distinct administration routes: intratumoral injection, intravenous injection, and transdermal delivery through topical cream application. The positive therapeutic effects of the LipoRu cream fabricated here in subcutaneous tumor-bearing mice offer optimistic potential for the painless and non-invasive treatment of both early-stage and advanced skin cancers, as well as superficially located solid tumors.
Collapse
Affiliation(s)
- Yu-Fei Yan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Pharmacy, Yunnan University, East Outer Ring Road, Kunming, 650500, P. R. China
| | - Xue-Lian Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Pharmacy, Yunnan University, East Outer Ring Road, Kunming, 650500, P. R. China
| | - Li-Zhen Zeng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Pharmacy, Yunnan University, East Outer Ring Road, Kunming, 650500, P. R. China
| | - Qishuai Liu
- Animal Research and Resource Center, School of Life Sciences, Yunnan University, East Outer Ring Road, Kunming, 650500, P. R. China
| | - Zhongyan Cai
- Animal Research and Resource Center, School of Life Sciences, Yunnan University, East Outer Ring Road, Kunming, 650500, P. R. China
| | - Yanrong Ren
- Animal Research and Resource Center, School of Life Sciences, Yunnan University, East Outer Ring Road, Kunming, 650500, P. R. China
| | - Xiaoxia Ren
- Animal Research and Resource Center, School of Life Sciences, Yunnan University, East Outer Ring Road, Kunming, 650500, P. R. China
| | - Feng Gao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Pharmacy, Yunnan University, East Outer Ring Road, Kunming, 650500, P. R. China
| |
Collapse
|
14
|
Kumar Kundu B, Bashar N, Srivastava P, Elles CG, Sun Y. Organic Two-Photon-Absorbing Photosensitizers Can Overcome Competing Light Absorption in Organic Photocatalysis. Chemistry 2024; 30:e202402856. [PMID: 39235975 DOI: 10.1002/chem.202402856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/01/2024] [Accepted: 09/05/2024] [Indexed: 09/07/2024]
Abstract
Conventional organic photocatalysis typically relies on ultraviolet and short-wavelength visible photons as the energy source. However, this approach often suffers from competing light absorption by reactants, products, intermediates, and co-catalysts, leading to reduced quantum efficiency and side reactions. To address this issue, we developed novel organic two-photon-absorbing (TPA) photosensitizers capable of functioning under deep red and near-infrared light irradiation. Three model reactions including cyclization, Sonogashira Csp2-Csp cross-coupling, and Csp2-N cross-coupling reactions were selected to compare the performance of the new photosensitizers under both blue (427 nm) and deep red (660 nm) light irradiation. The obtained results unambiguously prove that for reactions involving blue light-absorbing reactants, products, and/or co-catalysts, deep red light source resulted in better performance than blue light when utilizing our TPA photosensitizers. This work highlights the potential of our metal-free TPA photosensitizers as a sustainable and effective solution to mitigate the competing light absorption issue in photocatalysis, not only expanding the scope of organic photocatalysts but also reducing reliance on expensive Ru/Ir/Os-based photosensitizers.
Collapse
Affiliation(s)
- Bidyut Kumar Kundu
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, 43221, United States
| | - Noorul Bashar
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, 43221, United States
| | | | | | - Yujie Sun
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, 43221, United States
| |
Collapse
|
15
|
Zhao F, Cui Y, Duan X, Fang F, Jin L, He T. Hot Carrier Cooling and Multiphoton Absorption of Quasi-Type II ZnSeTe-Based Quantum Dots. Inorg Chem 2024; 63:23338-23343. [PMID: 39573937 DOI: 10.1021/acs.inorgchem.4c04007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Ternary ZnSeTe quantum dots (QDs) are regarded as the most promising Cd-free blue emitters, while their fundamental optical properties such as hot carrier (HC) cooling process and multiphoton absorption (MPA) remain unclear, which will hinder their potential application. In this work, we compare the HC cooling processes of ZnSeTe/ZnSeS and ZnSeTe/ZnSeS/ZnS QDs and find that the HC cooling times of ZnSeTe/ZnSeS/ZnS QDs are insensitive to excitation intensity as a result of the suppressed hot-phonon bottleneck and Auger effect. Importantly, we have determined the two- to five-photon absorption cross sections of two kinds of QDs, highlighting the advantages of ZnS shells in enhancing MPA cross sections of ZnSeTe-based QDs. These insightful findings shed light on the underlying optical properties of ZnSeTe-based QDs and emphasize the critical role of the shell in engineering their HC cooling and MPA performance.
Collapse
Affiliation(s)
- Fuli Zhao
- School of Electronic and Information, Shanghai Dianji University, Shanghai 200240, China
| | - Yanyan Cui
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xijian Duan
- Institute of Nanoscience and Applications, Southern University of Science and Technology, Shenzhen 518055, China
| | - Fan Fang
- Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, Center for Intense Laser Application Technology, and College of Engineering Physics, Shenzhen Technology University, Shenzhen 518118, China
| | - Lei Jin
- Institute of Nanoscience and Applications, Southern University of Science and Technology, Shenzhen 518055, China
| | - Tingchao He
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
16
|
Mourot B, Jacquemin D, Siri O, Pascal S. Coupled Polymethine Dyes: Six Decades of Discoveries. CHEM REC 2024; 24:e202400183. [PMID: 39529436 DOI: 10.1002/tcr.202400183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/26/2024] [Indexed: 11/16/2024]
Abstract
This review provides a comprehensive examination of the applications of the seminal coupling principle introduced by Siegfried Dähne and Dieter Leupold in 1966. Their heuristic and groundbreaking work proposed that combining multiple polymethine subunits within a single chromophore enables orbital coupling, consequently narrowing the HOMO-LUMO gap, and yielding redshifted optical properties. These outcomes are particularly valuable for developing organic dyes tailored for visible-to-near-infrared applications. Despite their potential, coupled polymethines remain relatively underexplored, with most reported instances being serendipitous discoveries over the last six decades. In light of this, our review compiles and discusses the reported coupled polymethine structures, covering synthetic, spectroscopic, theoretical and applicative aspects, offering insights into the structure-property relationships of this unique class of dyes and perspectives for their future applications.
Collapse
Affiliation(s)
- Benjamin Mourot
- Aix-Marseille Univ, CNRS UMR 7325, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), Campus de Luminy, case 913, Marseille cedex 09, 13288, France
| | - Denis Jacquemin
- Nantes Université, CEISAM UMR 6230, CNRS, Nantes, F-44000, France
- Institut Universitaire de France (IUF), Paris, F-75005, France
| | - Olivier Siri
- Aix-Marseille Univ, CNRS UMR 7325, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), Campus de Luminy, case 913, Marseille cedex 09, 13288, France
| | - Simon Pascal
- Aix-Marseille Univ, CNRS UMR 7325, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), Campus de Luminy, case 913, Marseille cedex 09, 13288, France
- Nantes Université, CEISAM UMR 6230, CNRS, Nantes, F-44000, France
| |
Collapse
|
17
|
Fuchs K, Oberhof N, Sauter G, Pollien A, Brödner K, Rominger F, Freudenberg J, Dreuw A, Tegeder P, Bunz UHF. Azaacene Diradicals Based on Non-Kekulé Meta-Quinodimethane with Large Two-Photon Cross-Sections in the Infrared Spectral Region. Angew Chem Int Ed Engl 2024; 63:e202406384. [PMID: 39190530 DOI: 10.1002/anie.202406384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/29/2024]
Abstract
Non-Kekulé quinoidal azaacences m-A (1 a,b) were synthesized and compared to their para- and ortho-quinodimethane analogues. m-A display high diradical characters (1 b: y0 = 0.88) due to their meta-quinodimethane (m-QDM) topology. Electron paramagnetic, nuclear magnetic resonance spectroscopies and supraquantum interference device measurements in combination with quantum-chemical calculations revealed singlet ground states for m-A with singlet-triplet gaps ΔEST (0.13-0.25 kcal mol-1) and thermally populated triplet states. These non-Kekulé structures are over all void of zwitterionic character and possess record high two-photon absorption cross sections over a broad spectral range in the near-infrared.
Collapse
Affiliation(s)
- Kathleen Fuchs
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Nils Oberhof
- Interdisciplinary Center for Scientific Computing, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 205, 69120, Heidelberg, Germany
| | - Gabriel Sauter
- Physikalisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany
| | - Audrey Pollien
- Physikalisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany
- Université Paris-Saclay, École Normale Supérieure Paris-Saclay, 4 Av. des Sciences, 91190, Gif-sur-Yvette, France
| | - Kerstin Brödner
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Jan Freudenberg
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Andreas Dreuw
- Interdisciplinary Center for Scientific Computing, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 205, 69120, Heidelberg, Germany
| | - Petra Tegeder
- Physikalisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany
| | - Uwe H F Bunz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
18
|
Kulinich AV, Ishchenko AA. Merocyanines: Electronic Structure and Spectroscopy in Solutions, Solid State, and Gas Phase. Chem Rev 2024; 124:12086-12144. [PMID: 39423353 DOI: 10.1021/acs.chemrev.4c00317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Merocyanines, owing to their readily tunable electronic structure, are arguably the most versatile functional dyes, with ample opportunities for tailored design via variations of both the donor/acceptor (D/A) end groups and π-conjugated polymethine chain. A plethora of spectral properties, such as strong solvatochromism, high polarizability and hyperpolarizabilities, and sensitizing capacity, motivates extensive studies for their applications in light-converting materials for optoelectronics, nonlinear optics, optical storage, fluorescent probes, etc. Evidently, an understanding of the intrinsic structure-property relationships is a prerequisite for the successful design of functional dyes. For merocyanines, these regularities have been explored for over 70 years, but only in the past three decades have these studies expanded beyond the theory of their color and solvatochromism toward their electronic structure in the ground and excited states. This Review outlines the fundamental principles, essential for comprehension of the variable nature of merocyanines, with the main emphasis on understanding the impact of internal (chemical structure) and external (intermolecular interactions) factors on the electronic symmetry of the D-π-A chromophore. The research on the structure and properties of merocyanines in different media is reviewed in the context of interplay of the three virtual states: nonpolar polyene, ideal polymethine, and zwitterionic polyene.
Collapse
Affiliation(s)
- Andrii V Kulinich
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Akademika Kukharya St., Kyiv 02094, Ukraine
| | - Alexander A Ishchenko
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Akademika Kukharya St., Kyiv 02094, Ukraine
| |
Collapse
|
19
|
Banana T, Rajput SS, Chandravanshi N, Alam MM. Effect of meso-pentafluorophenyl group on two-photon absorption in heterocorroles and heterocorrins. Phys Chem Chem Phys 2024; 26:27694-27703. [PMID: 39469992 DOI: 10.1039/d4cp03450c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Owing to their high reactivity, the meso-positions of corroles and corrins are usually protected by some bulky groups. These groups in addition to the said purpose may also affect the photophysical properties of such systems. However, there is no systematic study in the literature exploring this effect. In this work, we target to answer how the meso-substitution affects the photophysical properties in some heterocorroles and heterocorrins. We considered one of the commonly used substitutions, i.e., pentafluorophenyl (-PFPh), at meso positions of 26 heterocorroles and heterocorrins. We employed the state-of-the-art CC2 method in conjunction with resolution-of-identity approximation to study the charge-transfer and one- and two-photon absorption in these systems. It is further explored using a four-state model that helps in understanding the contribution of various transition dipole moments and their relative orientation. At the end, we also investigated the effect of other substitutions such as -CH3, -CF3, -C2H3, -OMe, -phenyl, and -tolyl on two-photon activity.
Collapse
Affiliation(s)
- Tejendra Banana
- Department of Chemistry, Indian Institute of Technology Bhilai, Durg, Chhattisgarh-491002, India.
| | - Swati Singh Rajput
- Department of Chemistry, Indian Institute of Technology Bhilai, Durg, Chhattisgarh-491002, India.
| | - Neelam Chandravanshi
- Department of Chemistry, Indian Institute of Technology Bhilai, Durg, Chhattisgarh-491002, India.
| | - Md Mehboob Alam
- Department of Chemistry, Indian Institute of Technology Bhilai, Durg, Chhattisgarh-491002, India.
- Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Bhilai, Durg, Chhattisgarh-491002, India
| |
Collapse
|
20
|
Chen D, Xu Y, Wang Y, Li X, Yin D, Yan L. Diradicaloid-Loaded Polypeptide Nanoparticles for Two-Photon NIR Phototheranostics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59907-59920. [PMID: 39441126 DOI: 10.1021/acsami.4c13338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Stable organic radicals, with unique electronic transitions from the ground state (D0) to the doublet excited state (D1), show promise as high-fluorescence quantum yield dyes. While organic small-molecule photosensitizers (PSs) have advanced for tumor photodynamic therapy (PDT), opportunities exist to enhance their performance and functionality. Herein, we synthesized Thiele's fluorocarbon derivative diradicaloid TFC-I with nearly 100% PLQY and integrated it into amphiphilic polypeptide nanoparticles, P-TI, using a precursor-doping approach. P-TI demonstrated notable features including high photostability, aggregation-induced emission, bright near-infrared fluorescence, substantial quantum yield (37% PLQY), robust near-infrared two-photon absorption (∼400 GM cross section), and superior ROS generation compared to commercial PSs. In vitro and in vivo experiments confirmed that P-TI performed well in mitochondria-targeted PDT, two-photon fluorescence imaging, and biosafety. This work highlights the use of organic stable radicals with precursor-doping for efficient PDT and deep tumor tissue imaging.
Collapse
Affiliation(s)
- Dejia Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Jinzai Road 96, 230026 Hefei, Anhui, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China, Jinzai Road 96, 230026 Hefei, Anhui, P. R. China
| | - Yixuan Xu
- Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China, Jinzai Road 96, 230026 Hefei, Anhui, P. R. China
| | - Yating Wang
- Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China, Jinzai Road 96, 230026 Hefei, Anhui, P. R. China
| | - Xin Li
- Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China, Jinzai Road 96, 230026 Hefei, Anhui, P. R. China
| | - Dalong Yin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Jinzai Road 96, 230026 Hefei, Anhui, P. R. China
| | - Lifeng Yan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Jinzai Road 96, 230026 Hefei, Anhui, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China, Jinzai Road 96, 230026 Hefei, Anhui, P. R. China
| |
Collapse
|
21
|
Tolbin AY. Clamshell-type bis-phthalocyanines as colour-changing optical limiters: TDDFT modelling of electrically induced absorption for real-time colour indication of optical limiter efficiency in nonlinear laser protection. Phys Chem Chem Phys 2024; 26:26409-26415. [PMID: 39390962 DOI: 10.1039/d4cp03218g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
This paper presents an innovative method for assessing the performance of optical limiters, which are devices that protect humans against laser radiation. The essence of the process is that with increasing laser radiation intensity, the colour of nonlinear absorbers, the working components of these devices, can change in contrast to the original one, which was demonstrated by quantum-chemical linear response time-dependent density functional theory (LR-TDDFT) for molecules excited by static electric finite fields (FF) within the general DFT (density functional theory) approach. Modelling was carried out on clamshell-type bis-phthalocyanines, in which the macrocycles are strapped by a cyclotriphosphazene spacer, suitable candidates for creating nonlinear optical (NLO) dyes for laser technology. As calculations have shown, acting as a "litmus test", these incredibly stable macrocyclic compounds are not only capable of providing laser protection but also give a real-time visual indication of the protection through changes in the colour of the dye, which correlate with different levels of laser power. Such indication can visually show the current state of optical limiters in practice, allowing users to easily determine whether the limiter material provides adequate protection or already requires replacement. A modelling protocol and program code for calculating the colour of a substance based on its absorption spectrum are presented.
Collapse
Affiliation(s)
- Alexander Yu Tolbin
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Moscow Region, Russian Federation.
| |
Collapse
|
22
|
Naim C, Zaleśny R, Jacquemin D. Two-Photon Absorption Strengths of Small Molecules: Reference CC3 Values and Benchmarks. J Chem Theory Comput 2024; 20:9093-9106. [PMID: 39374489 DOI: 10.1021/acs.jctc.4c01090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
We present a large dataset of highly accurate two-photon transition strengths (δTPA) determined for standard small molecules. Our reference values have been calculated using the quadratic response implementation of the third-order coupled cluster method including iterative triples (Q-CC3). The aug-cc-pVTZ atomic basis set is used for molecules with up to five non-hydrogen atoms, while larger molecules are assessed with aug-cc-pVDZ; the differences due to the basis sets are discussed. This dataset, encompassing 82 singlet transitions of various characters (Rydberg, valence, and double excitations), enables a comprehensive benchmark of smaller basis sets and alternative wavefunction methods when Q-CC3 calculations become beyond reach as well as time-dependent density functional theory (TD-DFT) approaches. The evaluated wavefunction methods include quadratic response and equation-of-motion CCSD approximations, Q-CC2, and second-order algebraic diagrammatic construction in its intermediate state representation (I-ADC2). In the TD-DFT framework, a set of five commonly used exchange-correlation functionals are evaluted. This extensive analysis provides a quantitative assessment of these methods, revealing how different system sizes, response intensities, and types of transitions affect their performances.
Collapse
Affiliation(s)
- Carmelo Naim
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
| | - Robert Zaleśny
- Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, PL-50370 Wrocław, Poland
| | - Denis Jacquemin
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
- Institut Universitaire de France (IUF), F-75005 Paris, France
| |
Collapse
|
23
|
Tran TTT, Abe M. Design and synthesis of a 2,5-Diarylthiophene chromophore for enhanced near-infrared two-photon uncaging efficiency of calcium ions. Photochem Photobiol Sci 2024; 23:1811-1827. [PMID: 39264489 DOI: 10.1007/s43630-024-00623-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024]
Abstract
The design and synthesis of two-photon-responsive chromophores have recently garnered significant attention owing to their potential applications in materials and life sciences. In this study, a novel π-conjugated system, 2-dimethylaminophenyl-5-nitrophenylthiophene derivatives, featuring a thiophene unit as the π-linker between the donor (NMe2C6H4-) and acceptor (NO2C6H4-) units was designed, synthesized, and applied for the development of two-photon-responsive chromophores as a photoremovable protecting group in the near-infrared region. Notably, the positional effect of the nitro group (NO2), meta versus para position, was observed in the uncaging process of benzoic acid. Additionally, while the para-isomer exhibited a single fluorescence peak, a dual emission was detected for the meta-isomer in polar solvents. The caged calcium ion (Ca2+) incorporating the newly synthesized thiophene unit exhibited a sizable two-photon absorption cross-section value (σ2 = 129 GM at 830 nm). Both one-photon and two-photon photoirradiation of caged calcium ions successfully released calcium ions, indicating the potential utility of 2,5-diarylthiophene derivatives in future biological studies.
Collapse
Affiliation(s)
- Tam Thi Thanh Tran
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Manabu Abe
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama Higashi-Hiroshima, Hiroshima, 739-8526, Japan.
- Center for Photo-Drug Delivery Systems, Hiroshima University Research, Hiroshima University, 1-3-1 Kagamiyama Higashi-Hiroshima, Hiroshima, 739-8526, Japan.
| |
Collapse
|
24
|
Deng B, Zhang Y, Qiu G, Li J, Lin LL, Ye J. NIR-II Surface-Enhanced Raman Scattering Nanoprobes in Biomedicine: Current Impact and Future Directions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402235. [PMID: 38845530 DOI: 10.1002/smll.202402235] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/19/2024] [Indexed: 10/04/2024]
Abstract
The field of second near-infrared (NIR-II) surface-enhanced Raman scattering (SERS) nanoprobes has made commendable progress in biomedicine. This article reviews recent advances and future development of NIR-II SERS nanoprobes. It introduces the fundamental principles of SERS nanoprobes and highlights key advances in the NIR-II window, including reduced tissue attenuation, deep penetration, maximized allowable exposure, and improved photostability. The discussion of future directions includes the refinement of nanoprobe substrates, emphasizing the tailoring of optical properties of metallic SERS-active nanoprobes, and exploring non-metallic alternatives. The intricacies of designing Raman reporters for the NIR-II resonance and the potential of these reporters to advance the field are also discussed. The integration of artificial intelligence (AI) into nanoprobe design represents a cutting-edge approach to overcome current challenges. This article also examines the emergence of deep Raman techniques for through-tissue SERS detection, toward NIR-II SERS tomography. It acknowledges instrumental advancements like improved charge-coupled device sensitivity and accelerated imaging speeds. The article concludes by addressing the critical aspects of biosafety, ease of functionalization, compatibility, and the path to clinical translation. With a comprehensive overview of current achievements and future prospects, this review aims to illuminate the path for NIR-II SERS nanoprobes to innovate diagnostic and therapeutic approaches in biomedicine.
Collapse
Affiliation(s)
- Binge Deng
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Yuqing Zhang
- School of Automation, Hangzhou Dianzi University, Hangzhou, 310018, P. R. China
| | - Guangyu Qiu
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Jin Li
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Linley Li Lin
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Jian Ye
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| |
Collapse
|
25
|
Elayan IA, Brown A. Non-Degenerate Two-Photon Absorption of Fluorescent Protein Chromophores. J Phys Chem A 2024; 128:7511-7523. [PMID: 39192559 DOI: 10.1021/acs.jpca.3c08402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Two-photon absorption (2PA), where a pair of photons are absorbed simultaneously, is recognized as a potent bioimaging technique, which depends on the quantified 2PA probability, defined as cross-section (σ2PA). The absorbed photons either have equivalent (ω1 = ω2) or different frequencies (ω1 ≠ ω2), where the former is degenerate 2PA (D-2PA) and the latter is nondegenerate 2PA (ND-2PA). ND-2PA is of particular interest since it is a promising imaging technology with flexibility of photon frequencies and enhanced cross sections, however, it remains a relatively unexplored area compared to D-2PA. This work utilizes time-dependent density functional theory (TD-DFT) and second-order approximate coupled-cluster with the resolution-of-identity approximation (RI-CC2), for the excitation from S0 to S1, to investigate σD-2PA and σND-2PA of FP chromophore models. Interestingly, comparing CAM-B3LYP with the RI-CC2 computations shows qualitative and, in fact, near quantitative agreement in the computed improvements of σND-2PA for comparable (relative) frequency detunings, despite the known underestimations of 2PA cross sections, for TD-DFT results relative to RI-CC2 values. As expected from the 2-state model, the computed values of σND-2PA are quantitatively larger than σD-2PA, where chromophores with the largest values of σD-2PA show greater potential for σND-2PA improvement. Anionic chromophores demonstrated improvements up to 14%, while substantial enhancements were observed in neutral chromophores with some achieving a 30% increase. This work investigates the ND-2PA photophysical characteristics of FP chromophores and identifies qualitative patterns in the computed properties of ND-2PA relative to D-2PA.
Collapse
Affiliation(s)
- Ismael A Elayan
- Department of Chemistry, University of Alberta, Edmonton T6G 2G2, Alberta, Canada
| | - Alex Brown
- Department of Chemistry, University of Alberta, Edmonton T6G 2G2, Alberta, Canada
| |
Collapse
|
26
|
Deng Y, Zhu F, Qiu J, Gao Y. Ultrabroadband Long-Wavelength Near-Infrared MgIn 2O 4:Ni 2+ Phosphor Synthesized via Sol-gel Combustion Method as a Light Source for Night Vision Imaging, Nonvisual Detection, and Anticounterfeiting Display. ACS APPLIED MATERIALS & INTERFACES 2024; 16:47952-47960. [PMID: 39189119 DOI: 10.1021/acsami.4c11632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Long-wavelength near-infrared (LWNIR) imaging technology has exciting application potential across various fields due to its ability of deeper penetration and unique properties related to its emission wavelength, when compared to short-wavelength near-infrared imaging. However, the limited availability of materials for LWNIR light sources, due to the lack of suitable host materials that constitute luminescence centers, has been a major challenge and technical obstacle in realizing such applications. Here, we developed MgIn2O4:Ni2+ phosphors with an antispinel structure and LWNIR luminescence properties through a sol-gel combustion method. Under excitation at 365 nm, its emission wavelength covers the range of 1000-2000 nm, with a peak emission at approximately 1520 nm, a full width at half-maximum of ∼340 nm, and an optimized photoluminescence quantum yield of ∼21.22%, when an optimal Ni2+ doping content of 1 mol % was used. Studies on the crystal structure of MgIn2O4 have shown that Ni2+ ions preferentially replace the lattice position occupied by Mg2+ ions in the [MgO6] octahedrons, which provides a crystal field microenvironment of weak strength to the Ni2+ luminescence centers and promotes their LWNIR emission with a large Stokes shift. A LWNIR pc-LED device was assembled using the optimized MgIn2O4:Ni2+ phosphor and a near-ultraviolet LED chip (@ 365 nm), and its potential applications, including NIR night vision imaging, nonvisual detection, and anticounterfeiting displays, were demonstrated. Our results show that the antispinel MgIn2O4:Ni2+ phosphor prepared by the sol-gel combustion method is a promising LWNIR luminescence material.
Collapse
Affiliation(s)
- Yu Deng
- Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Fengmei Zhu
- Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Jianbei Qiu
- Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
- Key Lab. of Advanced Materials of Yunnan Province, Kunming 650093, China
- Southwest United Graduate School, Kunming 650092, China
| | - Yuan Gao
- Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
- Key Lab. of Advanced Materials of Yunnan Province, Kunming 650093, China
| |
Collapse
|
27
|
Böhmer T, Kleinschmidt M, Marian CM. Toward the improvement of vibronic spectra and non-radiative rate constants using the vertical Hessian method. J Chem Phys 2024; 161:094114. [PMID: 39234963 DOI: 10.1063/5.0220361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/15/2024] [Indexed: 09/06/2024] Open
Abstract
For the computation of vibrationally resolved electronic spectra, various approaches can be employed. Adiabatic approaches simulate vibronic transitions using harmonic potentials of the initial and final states, while vertical approaches extrapolate the final state potential from the gradients and Hessian at the Franck-Condon point, avoiding a full exploration of the potential energy surface of the final state. Our implementation of the vertical Hessian (VH) method has been validated with a benchmark set of four small molecules, each presenting unique challenges, such as complex topologies, problematic low-frequency vibrations, or significant geometrical changes upon electronic excitation. We assess the quality of both adiabatic and vertical approaches for simulating vibronic transitions. For two types of donor-acceptor compounds with promising thermally activated delayed fluorescence properties, our computations confirm that the vertical approaches outperform the adiabatic ones. The VH method significantly reduces computational costs and yields meaningful emission spectra, where adiabatic models fail. More importantly, we pioneer the use of the VH method for the computation of rate constants for non-radiative processes, such as intersystem crossing and reverse intersystem crossing along a relaxed interpolated pathway of a donor-acceptor compound. This study highlights the potential of the VH method to advance computational vibronic spectroscopy by providing meaningful simulations of intricate decay pathway mechanisms in complex molecular systems.
Collapse
Affiliation(s)
- Tobias Böhmer
- Institute for Theoretical and Computational Chemistry, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Martin Kleinschmidt
- Institute for Theoretical and Computational Chemistry, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Christel M Marian
- Institute for Theoretical and Computational Chemistry, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
28
|
Zhang J, Sun T, Wang K, Hu R, Zhou C, Ge H, Li B. Rh(iii)-catalyzed building up of used heterocyclic cations: facile access to white-light-emitting materials. Chem Sci 2024; 15:12270-12276. [PMID: 39118641 PMCID: PMC11304525 DOI: 10.1039/d4sc02188f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/10/2024] [Indexed: 08/10/2024] Open
Abstract
The first example of rhodium-catalyzed nondirected C-H activation/annulation reactions for the construction of fused heterocyclic cations is reported herein with excellent regioselectivity. Deuterium-labeling experiments indicated that the C(sp3)-H bond cleavage of the N-methyl group might be the rate-limiting step during the reaction process. This protocol provides an opportunity to rapidly access highly π-conjugated fused heterocyclic cations, which opens up a new avenue for efficient screening of single-molecular white-light-emitting materials, pure red-light-emitting materials, and π-conjugated radical materials. Importantly, novel white-light-emitting materials exhibited distinct anti-Kasha dual-emission and could rapidly be fabricated into robust organic and low-cost white light-emitting diodes.
Collapse
Affiliation(s)
- Jingxian Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| | - Tao Sun
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| | - Kangmin Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| | - Ruike Hu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| | - Chunlin Zhou
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| | - Haibo Ge
- Department of Chemistry and Biochemistry, Texas Tech University Lubbock TX 79409-1061 USA
| | - Bijin Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| |
Collapse
|
29
|
Wu J, Rao M, Zhu Y, Wang P, Chen M, Qu Y, Zheng X, Jiang Y. A NIR-II absorbing conjugated polymer based on tetra-fused isoindigo with ultrahigh photothermal conversion efficiency for cancer therapy. Chem Commun (Camb) 2024; 60:8427-8430. [PMID: 39034822 DOI: 10.1039/d4cc02546f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
A conjugated polymer, P4TTD-DPP, based on tetra-fused isoindigo-alt-diketopyrrolopyrrole, has been synthesized as a photothermal therapeutic nanotransducer within the near-infrared-II (NIR-II) window. P4TTD-DPP exhibits a notable mass extinction coefficient of 62.8 L g-1 cm-1 at 1064 nm. Additionally, P4TTD-DPP nanoparticles demonstrate remarkable photothermal conversion efficiency of 91.5% at 1064 nm and exhibit excellent anticancer efficacy under photothermal conditions.
Collapse
Affiliation(s)
- Junjie Wu
- School of Pharmacy, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Mei Rao
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Yangwei Zhu
- School of Pharmacy, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Pai Wang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Min Chen
- School of Pharmacy, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yijie Qu
- School of Pharmacy, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Xiaohua Zheng
- School of Pharmacy, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yu Jiang
- School of Pharmacy, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| |
Collapse
|
30
|
Wu J, Zhang Y, Hu J, Yang Y, Jin D, Liu W, Huang D, Jia B, Moss DJ. 2D Graphene Oxide Films Expand Functionality of Photonic Chips. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403659. [PMID: 38843445 DOI: 10.1002/adma.202403659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/20/2024] [Indexed: 06/13/2024]
Abstract
On-chip integration of 2D materials with unique structures and properties endow integrated devices with new functionalities and improved performance. With high flexibility in ways to modify its properties and compatibility with integrated platforms, graphene oxide (GO) is an exceptionally attractive 2D material for hybrid integrated photonic chips. Here, by harnessing unique property changes induced by photothermal effects in 2D GO films, novel functionalities beyond the capability of photonic integrated circuits are demonstrated. These include all-optical control and tuning, optical power limiting, and nonreciprocal light transmission. The 2D layered GO films are integrated onto photonic chips with precise control of their thickness and size. Benefitting from the broadband optical response of 2D GO films, all three functionalities feature a very wide operational optical bandwidth. By fitting the experimental results with theory, the changes in GO film properties induced by the photothermal effects are analyzed, revealing interesting insights about the physics of 2D GO films. These results highlight the versatility of 2D GO films in implementing new functions for integrated photonic devices for a wide range of applications.
Collapse
Affiliation(s)
- Jiayang Wu
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
- ARC Centre of Excellence in Optical Microcombs for Breakthrough Science (COMBS), Melbourne, VIC, 3000, Australia
| | - Yuning Zhang
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
- School of Physics, Peking University, Haidian District, Beijing, 100871, China
| | - Junkai Hu
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
- School of Automation, Central South University, Changsha, 410083, China
| | - Yunyi Yang
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Di Jin
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
- School of Automation, Central South University, Changsha, 410083, China
| | - Wenbo Liu
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
- School of Science, Centre for Atomaterials and Nanomanufacturing, Australian Research Council (ARC) Industrial Transformation Training, Centre in Surface Engineering for Advanced Materials (SEAM), RMIT University, Melbourne, VIC, 3000, Australia
| | - Duan Huang
- School of Electronic Information, Central South University, Changsha, 410038, China
- Hefei National Laboratory, Hefei, 230088, China
| | - Baohua Jia
- ARC Centre of Excellence in Optical Microcombs for Breakthrough Science (COMBS), Melbourne, VIC, 3000, Australia
- School of Science, Centre for Atomaterials and Nanomanufacturing, Australian Research Council (ARC) Industrial Transformation Training, Centre in Surface Engineering for Advanced Materials (SEAM), RMIT University, Melbourne, VIC, 3000, Australia
| | - David J Moss
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
- ARC Centre of Excellence in Optical Microcombs for Breakthrough Science (COMBS), Melbourne, VIC, 3000, Australia
| |
Collapse
|
31
|
Ding T, Li Y, Jiang Y, Li S, Wei Y, Cai M, Chen F, Guo L, Sun S. Integration of nonlinear two-photon excited fluorescence and photocatalysis boosts overall water splitting performance. Chem Commun (Camb) 2024; 60:7618-7621. [PMID: 38957037 DOI: 10.1039/d4cc02530j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
A nonlinear two-photon excited fluorescence photocatalytic system was constructed for the first time by integrating (ZnO)1-x(GaN)x photocatalyst and a fluorescence solution of phenanthridine derivatives. This work offers a strategy for increasing the photocatalytic solar spectral utilization rate and boosting the expectation for photocatalytic solar-to-hydrogen efficiencies.
Collapse
Affiliation(s)
- Tengfei Ding
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China.
| | - Yaqin Li
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China.
| | - Yong Jiang
- Shanghai Synchrotron Radiation Facility, Zhangjiang National Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Shengli Li
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China.
| | - Yuxue Wei
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China.
| | - Mengdie Cai
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China.
| | - Fang Chen
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China.
| | - Lisheng Guo
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China.
| | - Song Sun
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China.
| |
Collapse
|
32
|
Li XL, Wang MF, Zeng LZ, Li GK, Zhao RY, Liu FD, Li Y, Yan YF, Liu Q, Li Z, Zhang H, Ren X, Gao F. Bithiophene-Functionalized Infrared Two-Photon Absorption Metal Complexes as Single-Molecule Platforms for Synergistic Photodynamic, Photothermal, and Chemotherapy. Angew Chem Int Ed Engl 2024; 63:e202402028. [PMID: 38656658 DOI: 10.1002/anie.202402028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 04/26/2024]
Abstract
A planar conjugated ligand functionalized with bithiophene and its Ru(II), Os(II), and Ir(III) complexes have been constructed as single-molecule platform for synergistic photodynamic, photothermal, and chemotherapy. The complexes have significant two-photon absorption at 808 nm and remarkable singlet oxygen and superoxide anion production in aqueous solution and cells when exposed to 808 nm infrared irradiation. The most potent Ru(II) complex Ru7 enters tumor cells via the rare macropinocytosis, locates in both nuclei and mitochondria, and regulates DNA-related chemotherapeutic mechanisms intranuclearly including DNA topoisomerase and RNA polymerase inhibition and their synergistic effects with photoactivated apoptosis, ferroptosis and DNA cleavage. Ru7 exhibits high efficacy in vivo for malignant melanoma and cisplatin-resistant non-small cell lung cancer tumors, with a 100 % survival rate of mice, low toxicity to normal cells and low residual rate. Such an infrared two-photon activatable metal complex may contribute to a new generation of single-molecule-based integrated diagnosis and treatment platform to address drug resistance in clinical practice and phototherapy for large, deeply located solid tumors.
Collapse
Affiliation(s)
- Xue-Lian Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Pharmacy, Yunnan University, East Outer Ring Road, Kunming, 650500, P. R. China
| | - Meng-Fan Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Pharmacy, Yunnan University, East Outer Ring Road, Kunming, 650500, P. R. China
| | - Li-Zhen Zeng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Pharmacy, Yunnan University, East Outer Ring Road, Kunming, 650500, P. R. China
| | - Guo-Kui Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Pharmacy, Yunnan University, East Outer Ring Road, Kunming, 650500, P. R. China
| | - Run-Yu Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Pharmacy, Yunnan University, East Outer Ring Road, Kunming, 650500, P. R. China
| | - Fu-Dan Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Pharmacy, Yunnan University, East Outer Ring Road, Kunming, 650500, P. R. China
| | - Yun Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Pharmacy, Yunnan University, East Outer Ring Road, Kunming, 650500, P. R. China
| | - Yu-Fei Yan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Pharmacy, Yunnan University, East Outer Ring Road, Kunming, 650500, P. R. China
| | - Qishuai Liu
- Animal Research and Resource Center, School of Life Sciences, Yunnan University, East Outer Ring Road, Kunming, 650500, P. R. China
| | - Zhao Li
- Animal Research and Resource Center, School of Life Sciences, Yunnan University, East Outer Ring Road, Kunming, 650500, P. R. China
| | - Hongbin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Pharmacy, Yunnan University, East Outer Ring Road, Kunming, 650500, P. R. China
| | - Xiaoxia Ren
- Animal Research and Resource Center, School of Life Sciences, Yunnan University, East Outer Ring Road, Kunming, 650500, P. R. China
| | - Feng Gao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Pharmacy, Yunnan University, East Outer Ring Road, Kunming, 650500, P. R. China
| |
Collapse
|
33
|
Polishchuk V, Kulinich A, Shandura M. Tetraanionic Oligo-Dioxaborines: Strongly Absorbing Near-Infrared Dyes. Chemistry 2024; 30:e202401097. [PMID: 38624080 DOI: 10.1002/chem.202401097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 04/17/2024]
Abstract
Polymethine dyes of tetraanionic nature comprising 1,3,2-dioxaborine rings in the polymethine chain and end-groups of different electron-accepting abilities have been synthesized. They can be considered as oligomeric polymethines, where a linear conjugated π-system passes through three 1,3,2-dioxaborine units and a number of tri- and dimethine π-bridges between two end-groups. The obtained dyes exhibit near-infrared absorption and fluorescence, with molar absorption coefficients reaching as high as 564000 M-1 cm-1 in DMF, rendering them among the strongest absorbers known. The novel compounds are bright NIR fluorophores, with fluorescence quantum yields up to 0.13 in DMF. A comparative analysis of the electronic structure of the obtained dyes with respective dianionic and trianionic oligomers was conducted through quantum chemical calculations.
Collapse
Affiliation(s)
- Vladyslav Polishchuk
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Akademika Kukharya Street 5, 02094, Kyiv, Ukraine
| | - Andrii Kulinich
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Akademika Kukharya Street 5, 02094, Kyiv, Ukraine
| | - Mykola Shandura
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Akademika Kukharya Street 5, 02094, Kyiv, Ukraine
| |
Collapse
|
34
|
Munteanu T, Longevial JF, Canard G, Jacquemin D, Pascal S, Siri O. Post-functionalization of triamino-phenazinium dyes to reach near-infrared emission. RSC Adv 2024; 14:19257-19263. [PMID: 38887642 PMCID: PMC11180995 DOI: 10.1039/d4ra03245d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 05/20/2024] [Indexed: 06/20/2024] Open
Abstract
This study presents the synthesis and characterization of phenazinium dyes with absorption ranging from red to far-red, as well as emission extending into the far-red to near-infrared (NIR) region. The procedure involves the post-functionalization of a triamino-phenazinium that was recently reported as a theranostic agent. The introduction of electron-withdrawing moieties is accomplished through acylation or aromatic nucleophilic substitution. For one of the obtained products, a further substitution step could be achieved with primary amines to tune the electron density of the phenazinium core. The isolated dyes exhibit promising features that hold potential for future applications as biological markers or therapeutic agents.
Collapse
Affiliation(s)
- Tatiana Munteanu
- Aix Marseille Univ., CNRS UMR 7325 Centre Interdisciplinaire de Nanoscience de Marseille (CINaM) Campus de Luminy 13288 Marseille cedex 09 France
| | - Jean-François Longevial
- Aix Marseille Univ., CNRS UMR 7325 Centre Interdisciplinaire de Nanoscience de Marseille (CINaM) Campus de Luminy 13288 Marseille cedex 09 France
- Université de Lorraine, LCP-A2MC F-57000 Metz France
| | - Gabriel Canard
- Aix Marseille Univ., CNRS UMR 7325 Centre Interdisciplinaire de Nanoscience de Marseille (CINaM) Campus de Luminy 13288 Marseille cedex 09 France
| | - Denis Jacquemin
- Nantes Université, CEISAM UMR 6230, CNRS Nantes F-44000 France
- Institut Universitaire de France (IUF) Paris France
| | - Simon Pascal
- Aix Marseille Univ., CNRS UMR 7325 Centre Interdisciplinaire de Nanoscience de Marseille (CINaM) Campus de Luminy 13288 Marseille cedex 09 France
- Nantes Université, CEISAM UMR 6230, CNRS Nantes F-44000 France
| | - Olivier Siri
- Aix Marseille Univ., CNRS UMR 7325 Centre Interdisciplinaire de Nanoscience de Marseille (CINaM) Campus de Luminy 13288 Marseille cedex 09 France
| |
Collapse
|
35
|
Zhang N, Chang H, Miao R, Liu T, Ding L, Fang Y. Structure-activity relationships of aniline-based squaraines for distinguishable staining and bright two-photon fluorescence bioimaging in plant cells. J Mater Chem B 2024; 12:5350-5359. [PMID: 38738315 DOI: 10.1039/d4tb00400k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
An organelle-selective vision provides insights into the physiological response of plants and crops to environmental stresses in sustainable agriculture ecosystems. Biological applications often require two-photon excited fluorophores with low phototoxicity, high brightness, deep penetration, and tuneable cell entry. We obtained three aniline-based squaraines (SQs) tuned from hydrophobic to hydrophilic characteristics by modifying terminal pendant groups and substituents, and investigated their steady-state absorption and far-red-emitting fluorescence properties. The SQs exhibited two-photon absorption (2PA) ranging from 750 to 870 nm within the first biological spectral window; their structure-property relationships, corresponding to the 2PA cross sections (δ2PA), and structure differences were demonstrated. The maximum δ2PA value was ∼1220 GM at 800 nm for hydrophilic SQ3. Distinct biological staining efficiency and selective SQ bioimaging were evaluated utilizing the onion epidermal cell model. Contrary to the hydrophobic SQ1 results in the onion epidermal cell wall, amphiphilic SQ2 tagged the vacuole and nucleus and SQ3 tagged the vacuole. Distinguishable staining profiles in the roots and leaves were achieved. We believe that this study is the first to demonstrate distinct visualisation efficiency induced by the structure differences of two-photon excited SQs. Our results can help establish the versatile roles of novel near-infrared-emitting SQs in biological applications.
Collapse
Affiliation(s)
- Nan Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Haixia Chang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Rong Miao
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Taihong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Liping Ding
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.
| |
Collapse
|
36
|
Csomos A, Madarász M, Turczel G, Cseri L, Bodor A, Matuscsák A, Katona G, Kovács E, Rózsa B, Mucsi Z. A GFP Inspired 8-Methoxyquinoline-Derived Fluorescent Molecular Sensor for the Detection of Zn 2+ by Two-Photon Microscopy. Chemistry 2024; 30:e202400009. [PMID: 38446718 DOI: 10.1002/chem.202400009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/02/2024] [Accepted: 03/06/2024] [Indexed: 03/08/2024]
Abstract
An effective, GFP-inspired fluorescent Zn2+ sensor is developed for two-photon microscopy and related biological application that features an 8-methoxyquinoline moiety. Excellent photophysical characteristics including a 37-fold fluorescence enhancement with excitation and emission maxima at 440 nm and 505 nm, respectively, as well as a high two-photon cross-section of 73 GM at 880 nm are reported. Based on the experimental data, the relationship between the structure and properties was elucidated and explained backed up by DFT calculations, particularly the observed PeT phenomenon for the turn-on process. Biological validation and detailed experimental and theoretical characterization of the free and the zinc-bound compounds are presented.
Collapse
Affiliation(s)
- Attila Csomos
- Femtonics Ltd., Tűzoltó utca 59, H-1094, Budapest, Hungary
- Hevesy György PhD School of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117, Budapest, Hungary
| | - Miklós Madarász
- BrainVisionCenter, Liliom utca 43-45, H-1094, Budapest, Hungary
| | - Gábor Turczel
- NMR Research Laboratory, HUN-REN Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117, Budapest, Hungary
| | - Levente Cseri
- BrainVisionCenter, Liliom utca 43-45, H-1094, Budapest, Hungary
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rakpart 3, H-1111, Budapest, Hungary
| | - Andrea Bodor
- Analytical and BioNMR Laboratory, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117, Budapest, Hungary
| | - Anett Matuscsák
- Laboratory of 3D functional network and dendritic imaging, HUN-REN Institute of Experimental Medicine, Szigony utca 43, H-1083, Budapest, Hungary
| | - Gergely Katona
- Two-Photon Measurement Technology Research Group, Pázmány Péter Catholic University Práter, utca 50/a, H-1083, Budapest, Hungary
| | - Ervin Kovács
- Two-Photon Measurement Technology Research Group, Pázmány Péter Catholic University Práter, utca 50/a, H-1083, Budapest, Hungary
- Polymer Chemistry and Physics Research Group, HUN-REN Research Centre for Natural Sciences, Magyar tudósok körútja 2, H-1117, Budapest, Hungary
| | - Balázs Rózsa
- BrainVisionCenter, Liliom utca 43-45, H-1094, Budapest, Hungary
- Laboratory of 3D functional network and dendritic imaging, HUN-REN Institute of Experimental Medicine, Szigony utca 43, H-1083, Budapest, Hungary
- Two-Photon Measurement Technology Research Group, Pázmány Péter Catholic University Práter, utca 50/a, H-1083, Budapest, Hungary
| | - Zoltán Mucsi
- Femtonics Ltd., Tűzoltó utca 59, H-1094, Budapest, Hungary
- BrainVisionCenter, Liliom utca 43-45, H-1094, Budapest, Hungary
- Faculty of Materials and Chemical Sciences, University of Miskolc, H-3515, Miskolc, Hungary
| |
Collapse
|
37
|
Rajput SS, Raghuvanshi N, Banana T, Yadav P, Alam MM. Why does the orientation of azulene affect the two-photon activity of a porphyrinoid-azulene system? Phys Chem Chem Phys 2024; 26:15611-15619. [PMID: 38758026 DOI: 10.1039/d4cp00438h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Attaching a dipolar molecule in a symmetric system induces a major change in the electronic structure, which may be reflected as the enhancement of the optical and charge-transfer properties of the combined system as compared to the pristine ones. Furthermore, the orientation of the dipolar molecule may also affect the said properties. This idea is explored in this work by taking porphyrinoid molecules as the pristine systems. We attached azulene, a dipolar molecule, at various positions of five porphyrinoid cores and studied the effect on charge-transfer and one- and two-photon absorption properties using the state-of-the-art RICC2 method. The attachment of azulene produces two major effects - firstly it introduces asymmetry in the system and, secondly, being dipolar, it makes the resultant molecule dipolar/quadrupolar. Porphyrin, N-confused porphyrin, sub-porphyrin, sapphyrin, and hexaphyrin are used as core porphyrinoid systems. The change in charge-transfer has been studied using the orbital analysis and charge-transfer distance parameter for the first five singlet states of the systems. The effect of orientation of azulene on the said properties is also explored. The insights gained from our observations are explored further at the dipole and transition dipole moment levels using a three-state model.
Collapse
Affiliation(s)
- Swati Singh Rajput
- Department of Chemistry, Indian Institute of Technology Bhilai, Durg, Chhattisgarh-491001, India.
| | - Nikita Raghuvanshi
- Centre for Basic Sciences, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, India
| | - Tejendra Banana
- Department of Chemistry, Indian Institute of Technology Bhilai, Durg, Chhattisgarh-491001, India.
| | - Pooja Yadav
- Department of Chemistry, Indian Institute of Technology Bhilai, Durg, Chhattisgarh-491001, India.
| | - Md Mehboob Alam
- Department of Chemistry, Indian Institute of Technology Bhilai, Durg, Chhattisgarh-491001, India.
| |
Collapse
|
38
|
Gong P, Wang B, Li J, Cui H, Wang D, Liu J, Liu W. Photothermal COFs with donor-acceptor structure for friction reduction and antiwear. Chem Commun (Camb) 2024; 60:5695-5698. [PMID: 38726610 DOI: 10.1039/d4cc00838c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
For the first time, a novel donor-acceptor structured COF with excellent photothermal conversion and mono-dispersity in various oils without any further modification is reported; it realized responsive friction reduction, excellent antiwear and long-time lubrication.
Collapse
Affiliation(s)
- Peiwei Gong
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
| | - Bairen Wang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Junyao Li
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Huiying Cui
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Dandan Wang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Jianxi Liu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
| | - Weimin Liu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| |
Collapse
|
39
|
Elayan IA, Rib L, A Mendes R, Brown A. Beyond Explored Functionals: A Computational Journey of Two-Photon Absorption. J Chem Theory Comput 2024; 20:3879-3893. [PMID: 38648613 DOI: 10.1021/acs.jctc.4c00133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
We present a thorough investigation into the efficacy of 19 density functional theory (DFT) functionals, relative to RI-CC2 results, for computing two-photon absorption (2PA) cross sections (σ2PA) and key dipole moments (|μ00|, |μ11|, |Δμ|, |μ01|) for a series of coumarin dyes in the gas-phase. The functionals include different categories, including local density approximation (LDA), generalized gradient approximation (GGA), hybrid-GGA (H-GGA), range-separated hybrid-GGA (RSH-GGA), meta-GGA (M-GGA), and hybrid M-GGA (HM-GGA), with 14 of them being subjected to analysis for the first time with respect to predicting σ2PA values. Analysis reveals that functionals integrating both short-range (SR) and long-range (LR) corrections, particularly those within the RSH-GGA and HM-GGA classes, outperform the others. Furthermore, the range-separation approach was found more impactful compared to the varying percentages of Hartree-Fock exchange (HF Ex) within different functionals. The functionals traditionally recommended for 2PA do not appear among the top 9 in our study, which is particularly interesting, as these top-performing functionals have not been previously investigated in this context. This list is dominated by M11, QTP variants, ωB97X, ωB97X-V, and M06-2X, surpassing the performance of other functionals, including the commonly used CAM-B3LYP.
Collapse
Affiliation(s)
- Ismael A Elayan
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Laura Rib
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Rodrigo A Mendes
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
- Departamento de Química, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso 78060-900, Brazil
| | - Alex Brown
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
40
|
Singh S. Mapping soil trace metal distribution using remote sensing and multivariate analysis. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:516. [PMID: 38710964 DOI: 10.1007/s10661-024-12682-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/27/2024] [Indexed: 05/08/2024]
Abstract
Trace metal soil contamination poses significant risks to human health and ecosystems, necessitating thorough investigation and management strategies. Researchers have increasingly utilized advanced techniques like remote sensing (RS), geographic information systems (GIS), geostatistical analysis, and multivariate analysis to address this issue. RS tools play a crucial role in collecting spectral data aiding in the analysis of trace metal distribution in soil. Spectroscopy offers an effective understanding of environmental contamination by analyzing trace metal distribution in soil. The spatial distribution of trace metals in soil has been a key focus of these studies, with factors influencing this distribution identified as soil type, pH levels, organic matter content, land use patterns, and concentrations of trace metals. While progress has been made, further research is needed to fully recognize the potential of integrated geospatial imaging spectroscopy and multivariate statistical analysis for assessing trace metal distribution in soils. Future directions include mapping multivariate results in GIS, identifying specific anthropogenic sources, analyzing temporal trends, and exploring alternative multivariate analysis tools. In conclusion, this review highlights the significance of integrated GIS and multivariate analysis in addressing trace metal contamination in soils, advocating for continued research to enhance assessment and management strategies.
Collapse
Affiliation(s)
- Swati Singh
- CSIR-National Botanical Research Institute, Lucknow, 226001, India.
| |
Collapse
|
41
|
Zhu H, Zhang D, Sun X, Qian S, Feng E, Sheng X. Intramolecular charge transfer enhanced optical limiting in novel hydrazone derivatives with a D 1-D-A i-π-A structure. Phys Chem Chem Phys 2024; 26:12150-12161. [PMID: 38587789 DOI: 10.1039/d4cp00475b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The present paper investigates one of the hydrazone derivatives (BTH with a D-π-A structure) based on density functional theory. With the computation results of ground state absorption (GSA), excited-state absorption (ESA) and multi-photon absorption (MPA), the optical limiting effect observed in the experiment for the BTH molecule can be well predicted and elucidated by the MPA-ESA mechanism. The analysis of the hole-electron and the electron density differences between two transition states reveal that the main transitions involved in the GSA and ESA of BTH could be recognized as local excitation. Based on these observations, four novel hydrazone derivatives based on the BTH unit with a D1-D-Ai-π-A structure were designed to promote intramolecular charge transfer (ICT). It shows that the ICT effect is well improved by adding the D1 and Ai units. Compared with the original BTH molecule, the main bands of GSA and ESA of D1-D-Ai-π-A molecules are both red-shifted. In addition, GSA, ESA and MPA probabilities are all improved because the obvious charge transfer character results in the transition dipole moment change from localized to delocalized. Accordingly, the optical limiting effect in these hydrazone derivatives is well enhanced. These observations provide guidance for designing novel optical limiting materials based on the hydrazone derivatives.
Collapse
Affiliation(s)
- Hongjuan Zhu
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, Department of Physics, Anhui Normal University, Anhui, Wuhu 241000, China.
| | - Danyang Zhang
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, Department of Physics, Anhui Normal University, Anhui, Wuhu 241000, China.
| | - Xianghao Sun
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, Department of Physics, Anhui Normal University, Anhui, Wuhu 241000, China.
| | - Shifeng Qian
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, Department of Physics, Anhui Normal University, Anhui, Wuhu 241000, China.
| | - Eryin Feng
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, Department of Physics, Anhui Normal University, Anhui, Wuhu 241000, China.
| | - Xiaowei Sheng
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, Department of Physics, Anhui Normal University, Anhui, Wuhu 241000, China.
| |
Collapse
|
42
|
Chen W, Liu T, Zou J, Zhang D, Tse MK, Tsang SW, Luo J, Jen AKY. Push-Pull Heptamethines Near the Cyanine Limit Exhibiting Large Quadratic Electro-Optic Effect. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306089. [PMID: 37549890 DOI: 10.1002/adma.202306089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/28/2023] [Indexed: 08/09/2023]
Abstract
Harnessing the quadratic electro-optic (QEO) of near-infrared polymethine chromophores over broad telecom wavelength bands is a subject of immense potential but remains largely under-investigated. Herein a series of push-pull heptamethines containing the tricyanofuran (TCF) acceptors and indoline or benzo[e]indoline donors are reported. These dipolar chromophores can attain a highly delocalized "cyanine-like" electronic ground state in solvents spanning a wide range of polarities, in some cases even closer to the ideal polymethine state than symmetrical cyanines. A transmission-mode electromodulation spectroscopy is used to study the electric-field-induced changes in optical absorption and refraction of polymer films doped with heptamethine chromophores, and large and thermally stable QEO effect with high efficiency-loss figure-of-merits that compare favorably to those from dipolar polyenes in poled or unpoled polymers and III-V semiconductors is obtained. The study opens a path for developing organic materials based on cyanine-like merocyanines for complementary metal oxide semiconductor -compatible, fast, efficient, and low-loss electro-optic modulation.
Collapse
Affiliation(s)
- Weilong Chen
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, China
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Taili Liu
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, China
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Jie Zou
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, China
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Di Zhang
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, China
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Man Kit Tse
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Sai-Wing Tsang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR, 999077, China
- Hong Kong Institute for Clean Energy (HKICE), City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Jingdong Luo
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, China
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, 999077, China
- Hong Kong Institute for Clean Energy (HKICE), City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Alex K-Y Jen
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, 999077, China
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR, 999077, China
- Hong Kong Institute for Clean Energy (HKICE), City University of Hong Kong, Hong Kong SAR, 999077, China
| |
Collapse
|
43
|
Yoshida T, Okada Y, Namikawa T, Furuyama T, Kamada K, Kobayashi N. Phosphorus(V) Tetraazaporphyrin with an Intense, Broad CT Band in the Near-IR Region. Org Lett 2024; 26:1931-1935. [PMID: 38415634 DOI: 10.1021/acs.orglett.4c00298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
In phosphorus tetraazaporphyrins (PTAPs), the Q- and charge-transfer (CT) bands appear as a result of configuration interaction between their excited states. On the basis of this concept, a PTAP with an intense, broad CT band in the near-IR region has been rationally designed and realized by introducing eight diphenylaminophenyl (dPAP) groups. The order of the CT and Q-bands in ascending energy was supported by magnetic circular dichroism (MCD) spectroscopy and theoretical calculations. An intense two-photon absorption was also found in the deep near-IR region.
Collapse
Affiliation(s)
- Takuya Yoshida
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Yusuke Okada
- Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan
| | - Tomotaka Namikawa
- Nanomaterials Research Institute (NMRI), National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka 563-8577, Japan
| | - Taniyuki Furuyama
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
- NanoMaterials Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Kenji Kamada
- Nanomaterials Research Institute (NMRI), National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka 563-8577, Japan
| | - Nagao Kobayashi
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
- Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan
| |
Collapse
|
44
|
Ramos P, Friedman H, Li BY, Garcia C, Sletten E, Caram JR, Jang SJ. Nonadiabatic Derivative Couplings through Multiple Franck-Condon Modes Dictate the Energy Gap Law for Near and Short-Wave Infrared Dye Molecules. J Phys Chem Lett 2024; 15:1802-1810. [PMID: 38329913 DOI: 10.1021/acs.jpclett.3c02629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Near infrared (NIR, 700-1000 nm) and short-wave infrared (SWIR, 1000-2000 nm) dye molecules exhibit significant nonradiative decay rates from the first singlet excited state to the ground state. While these trends can be empirically explained by a simple energy gap law, detailed mechanisms of nearly universal behavior have remained unsettled for many cases. Theoretical and experimental results for two representative NIR/SWIR dye molecules reported here clarify the key mechanism for the observed energy gap law behavior. It is shown that the first derivative nonadiabatic coupling terms serve as major coupling pathways for nonadiabatic decay processes from the first excited singlet state to the ground state for these NIR and SWIR dye molecules and that vibrational modes other than the highest frequency modes also make significant contributions to the rate. This assessment is corroborated by further theoretical comparison with possible alternative mechanisms of intersystem crossing to triplet states and also by comparison with experimental data for deuterated molecules.
Collapse
Affiliation(s)
- Pablo Ramos
- Department of Chemistry and Biochemistry, Queens College, City University of New York, 65-30 Kissena Boulevard, New York, New York 11367, United States
| | - Hannah Friedman
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Barry Y Li
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Cesar Garcia
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Ellen Sletten
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Justin R Caram
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Seogjoo J Jang
- Department of Chemistry and Biochemistry, Queens College, City University of New York, 65-30 Kissena Boulevard, New York, New York 11367, United States
- Chemistry and Physics PhD programs, Graduate Center, City University of New York, New York, New York 10016, United States
| |
Collapse
|
45
|
Xu X, Feng J, Li WY, Wang G, Feng W, Yu H. Azobenzene-containing polymer for solar thermal energy storage and release: Advances, challenges, and opportunities. Prog Polym Sci 2024; 149:101782. [DOI: 10.1016/j.progpolymsci.2023.101782] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
46
|
Mourot B, Mazan V, Elhabiri M, Sarkar R, Jacquemin D, Siri O, Pascal S. Insights into extended coupled polymethines through the investigation of dual UV-to-NIR acidochromic switches based on heptamethine-oxonol dyes. Chem Sci 2024; 15:1248-1259. [PMID: 38274067 PMCID: PMC10806682 DOI: 10.1039/d3sc06126d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024] Open
Abstract
A series of heptamethine-oxonol dyes featuring different heterocyclic end groups were designed with the aim to explore structure-property relationships in π-extended coupled polymethines. These dyes can be stabilised under three different protonation states, affording dicationic derivatives with an aromatic core, cationic heptamethines, and zwitterionic bis-cyanine forms. The variation of the end groups directly impacts the absorption and emission properties and mostly controls reaching either a colourless neutral dispirocyclic species or near-infrared zwitterions. The acidochromic switching between the three states involves profound electronic rearrangements leading to notable shifts of their optical properties that were investigated using a parallel experiment-theory approach, providing a comprehensive description of these unique systems.
Collapse
Affiliation(s)
- Benjamin Mourot
- Aix Marseille Univ, CNRS UMR 7325, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), Campus de Luminy, Case 913 Marseille Cedex 09 13288 France
| | - Valérie Mazan
- CNRS - Université de Strasbourg - Université de Haute-Alsace, LIMA, CNRS UMR 7042, Equipe Chimie Bioorganique et Médicinale, ECPM 25 Rue Becquerel 67200 Strasbourg France
| | - Mourad Elhabiri
- CNRS - Université de Strasbourg - Université de Haute-Alsace, LIMA, CNRS UMR 7042, Equipe Chimie Bioorganique et Médicinale, ECPM 25 Rue Becquerel 67200 Strasbourg France
| | - Rudraditya Sarkar
- Université de Nantes, CEISAM UMR 6230, CNRS Nantes F-44000 France
- Present Address: Institut de Química Computacional i Catàlisi (IQCC), Universitat de Girona 17003 Girona Catalonia Spain
| | - Denis Jacquemin
- Université de Nantes, CEISAM UMR 6230, CNRS Nantes F-44000 France
- Institut Universitaire de France (IUF) Paris F-75005 France
| | - Olivier Siri
- Aix Marseille Univ, CNRS UMR 7325, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), Campus de Luminy, Case 913 Marseille Cedex 09 13288 France
| | - Simon Pascal
- Aix Marseille Univ, CNRS UMR 7325, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), Campus de Luminy, Case 913 Marseille Cedex 09 13288 France
- Université de Nantes, CEISAM UMR 6230, CNRS Nantes F-44000 France
| |
Collapse
|
47
|
Fu H, Zhang M, Leng J, Hu W, Zhu T, Zhang Y. Predicting Two-Photon Absorption Spectra of Octupolar Molecules: A Deep-Learning Approach Based Exclusively on Molecular Structures. J Phys Chem A 2024; 128:431-438. [PMID: 38190616 DOI: 10.1021/acs.jpca.3c07324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Octupolar molecules possessing a strong two-photon response are vital for numerous advanced applications. However, accurately predicting their two-photon absorption (TPA) spectra requires high-precision quantum chemical calculations, which are computationally expensive due to repeated simulations of molecular excited-state properties. To address this challenge, we introduce a deep learning approach capable of rapidly and accurately forecasting TPA spectra for octupolar molecules. By leveraging the geometric structure as an initial descriptor, we employ a graph neural network to predict the maximum two-photon transition wavelength and cross-section. Our model demonstrates a mean absolute percentage error of less than 4% compared to time-dependent density-functional theory calculations, effectively reproducing experimental observations. Notably, this deep learning technique is nearly 100 000 times faster than comparable quantum calculations, making it an efficient and cost-effective tool for simulating TPA properties of octupolar molecules. Furthermore, this method holds great promise for the high-throughput screening of exceptional TPA materials.
Collapse
Affiliation(s)
- Haoqing Fu
- International School for Optoelectronic Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Mengna Zhang
- International School for Optoelectronic Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jiancai Leng
- International School for Optoelectronic Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Wei Hu
- International School for Optoelectronic Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Tong Zhu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
- Institute for Advanced algorithms research, Shanghai 201306, China
| | - Yujin Zhang
- International School for Optoelectronic Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
48
|
Chang B, Chen J, Bao J, Sun T, Cheng Z. Molecularly Engineered Room-Temperature Phosphorescence for Biomedical Application: From the Visible toward Second Near-Infrared Window. Chem Rev 2023; 123:13966-14037. [PMID: 37991875 DOI: 10.1021/acs.chemrev.3c00401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Phosphorescence, characterized by luminescent lifetimes significantly longer than that of biological autofluorescence under ambient environment, is of great value for biomedical applications. Academic evidence of fluorescence imaging indicates that virtually all imaging metrics (sensitivity, resolution, and penetration depths) are improved when progressing into longer wavelength regions, especially the recently reported second near-infrared (NIR-II, 1000-1700 nm) window. Although the emission wavelength of probes does matter, it is not clear whether the guideline of "the longer the wavelength, the better the imaging effect" is still suitable for developing phosphorescent probes. For tissue-specific bioimaging, long-lived probes, even if they emit visible phosphorescence, enable accurate visualization of large deep tissues. For studies dealing with bioimaging of tiny biological architectures or dynamic physiopathological activities, the prerequisite is rigorous planning of long-wavelength phosphorescence, being aware of the cooperative contribution of long wavelengths and long lifetimes for improving the spatiotemporal resolution, penetration depth, and sensitivity of bioimaging. In this Review, emerging molecular engineering methods of room-temperature phosphorescence are discussed through the lens of photophysical mechanisms. We highlight the roles of phosphorescence with emission from visible to NIR-II windows toward bioapplications. To appreciate such advances, challenges and prospects in rapidly growing studies of room-temperature phosphorescence are described.
Collapse
Affiliation(s)
- Baisong Chang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Jie Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Jiasheng Bao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Taolei Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264000, China
| |
Collapse
|
49
|
Naseri S, Taarit I, Bolvin H, Bünzli JC, Fürstenberg A, Guénée L, Le-Hoang G, Mirzakhani M, Nozary H, Rosspeintner A, Piguet C. Symmetry and Rigidity for Boosting Erbium-Based Molecular Light-Upconversion in Solution. Angew Chem Int Ed Engl 2023; 62:e202314503. [PMID: 37847515 DOI: 10.1002/anie.202314503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 10/18/2023]
Abstract
Previously limited to highly symmetrical homoleptic triple-helical complexes [Er(Lk)3 ]3+ , where Lk are polyaromatic tridentate ligands, single-center molecular-based upconversion using linear optics and exploiting the excited-state absorption mechanism (ESA) greatly benefits from the design of stable and low-symmetrical [LkEr(hfa)3 ] heteroleptic adducts (hfa- =hexafluoroacetylacetonate anion). Depending on (i) the extended π-electron delocalization, (ii) the flexibility and (iii) the heavy atom effect brought by the bound ligand Lk, the near-infrared (801 nm) to visible green (542 nm) upconversion quantum yield measured for [LkEr(hfa)3 ] in solution at room temperature can be boosted by up to three orders of magnitude.
Collapse
Affiliation(s)
- Soroush Naseri
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, 1211, Geneva 4, Switzerland
| | - Inès Taarit
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, 1211, Geneva 4, Switzerland
| | - Hélène Bolvin
- Laboratoire de Chimie et Physique Quantiques, CNRS, Université Toulouse III, 118 route de Narbonne, 31062, Toulouse, France
| | - Jean-Claude Bünzli
- Institute of Chemical Sciences & Engineering, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Alexandre Fürstenberg
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, 1211, Geneva 4, Switzerland
- Department of Physical Chemistry, University of Geneva, 30 quai E. Ansermet, 1211, Geneva 4, Switzerland
| | - Laure Guénée
- Laboratory of Crystallography, University of Geneva, 24 quai E. Ansermet, 1211, Geneva 4, Switzerland
| | - Giau Le-Hoang
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, 1211, Geneva 4, Switzerland
| | - Mohsen Mirzakhani
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, 1211, Geneva 4, Switzerland
| | - Homayoun Nozary
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, 1211, Geneva 4, Switzerland
| | - Arnulf Rosspeintner
- Department of Physical Chemistry, University of Geneva, 30 quai E. Ansermet, 1211, Geneva 4, Switzerland
| | - Claude Piguet
- Department of Inorganic and Analytical Chemistry, University of Geneva, 30 quai E. Ansermet, 1211, Geneva 4, Switzerland
| |
Collapse
|
50
|
Chemin A, Knysh I, Ari D, Cordier M, Roisnel T, Guennic BL, Hissler M, Jacquemin D, Bouit PA. Phospha-cyanines in Their Ideal Polymethine State: Synthesis and Structure-Property Relationships. J Phys Chem A 2023. [PMID: 38051511 DOI: 10.1021/acs.jpca.3c07039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
We report the synthesis and full characterization of a family of phosphorus-containing polymethine cyanines (phospha-cyanines). The compounds are easily prepared in two steps, starting from readily available phosphanes. The impact of the P-substituents and the counterions on the structural and optical properties is investigated through a joint experimental/theoretical approach. Based on the study of the single-crystal X-ray diffraction structures, all phospha-cyanines present a bond length alternation close to zero, independently of the substituents and counterions, which indicates an ideal polymethine state. All these compounds display the typical cyanine-like UV-vis absorption with an intense and sharp transition with a vibronic shoulder despite possessing a reverse electronic configuration compared to "classical" cyanines. Time-dependent density-functional theory calculations allowed us to fully rationalize the optical properties (absorption/emission wavelengths, luminescence quantum yields). Interestingly, due to the tetrahedral shape of the P atom, the optical properties are independent of the counterion, which is in marked contrast with N-analogues, which enables predictive engineering of the phospha-cyanines regardless of the medium in which they are used.
Collapse
Affiliation(s)
| | - Iryna Knysh
- Nantes Université, CNRS, CEISAM UMR 6230, Nantes F-44000, France
| | - Denis Ari
- Univ Rennes, CNRS, ISCR─UMR 6226, Rennes F-35000, France
| | - Marie Cordier
- Univ Rennes, CNRS, ISCR─UMR 6226, Rennes F-35000, France
| | | | | | - Muriel Hissler
- Univ Rennes, CNRS, ISCR─UMR 6226, Rennes F-35000, France
| | - Denis Jacquemin
- Nantes Université, CNRS, CEISAM UMR 6230, Nantes F-44000, France
- Institut Universitaire de France (IUF), Paris F-75005, France
| | | |
Collapse
|