1
|
Shi L, Li Q, Liu S, Liu X, Yang S, Chen C, Li Z, Liu S. Bimetallic nanozymes synergize to regulate the behavior of oxygen intermediates and substrate HMF adsorption. Chem Commun (Camb) 2024; 60:8860-8863. [PMID: 39081237 DOI: 10.1039/d4cc03213f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
We have constructed a bimetallic (CoNiP) nanozyme, leveraging the synergistic effect of cobalt and nickel, which efficiently catalyzes the oxidation of TMB from colorless to ox-TMB (blue). Density functional theory (DFT) calculations further highlight the pivotal role of this synergistic effect in improving the adsorption energy of oxygen intermediates, accelerating the catalytic process.
Collapse
Affiliation(s)
- Lei Shi
- Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China.
| | - Qiang Li
- Inner Mongolia Institute of Synthetic chemistry, Hohhot, 010010, China.
| | - Shuang Liu
- Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China.
| | - Xinyang Liu
- Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China.
| | - Shucheng Yang
- Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China.
| | - Chunxia Chen
- Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China.
| | - Zhijun Li
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China.
| | - Song Liu
- Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
2
|
Hall JN, Vicchio SP, Kropf AJ, Delferro M, Bollini P. Can the Rate of a Catalytic Turnover Be Altered by Ligands in the Absence of Direct Binding Interactions? J Am Chem Soc 2024; 146:12113-12129. [PMID: 38647033 DOI: 10.1021/jacs.4c01978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Second sphere coordination effects ubiquitous in enzymatic catalysis occur through direct interactions, either covalent or non-covalent, with reaction intermediates and transition states. We present herein evidence of indirect second sphere coordination effects in which ligation of water/alkanols far removed from the primary coordination sphere of the active site nevertheless alter energetic landscapes within catalytic redox cycles in the absence of direct physicochemical interactions with surface species mediating catalytic turnovers. Density functional theory, in situ X-ray absorption and infrared spectroscopy, and a wide array of steady-state and transient CO oxidation rate data suggest that the presence of peripheral water renders oxidation half-cycles within two-electron redox cycles over μ3-oxo-bridged trimers in MIL-100(M) more kinetically demanding. Communication between ligated water and the active site appears to occur through the Fe-O-Fe backbone, as inferred from spin density variations on the central μ3-oxygen 'junction'. Evidence is provided for the generality of these second sphere effects in that they influence different types of redox half-cycles or metals, and can be amplified or attenuated through choice of coordinating ligand. Specifically in the case of MIL-100(M) materials, the Cr isostructure can be made to kinetically mimic the Fe variant by disproportionately hindering oxidation half-cycles relative to the reduction half-cycles. Kinetic and spectroscopic inferences presented here significantly expand both the conceptual definition of second sphere effects as well as the palette of synthetic levers available for tuning catalytic redox performance through chemical ligation.
Collapse
Affiliation(s)
- Jacklyn N Hall
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Stephen P Vicchio
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - A Jeremy Kropf
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Massimiliano Delferro
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Praveen Bollini
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
3
|
Li M, Deng YH, Chang Q, Li J, Wang C, Wang L, Sun TY. Photoinduced Site-Selective Aryl C-H Borylation with Electron-Donor-Acceptor Complex Derived from B 2Pin 2 and Isoquinoline. Molecules 2024; 29:1783. [PMID: 38675603 PMCID: PMC11052414 DOI: 10.3390/molecules29081783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Due to boron's metalloid properties, aromatic boron reagents are prevalent synthetic intermediates. The direct borylation of aryl C-H bonds for producing aromatic boron compounds offers an appealing, one-step solution. Despite significant advances in this field, achieving regioselective aryl C-H bond borylation using simple and readily available starting materials still remains a challenge. In this work, we attempted to enhance the reactivity of the electron-donor-acceptor (EDA) complex by selecting different bases to replace the organic base (NEt3) used in our previous research. To our delight, when using NH4HCO3 as the base, we have achieved a mild visible-light-mediated aromatic C-H bond borylation reaction with exceptional regioselectivity (rr > 40:1 to single isomers). Compared with our previous borylation methodologies, this protocol provides a more efficient and broader scope for aryl C-H bond borylation through the use of N-Bromosuccinimide. The protocol's good functional-group tolerance and excellent regioselectivity enable the functionalization of a variety of biologically relevant compounds and novel cascade transformations. Mechanistic experiments and theoretical calculations conducted in this study have indicated that, for certain arenes, the aryl C-H bond borylation might proceed through a new reaction mechanism, which involves the formation of a novel transient EDA complex.
Collapse
Affiliation(s)
- Manhong Li
- Key Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China; (M.L.); (Y.-H.D.); (C.W.)
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, No. 66, Gongchang Road, Shenzhen 518107, China;
- Institute of Molecular Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, Block S4A, Level 3, 18 Science Drive 4, Singapore 117543, Singapore
| | - Yi-Hui Deng
- Key Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China; (M.L.); (Y.-H.D.); (C.W.)
| | - Qianqian Chang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, No. 66, Gongchang Road, Shenzhen 518107, China;
| | - Jinyuan Li
- Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China;
| | - Chao Wang
- Key Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China; (M.L.); (Y.-H.D.); (C.W.)
| | - Leifeng Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, No. 66, Gongchang Road, Shenzhen 518107, China;
| | - Tian-Yu Sun
- Key Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China; (M.L.); (Y.-H.D.); (C.W.)
- Institute of Molecular Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
4
|
Docherty P, Kadarauch M, Mistry N, Phipps RJ. Application of sSPhos as a Chiral Ligand for Palladium-Catalyzed Asymmetric Allylic Alkylation. Org Lett 2024; 26:2862-2866. [PMID: 38147571 PMCID: PMC11020163 DOI: 10.1021/acs.orglett.3c04025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 12/28/2023]
Abstract
Palladium-catalyzed asymmetric allylic alkylation is a versatile method for C-C bond formation. Many established classes of chiral ligands can perform allylic alkylation reactions enantioselectively, but identification of new ligand classes remains important for future development of the field. We demonstrate that enantiopure sSPhos, a bifunctional chiral monophosphine ligand, when used as its tetrabutyl ammonium salt, is a highly effective ligand for a benchmark Pd-catalyzed allylic alkylation reaction. We explore the scope and limitations and perform experiments to probe the origin of selectivity. In contrast with reactions previously explored using enantiopure sSPhos, it appears that steric bulk around the sulfonate group is responsible for the high enantioselectivity in this case, rather than attractive noncovalent interactions.
Collapse
Affiliation(s)
- Philip
J. Docherty
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Max Kadarauch
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Nisha Mistry
- Drug
Substance Development, GSK, Stevenage SG1 2NY, U.K.
| | - Robert J. Phipps
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
5
|
Xu L, Yang T, Sun H, Zeng J, Mu S, Zhang X, Chen GQ. Rhodium-Catalyzed Asymmetric Hydrogenation and Transfer Hydrogenation of 1,3-Dipolar Nitrones. Angew Chem Int Ed Engl 2024; 63:e202319662. [PMID: 38366812 DOI: 10.1002/anie.202319662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/03/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
Owing to their distinctive 1,3-dipolar structure, the catalytic asymmetric hydrogenation of nitrones to hydroxylamines has been a formidable and longstanding challenge, characterized by intricate enantiocontrol and susceptibility to N-O bond cleavage. In this study, the asymmetric hydrogenation and transfer hydrogenation of nitrones were accomplished with a tethered TsDPEN-derived cyclopentadienyl rhodium(III) catalyst (TsDPEN: p-toluenesulfonyl-1,2-diphenylethylene-1,2-diamine), the reaction proceeds via a novel 7-membered cyclic transition state, producing chiral hydroxylamines with up to 99 % yield and >99 % ee. The practical viability of this methodology was underscored by gram-scale catalytic reactions and subsequent transformations. Furthermore, mechanistic investigations and DFT calculations were also conducted to elucidate the origin of enantioselectivity.
Collapse
Affiliation(s)
- Liren Xu
- Department of Chemistry, the Grubbs Institute, and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen, China
| | - Tilong Yang
- Department of Chemistry, the Grubbs Institute, and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen, China
| | - Hao Sun
- Department of Chemistry, the Grubbs Institute, and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen, China
| | - Jingwen Zeng
- Department of Chemistry, the Grubbs Institute, and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen, China
| | - Shuo Mu
- Department of Chemistry, the Grubbs Institute, and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen, China
| | - Xumu Zhang
- Department of Chemistry, the Grubbs Institute, and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen, China
| | - Gen-Qiang Chen
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
6
|
Cai X, Ding D, Zhao S, Wen S, Zhang G, Bai P, Zhang W, Song H, Xu C. Zwitterionic Aqua Palladacycles with Noncovalent Interactions for meta-Selective Suzuki Coupling of 3,4-Dichlorophenol and 3,4-Dichlorobenzyl Alcohol in Water. Inorg Chem 2024; 63:2313-2321. [PMID: 38112695 DOI: 10.1021/acs.inorgchem.3c03197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The site-selective reaction of substrates with multiple reactive sites has been a focus of the current synthetic chemistry. The use of attractive noncovalent interactions between the catalyst and substrate is emerging as a versatile approach to address site-selectivity challenges. Herein, we designed and synthesized a series of palladacycles, to control meta-selective Suzuki coupling of 3,4-dichlorophenol and 3,4-dichlorobenzyl alcohol. Noncovalent interactions directed zwitterionic aqua palladacycles catalyzed meta-selective Suzuki couplings of 3,4-dichloroarenes bearing hydroxyl in water have been developed. Experiments and density functional theory (DFT) calculations demonstrated that the electrostatic interactions play a critical role in meta-selective coupling of 3,4-dichlorophenol, while meta-selective coupling of 3,4-dichlorobenzyl alcohol arises due to the hydrogen-bonding interactions.
Collapse
Affiliation(s)
- Xingwei Cai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology. Zhenjiang 212003 Jiangsu, China
| | - Danli Ding
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology. Zhenjiang 212003 Jiangsu, China
| | - Shangxun Zhao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology. Zhenjiang 212003 Jiangsu, China
| | - Shuo Wen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology. Zhenjiang 212003 Jiangsu, China
| | - Guihong Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology. Zhenjiang 212003 Jiangsu, China
| | - Pengtao Bai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology. Zhenjiang 212003 Jiangsu, China
| | - Wenjing Zhang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001 Henan, China
| | - Heng Song
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology. Zhenjiang 212003 Jiangsu, China
| | - Chen Xu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology. Zhenjiang 212003 Jiangsu, China
| |
Collapse
|
7
|
Abuhafez N, Ehlers AW, de Bruin B, Gramage-Doria R. Markovnikov-Selective Cobalt-Catalyzed Wacker-Type Oxidation of Styrenes into Ketones under Ambient Conditions Enabled by Hydrogen Bonding. Angew Chem Int Ed Engl 2024; 63:e202316825. [PMID: 38037901 DOI: 10.1002/anie.202316825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/02/2023]
Abstract
The replacement of palladium catalysts for Wacker-type oxidation of olefins into ketones by first-row transition metals is a relevant approach for searching more sustainable protocols. Besides highly sophisticated iron catalysts, all the other first-row transition metal complexes have only led to poor activities and selectivities. Herein, we show that the cobalt-tetraphenylporphyrin complex is a competent catalyst for the aerobic oxidation of styrenes into ketones with silanes as the hydrogen sources. Remarkably, under room temperature and air atmosphere, the reactions were exceedingly fast (up to 10 minutes) with a low catalyst loading (1 mol %) while keeping an excellent chemo- and Markovnikov-selectivity (up to 99 % of ketone). Unprecedently high TOF (864 h-1 ) and TON (5,800) were reached for the oxidation of aromatic olefins under these benign conditions. Mechanistic studies suggest a reaction mechanism similar to the Mukaiyama-type hydration of olefins with a change in the last fundamental step, which controls the chemoselectivity, thanks to a unique hydrogen bonding network between the ethanol solvent and the cobalt peroxo intermediate.
Collapse
Affiliation(s)
- Naba Abuhafez
- Univ Rennes, CNRS, ISCR-UMR6226, 35000, Rennes, France
| | - Andreas W Ehlers
- University of Amsterdam, Science Park 904, 1094 XH, Amsterdam, The Netherlands
| | - Bas de Bruin
- University of Amsterdam, Science Park 904, 1094 XH, Amsterdam, The Netherlands
| | | |
Collapse
|
8
|
Abuhafez N, Gramage-Doria R. Boosting the activity of Mizoroki-Heck cross-coupling reactions with a supramolecular palladium catalyst favouring remote Zn⋯pyridine interactions. Faraday Discuss 2023; 244:186-198. [PMID: 37083293 DOI: 10.1039/d2fd00165a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Transition metal catalysis benefitting from supramolecular interactions in the secondary coordination sphere in order to pre-organize substrates around the active site and reach a specific selectivity typically occurs under long reaction times and mild reaction temperatures with the aim to maximize such subtle effects. Herein, we demonstrate that the kinetically labile Zn⋯N interaction between a pyridine substrate and a zinc-porphyrin site serving for substrate binding is a unique type of weak interaction that enables identification of supramolecular effects in transition metal catalysis after one hour at a high reaction temperature of 130 °C. Under carefully selected reaction conditions, supramolecularly-regulated palladium-catalyzed Mizoroki-Heck reactions between 3-bromopyridine and terminal olefins (acrylates or styrenes) proceeded in a more efficient manner compared to the non-supramolecular version. The supramolecular catalysis developed here also displayed interesting substrate-selectivity patterns.
Collapse
Affiliation(s)
- Naba Abuhafez
- Univ Rennes, CNRS, ISCR-UMR6226, F-35000 Rennes, France.
| | | |
Collapse
|
9
|
Horký F, Neubrand M, Císařová I, Schulz J, Štěpnička P. Synthesis of Hybrid Ligands with Nitrile and Cage Phosphane Donor Groups and their Applications in Gold-Mediated Reactions. Chempluschem 2023; 88:e202300196. [PMID: 37283065 DOI: 10.1002/cplu.202300196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/08/2023]
Abstract
Altering the donor properties of phosphane ligands through substituent variation is an established tool in coordination chemistry and catalysis. This contribution describes the synthesis of two new hybrid donors (L) combining 1,3,5,7-tetramethyl-2,4,6-trioxa-8-phosphaadamantane-8-yl (PCg) and nitrile donor groups at different molecular scaffolds, viz. ferrocene-1,1'-diyl (fc) and 1,2-phenylene. These ligands were used to prepare dimeric Au(I) complexes [Au2 (μ(P,N)-L)2 ][SbF6 ]2 , which were evaluated as silver-free, preformed catalysts in Au-mediated cycloisomerization of (Z)-3-methylpent-2-en-4-yn-1-ol to 2,3-dimethylfuran. The catalyst featuring the ferrocene-based ligand, viz., [Au2 (μ(P,N)-CgPfcCN)2 ][SbF6 ]2 , showed the best catalytic performance at low catalyst loading (0.5 or 0.15 mol.%), which exceeded that of its diphenylphosphanyl analog [Au2 (μ(P,N)-Ph2 PfcCN)2 ][SbF6 ]2 studied earlier and the prototypical Au(I) precatalyst [Au(PPh3 )(MeCN)][SbF6 ].
Collapse
Affiliation(s)
- Filip Horký
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 40, Prague, Czech Republic
| | - Maren Neubrand
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 40, Prague, Czech Republic
- Visiting Erasmus student from, Institute of Inorganic Chemistry, University of Stuttgart (Germany)
| | - Ivana Císařová
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 40, Prague, Czech Republic
| | - Jiří Schulz
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 40, Prague, Czech Republic
| | - Petr Štěpnička
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 40, Prague, Czech Republic
| |
Collapse
|
10
|
Yamauchi Y, Mondori Y, Uetake Y, Takeichi Y, Kawakita T, Sakurai H, Ogoshi S, Hoshimoto Y. Reversible Modulation of the Electronic and Spatial Environment around Ni(0) Centers Bearing Multifunctional Carbene Ligands with Triarylaluminum. J Am Chem Soc 2023. [PMID: 37467307 PMCID: PMC10401715 DOI: 10.1021/jacs.3c06267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Designing and modulating the electronic and spatial environments surrounding metal centers is a crucial issue in a wide range of chemistry fields that use organometallic compounds. Herein, we demonstrate a Lewis-acid-mediated reversible expansion, contraction, and transformation of the spatial environment surrounding nickel(0) centers that bear N-phosphine oxide-substituted N-heterocyclic carbenes (henceforth referred to as (S)PoxIms). Reaction between tetrahedral (syn-κ-C,O-(S)PoxIm)Ni(CO)2 and Al(C6F5)3 smoothly afforded heterobimetallic Ni/Al species such as trigonal-planar {κ-C-Ni(CO)2}(μ-anti-(S)PoxIm){κ-O-Al(C6F5)3} via a complexation-induced rotation of the N-phosphine oxide moieties, while the addition of 4-dimethylaminopyridine resulted in the quantitative regeneration of the former Ni complexes. The corresponding interconversion also occurred between (SPoxIm)Ni(η2:η2-diphenyldivinylsilane) and {κ-C-Ni(η2:η2-diene)}(μ-anti-SPoxIm){κ-O-Al(C6F5)3} via the coordination and dissociation of Al(C6F5)3. The shape and size of the space around the Ni(0) center was drastically changed through this Lewis-acid-mediated interconversion. Moreover, the multinuclear NMR, IR, and XAS analyses of the aforementioned carbonyl complexes clarified the details of the changes in the electronic states on the Ni centers; i.e., the electron delocalization was effectively enhanced among the Ni atom and CO ligands in the heterobimetallic Ni/Al species. The results presented in this work thus provide a strategy for reversibly modulating both the electronic and spatial environment of organometallic complexes, in addition to the well-accepted Lewis-base-mediated ligand-substitution methods.
Collapse
Affiliation(s)
- Yasuhiro Yamauchi
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yutaka Mondori
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuta Uetake
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Yasuo Takeichi
- Department of Applied Physics, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Takahiro Kawakita
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hidehiro Sakurai
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Sensuke Ogoshi
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yoichi Hoshimoto
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
- Center for Future Innovation (CFi), Division of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
11
|
García-Romero Á, Miguel D, Wright DS, Álvarez CM, García-Rodríguez R. Structural and dimensional control of porphyrin capsules using Group 15 tris(3-pyridyl) linkers. Chem Sci 2023; 14:6522-6530. [PMID: 37350820 PMCID: PMC10283503 DOI: 10.1039/d3sc02151c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 05/16/2023] [Indexed: 06/24/2023] Open
Abstract
While supramolecular chemistry involving organic and metallo-organic host assemblies is a well-established and important field with applications in gas-storage, drug-delivery and the regio- and stereo-control of organic reactions, the use of main group elements in this setting (beyond the second row of the p-block) has been little explored. In this paper we show how periodic trends in the p-block can provide the means for systematic size and structural control in an important class of supramolecular porphyrin-based capsules. The formation of molecular and extended 2D capsule arrangements between the heavier Group 15 tris(3-pyridyl) linkers Sb(3-py)3 and Bi(3-py)3 and the metallo-porphyrins MTPP (M = Zn, Mg; TPP = tetraphenylporphyrin, 3-py = 3-pyridyl) is the first study involving heavier Group 15 pyridyl linkers. The increase in C-E bond length in the E(3-py)3 linkers moving down Group 15 (from E = P, to Sb, to Bi) can be used to alter the dimensions and structural preference of the capsules, as can oxidation of the Group 15 bridgehead atoms themselves. The subtle changes in the dimensions and Lewis acidity of the encapsulates have a dramatic effect on the rate and selectivity of the catalytic oxidative cleavage of organic diols and catalytic oxidation of α-hydroxyketones. By providing simple tools for modulating the chemical and steric properties of the capsules this work should have direct applications for the tuning of the activity and specificity of a range of catalytic systems based on main-group-based capsules of this type.
Collapse
Affiliation(s)
- Álvaro García-Romero
- GIR MIOMeT-IU Cinquima-Química Inorgánica Facultad de Ciencias, Universidad de Valladolid Campus Miguel Delibes, 47011 Valladolid Spain
| | - Daniel Miguel
- GIR MIOMeT-IU Cinquima-Química Inorgánica Facultad de Ciencias, Universidad de Valladolid Campus Miguel Delibes, 47011 Valladolid Spain
| | - Dominic S Wright
- Chemistry Department, Cambridge University Lensfield Road Cambridge CB2 1EW UK
| | - Celedonio M Álvarez
- GIR MIOMeT-IU Cinquima-Química Inorgánica Facultad de Ciencias, Universidad de Valladolid Campus Miguel Delibes, 47011 Valladolid Spain
| | - Raúl García-Rodríguez
- GIR MIOMeT-IU Cinquima-Química Inorgánica Facultad de Ciencias, Universidad de Valladolid Campus Miguel Delibes, 47011 Valladolid Spain
| |
Collapse
|
12
|
Sailer R, VandeVen W, Teindl K, Chiang L. Ni II and Cu II complexes of a salen ligand bearing ferrocenes in its secondary coordination sphere. RSC Adv 2023; 13:7293-7299. [PMID: 36891492 PMCID: PMC9986886 DOI: 10.1039/d2ra07671c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/24/2023] [Indexed: 03/08/2023] Open
Abstract
Herein, we report the synthesis, spectroscopic characterization and electrochemical investigation of the NiII and CuII complexes of a novel Sal ligand bearing two ferrocene moieties attached at its diimine linker, M(Sal)Fc. The electronic spectra of M(Sal)Fc are near identical to its phenyl-substituted counterpart, M(Sal)Ph, indicating the ferrocene moieties exist in the secondary coordination sphere of M(Sal)Fc. The cyclic voltammograms of M(Sal)Fc exhibit an additional two-electron wave in comparison to M(Sal)Ph, which is assigned to the sequential oxidation of the two ferrocene moieties. The chemical oxidation of M(Sal)Fc, monitored by low temperature UV-vis spectroscopy, supports the formation of a mixed valent FeIIFeIII species followed by a bis(ferrocenium) species upon sequential addition of one and two equivalents of chemical oxidant. The addition of a third equivalent of oxidant to Ni(Sal)Fc yielded intense near-IR transitions that are indicative of the formation of a fully delocalized Sal-ligand radical (Sal˙), while the same addition to Cu(Sal)Fc yielded a species that is currently under further spectroscopic investigation. These results suggest the oxidation of the ferrocene moieties of M(Sal)Fc does not affect the electronic structure of the M(Sal) core, and these are thus in the secondary coordination sphere of the overall complex.
Collapse
Affiliation(s)
- Rachel Sailer
- Department of Chemistry, University of the Fraser Valley Abbotsford V2S 7M8 British Columbia Canada
| | - Warren VandeVen
- Department of Chemistry, Simon Fraser University Burnaby V5A 1S6 British Columbia Canada
| | - Kaeden Teindl
- Department of Chemistry, University of the Fraser Valley Abbotsford V2S 7M8 British Columbia Canada
| | - Linus Chiang
- Department of Chemistry, University of the Fraser Valley Abbotsford V2S 7M8 British Columbia Canada
| |
Collapse
|
13
|
Remote control over both site-selectivity and atroposelectivity of Suzuki–Miyaura coupling through distal ionic interactions. Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
14
|
Non-covalent interactions in transition metal-catalyzed para-selective C H functionalization of arenes. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2023. [DOI: 10.1016/bs.adomc.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
15
|
Yu Z, Liu Q, Li Q, Huang Z, Yang Y, You J. Remote Editing of Stacked Aromatic Assemblies for Heteroannular C−H Functionalization by a Palladium Switch between Aromatic Rings. Angew Chem Int Ed Engl 2022; 61:e202212079. [DOI: 10.1002/anie.202212079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Zhiqian Yu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Qianhui Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Qian Li
- Key Laboratory of Green Chemistry and Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Zhenmei Huang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Yudong Yang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Jingsong You
- Key Laboratory of Green Chemistry and Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| |
Collapse
|
16
|
Gillespie J, Fanourakis A, Phipps RJ. Strategies That Utilize Ion Pairing Interactions to Exert Selectivity Control in the Functionalization of C-H Bonds. J Am Chem Soc 2022; 144:18195-18211. [PMID: 36178308 PMCID: PMC9562467 DOI: 10.1021/jacs.2c08752] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Indexed: 11/30/2022]
Abstract
Electrostatic attraction between two groups of opposite charge, typically known as ion-pairing, offers unique opportunities for the design of systems to enable selectivity control in chemical reactions. Catalysis using noncovalent interactions is an established and vibrant research area, but it is noticeable that hydrogen bonding interactions are still the main interaction of choice in system design. Opposite charges experience the powerful force of Coulombic attraction and have the ability to exert fundamental influence on the outcome of reactions that involve charged reagents, intermediates or catalysts. In this Perspective, we will examine how ion-pairing interactions have been used to control selectivity in C-H bond functionalization processes. This broad class of reactions provides an interesting and thought-provoking lens through which to examine the application of ion-pairing design strategies because it is one that encompasses great mechanistic diversity, poses significant selectivity challenges, and perhaps most importantly is of immense interest to synthetic chemists in both industry and academia. We survey reactions that proceed via radical and ionic mechanisms alongside those that involve transition metal catalysis and will deal with control of site-selectivity and enantioselectivity. We anticipate that as this emerging area develops, it will become an ever-more important design strategy for selectivity control.
Collapse
Affiliation(s)
| | | | - Robert J. Phipps
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
17
|
Tomasini M, Caporaso L, Trouvé J, Poater J, Gramage‐Doria R, Poater A. Unravelling Enzymatic Features in a Supramolecular Iridium Catalyst by Computational Calculations. Chemistry 2022; 28:e202201970. [PMID: 35788999 PMCID: PMC9804516 DOI: 10.1002/chem.202201970] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Indexed: 01/05/2023]
Abstract
Non-biological catalysts following the governing principles of enzymes are attractive systems to disclose unprecedented reactivities. Most of those existing catalysts feature an adaptable molecular recognition site for substrate binding that are prone to undergo conformational selection pathways. Herein, we present a non-biological catalyst that is able to bind substrates via the induced fit model according to in-depth computational calculations. The system, which is constituted by an inflexible substrate-recognition site derived from a zinc-porphyrin in the second coordination sphere, features destabilization of ground states as well as stabilization of transition states for the relevant iridium-catalyzed C-H bond borylation of pyridine. In addition, this catalyst appears to be most suited to tightly bind the transition state rather than the substrate. Besides these features, which are reminiscent of the action modes of enzymes, new elementary catalytic steps (i. e. C-B bond formation and catalyst regeneration) have been disclosed owing to the unique distortions encountered in the different intermediates and transition states.
Collapse
Affiliation(s)
- Michele Tomasini
- Institut de Química Computacional i CatàlisiDepartament de QuímicaUniversitat de Gironac/Mª Aurèlia Capmany 6917003GironaCataloniaSpain,Department of ChemistryUniversity of SalernoVia Ponte Don Melillo84084FiscianoItaly
| | - Lucia Caporaso
- Department of ChemistryUniversity of SalernoVia Ponte Don Melillo84084FiscianoItaly
| | | | - Jordi Poater
- Departament de Química Inorgànica i Orgànica & IQTCUBUniversitat de Barcelona08028BarcelonaSpain,ICREA08010BarcelonaSpain
| | | | - Albert Poater
- Institut de Química Computacional i CatàlisiDepartament de QuímicaUniversitat de Gironac/Mª Aurèlia Capmany 6917003GironaCataloniaSpain
| |
Collapse
|
18
|
Wu ZX, Hu GW, Luan YX. Development of N-Hydroxy Catalysts for C–H Functionalization via Hydrogen Atom Transfer: Challenges and Opportunities. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Zhi-Xian Wu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Guan-Wen Hu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yu-Xin Luan
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
19
|
Li M, Chia XL, Tian C, Zhu Y. Mechanically planar chiral rotaxanes through catalytic desymmetrization. Chem 2022. [DOI: 10.1016/j.chempr.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
20
|
Wang B, Seo CSG, Zhang C, Chu J, Szymczak NK. A Borane Lewis Acid in the Secondary Coordination Sphere of a Ni(II) Imido Imparts Distinct C-H Activation Selectivity. J Am Chem Soc 2022; 144:15793-15802. [PMID: 35973127 PMCID: PMC10276360 DOI: 10.1021/jacs.2c06662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Two borane-functionalized bidentate phosphine ligands that vary in tether length have been prepared to examine cooperative metal-substrate interactions. Ni(0) complexes react with aryl azides at low temperatures to form structurally unusual κ2-(N,N)-N3Ar adducts. Warming these adducts affords products of N2 extrusion and in one case, a Ni-imido compound that is capped by the appended borane. Reactions with 1-azidoadamantane (AdN3) provide a distinct outcome, where a proposed nickel imido intermediate activates the sp2 C-H bonds of arenes, even in the presence of benzylic C-H sites. Combined experimental and computational mechanistic studies demonstrate that the unique reactivity is a consequence of Lewis-acid-induced polarization of the Ni-NR bond, potentially providing a synthetic strategy for chemoselective reaction engineering.
Collapse
Affiliation(s)
- Baolu Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 10049, P. R. China
| | - Chris S. G. Seo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Cuijuan Zhang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 10049, P. R. China
| | - Jiaxiang Chu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 10049, P. R. China
| | - Nathaniel K. Szymczak
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
21
|
Li JY, Xie PP, Zhou T, Qian PF, Zhou YB, Li HC, Hong X, Shi BF. Ir(III)-Catalyzed Asymmetric C–H Activation/Annulation of Sulfoximines Assisted by the Hydrogen-Bonding Interaction. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jun-Yi Li
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Pei-Pei Xie
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Tao Zhou
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Pu-Fan Qian
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Yi-Bo Zhou
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Hao-Chen Li
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Xin Hong
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Beijing National Laboratory for Molecular Sciences, Zhongguancun North First Street No. 2, Beijing 100190, PR China
| | - Bing-Feng Shi
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
22
|
Abstract
AbstractThe development of efficient electrocatalysts based on non-noble metals for oxygen evolution reaction (OER) remains an important and challenging task. Multinuclear transition-metal clusters with high structural stability are promising OER catalysts but their catalytic role is poorly understood. Here we report the crystallographic observation of OER activity over robust {Ni12}-clusters immobilised in a porous metal-organic framework, NKU-100, by single-crystal X-ray diffraction as a function of external applied potential. We observed the aggregation of confined oxygen species around the {Ni12}-cluster as a function of applied potential during the electrocatalytic process. The refined occupancy of these oxygen species shows a strong correlation with the variation of current density. This study demonstrates that the enrichment of oxygen species in the secondary co-ordination sphere of multinuclear transition-metal clusters can promote the OER activity.
Collapse
|
23
|
Modifying electron injection kinetics for selective photoreduction of nitroarenes into cyclic and asymmetric azo compounds. Nat Commun 2022; 13:1940. [PMID: 35410425 PMCID: PMC9001638 DOI: 10.1038/s41467-022-29559-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 03/15/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractModifying the reactivity of substrates by encapsulation is essential for microenvironment catalysts. Herein, we report an alternative strategy that modifies the entry behaviour of reactants into the microenvironment and substrate inclusion thermodynamics related to the capsule to control the electron injection kinetics and the selectivity of products from the nitroarenes photoreduction. The strategy includes the orchestration of capsule openings to control the electron injection kinetics of electron donors, and the capsule’s pocket to encapsulate more than one nitroarene molecules, facilitating a condensation reaction between the in situ formed azanol and nitroso species to produce azo product. The conceptual microenvironment catalyst endows selective conversion of asymmetric azo products from different nitroarenes, wherein, the estimated diameter and inclusion Gibbs free energy of substrates are used to control and predict the selectivity of products. Inhibition experiments confirm a typical enzymatic conversion, paving a new avenue for rational design of photocatalysts toward green chemistry.
Collapse
|
24
|
Chen Y, Wang Z, Zhao W, Sun S, Yang L, Zhang J, Zhang D, Cheng M, Lin B, Liu Y. Ag(I)/PPh 3-catalyzed diastereoselective syntheses of spiro[indole-3,4'-piperidine] derivatives via cycloisomerizations of tryptamine-ynamides. Chem Commun (Camb) 2022; 58:3051-3054. [PMID: 35165679 DOI: 10.1039/d1cc07298f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A Ag(I)/PPh3-catalyzed chelation-controlled cycloisomerization of tryptamine-ynamide was developed to access the spiro[indole-3,4'-piperidine] scaffold in a racemic and diastereoselective manner. The diastereoselective products were achieved by a chiron approach. Density functional theory (DFT) calculations indicated that strong non-covalent effects between the substrate and catalyst/ligand complex stabilized the spiroindoleninium intermediate via cation-π-π interactions.
Collapse
Affiliation(s)
- Yanyu Chen
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China. .,Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China.,Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Zhaobo Wang
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China. .,Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China.,Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Wutong Zhao
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China.
| | - Shitao Sun
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China. .,Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Lu Yang
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China. .,Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China.,Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Junpeng Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China. .,Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Di Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China. .,Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China. .,Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Bin Lin
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China. .,Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Yongxiang Liu
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China. .,Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China.,Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| |
Collapse
|
25
|
Bastidas JRM, Chhabra A, Feng Y, Oleskey TJ, Smith MR, Maleczka RE. Steric Shielding Effects Induced by Intramolecular C-H⋯O Hydrogen Bonding: Remote Borylation Directed by Bpin Groups. ACS Catal 2022; 12:2694-2705. [PMID: 36685107 PMCID: PMC9854017 DOI: 10.1021/acscatal.1c05701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Regioselectivities in catalytic C-H borylations (CHBs) have been rationalized using simplistic steric models and correlations with nuclear magnetic resonance (NMR) chemical shifts. However, regioselectivity can be significant for important substrate classes where none would be expected from these arguments. In this study, intramolecular hydrogen bonding (IMHB) can lead to steric shielding effects that can direct Ir-catalyzed CHB regiochemistry. Bpin (Bpin = pinacol boronic ester)/arene IMHB can promote remote borylations of N-borylated anilines, 2-amino-N-alkylpyridine, tetrahydroquinolines, indoles, and 1-borylated naphthalenes. Experimental and computational studies support molecular geometries with the Bpin orientation controlled by a C-H⋯O IMHB. IMHB-directed remote CHB appeared operative in the C6 borylation of 3-aminoindazole (seven-membered IMHB) and C6 borylation of an osimertinib analogue where a pyrimidine IMHB creates the steric shield. This study informs researchers to evaluate not only inter- but also intramolecular noncovalent interactions as potential drivers of remote CHB regioselectivity.
Collapse
Affiliation(s)
- Jose R Montero Bastidas
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Arzoo Chhabra
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Yilong Feng
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Thomas J Oleskey
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Milton R Smith
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Robert E Maleczka
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
26
|
Franchino A, Martí À, Echavarren AM. H-Bonded Counterion-Directed Enantioselective Au(I) Catalysis. J Am Chem Soc 2022; 144:3497-3509. [PMID: 35138843 PMCID: PMC8895408 DOI: 10.1021/jacs.1c11978] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
A new strategy for
enantioselective transition-metal catalysis
is presented, wherein a H-bond donor placed on the ligand of a cationic
complex allows precise positioning of the chiral counteranion responsible
for asymmetric induction. The successful implementation of this paradigm
is demonstrated in 5-exo-dig and 6-endo-dig cyclizations of 1,6-enynes, combining an achiral phosphinourea
Au(I) chloride complex with a BINOL-derived phosphoramidate Ag(I)
salt and thus allowing the first general use of chiral anions in Au(I)-catalyzed
reactions of challenging alkyne substrates. Experiments with modified
complexes and anions, 1H NMR titrations, kinetic data,
and studies of solvent and nonlinear effects substantiate the key
H-bonding interaction at the heart of the catalytic system. This conceptually
novel approach, which lies at the intersection of metal catalysis,
H-bond organocatalysis, and asymmetric counterion-directed catalysis,
provides a blueprint for the development of supramolecularly assembled
chiral ligands for metal complexes.
Collapse
Affiliation(s)
- Allegra Franchino
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Àlex Martí
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.,Departament de Química Orgànica i Analítica, Universitat Rovira i Virgili, C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | - Antonio M Echavarren
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.,Departament de Química Orgànica i Analítica, Universitat Rovira i Virgili, C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| |
Collapse
|
27
|
Vicens L, Olivo G, Costas M. Remote Amino Acid Recognition Enables Effective Hydrogen Peroxide Activation at a Manganese Oxidation Catalyst. Angew Chem Int Ed Engl 2022; 61:e202114932. [PMID: 34854188 PMCID: PMC9304166 DOI: 10.1002/anie.202114932] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Indexed: 12/14/2022]
Abstract
Precise delivery of a proton plays a key role in O2 activation at iron oxygenases, enabling the crucial O-O cleavage step that generates the oxidizing high-valent metal-oxo species. Such a proton is delivered by acidic residues that may either directly bind the iron center or lie in its second coordination sphere. Herein, a supramolecular strategy for enzyme-like H2 O2 activation at a biologically inspired manganese catalyst, with a nearly stoichiometric amount (1-1.5 equiv) of a carboxylic acid is disclosed. Key for this strategy is the incorporation of an α,ω-amino acid in the second coordination sphere of a chiral catalyst via remote ammonium-crown ether recognition. The properly positioned carboxylic acid function enables effective activation of hydrogen peroxide, leading to catalytic asymmetric epoxidation. Modulation of both amino acid and catalyst structure can tune the efficiency and the enantioselectivity of the reaction, and a study on the oxidative degradation pathway of the system is presented.
Collapse
Affiliation(s)
- Laia Vicens
- Institut de Química Computacional i Catàlisi (IQCC)Departament de QuímicaUniversitat de GironaCampus Montilivi17071Girona, CataloniaSpain
| | - Giorgio Olivo
- Institut de Química Computacional i Catàlisi (IQCC)Departament de QuímicaUniversitat de GironaCampus Montilivi17071Girona, CataloniaSpain
- Dipartamento di ChimicaUniversità “La Sapienza” di RomaPiazzale Aldo Moro 500185RomeItaly
| | - Miquel Costas
- Institut de Química Computacional i Catàlisi (IQCC)Departament de QuímicaUniversitat de GironaCampus Montilivi17071Girona, CataloniaSpain
| |
Collapse
|
28
|
Vicens L, Olivo G, Costas M. Remote Amino Acid Recognition Enables Effective Hydrogen Peroxide Activation at a Manganese Oxidation Catalyst. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Laia Vicens
- Institut de Química Computacional i Catàlisi (IQCC) Departament de Química Universitat de Girona Campus Montilivi 17071 Girona, Catalonia Spain
| | - Giorgio Olivo
- Institut de Química Computacional i Catàlisi (IQCC) Departament de Química Universitat de Girona Campus Montilivi 17071 Girona, Catalonia Spain
- Dipartamento di Chimica Università “La Sapienza” di Roma Piazzale Aldo Moro 5 00185 Rome Italy
| | - Miquel Costas
- Institut de Química Computacional i Catàlisi (IQCC) Departament de Química Universitat de Girona Campus Montilivi 17071 Girona, Catalonia Spain
| |
Collapse
|
29
|
Lou Y, Wei J, Li M, Zhu Y. Distal Ionic Substrate-Catalyst Interactions Enable Long-Range Stereocontrol: Access to Remote Quaternary Stereocenters through a Desymmetrizing Suzuki-Miyaura Reaction. J Am Chem Soc 2022; 144:123-129. [PMID: 34979078 PMCID: PMC9549467 DOI: 10.1021/jacs.1c12345] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Spatial distancing of a substrate's reactive group and nonreactive catalyst-binding group from its pro-stereogenic element presents substantial hurdles in asymmetric catalysis. In this context, we report a desymmetrizing Suzuki-Miyaura reaction that establishes chirality at a remote quaternary carbon. The anionic, chiral catalyst exerts stereocontrol through electrostatic steering of substrates, even as the substrate's reactive group and charged catalyst-binding group become increasingly distanced. This study demonstrates that precise long-range stereocontrol is achievable by engaging ionic substrate-ligand interactions at a distal position.
Collapse
Affiliation(s)
- Yazhou Lou
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Junqiang Wei
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Mingfeng Li
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Ye Zhu
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543
| |
Collapse
|
30
|
Gramage-Doria R, Abuhafez N, Perennes A. Mimicking Enzymes: Taking Advantage of the Substrate-Recognition Properties of Metalloporphyrins in Supramolecular Catalysis. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1729-9223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractThe present review describes the most relevant advances dealing with supramolecular catalysis in which metalloporphyrins are employed as substrate-recognition sites in the second coordination sphere of the catalyst. The kinetically labile interaction between metalloporphyrins (typically, those derived from zinc) and nitrogen- or oxygen-containing substrates is energetically comparable to the non-covalent interactions (i.e., hydrogen bonding) found in enzymes enabling substrate preorganization. Much inspired from host–guest phenomena, the catalytic systems described in this account display unique activities, selectivities and action modes that are difficult to reach by applying purely covalent strategies.
Collapse
|
31
|
Li M, Liu S, Bao H, Li Q, Deng YH, Sun TY, Wang L. Photoinduced Metal-Free Borylation of Aryl Halides Catalysed by in situ Formed Donor-Acceptor Complex. Chem Sci 2022; 13:4909-4914. [PMID: 35655877 PMCID: PMC9067585 DOI: 10.1039/d2sc00552b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/03/2022] [Indexed: 11/21/2022] Open
Abstract
Organoboron compounds are very important building blocks which can be applied in medicinal, biological and industrial fields. However, direct borylation in a metal free manner has been very rarely reported. Herein, we described the successful direct borylation of haloarenes under mild, operationally simple, catalyst-free conditions, promoted by irradiation with visible light. Mechanistic experiments and computational investigations indicate the formation of an excited donor–acceptor complex with a −3.12 V reduction potential, which is a highly active reductant and can facilitate single-electron-transfer (SET) with aryl halides to produce aryl radical intermediates. A two-step one-pot method was developed for site selective aromatic C–H bond borylation. The protocol's good functional group tolerance enables the functionalization of a variety of biologically relevant compounds, representing a new application of aryl radicals merged with photochemistry. We reported a facile metal-free conversion of aryl halides to the corresponding boronic esters catalysed by an in situ formed donor–acceptor complex. A two-step one-pot method was also developed for site selective aromatic C–H bond borylation.![]()
Collapse
Affiliation(s)
- Manhong Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University No. 66, Gongchang Road Shenzhen 518107 P. R. China
| | - Siqi Liu
- Shenzhen Bay Laboratory Shenzhen 518132 P. R. China
| | - Haoshi Bao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University No. 66, Gongchang Road Shenzhen 518107 P. R. China
| | - Qini Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University No. 66, Gongchang Road Shenzhen 518107 P. R. China
| | - Yi-Hui Deng
- Shenzhen Bay Laboratory Shenzhen 518132 P. R. China
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
| | - Tian-Yu Sun
- Shenzhen Bay Laboratory Shenzhen 518132 P. R. China
| | - Leifeng Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University No. 66, Gongchang Road Shenzhen 518107 P. R. China
| |
Collapse
|
32
|
Vijay AK, Meyerstein D, Marks V, Albo Y. Reaction of H 2 with polyoxometalate supported Rhodium(0) and Iridium(0) nanoparticles in aqueous suspensions: a kinetic study. NEW J CHEM 2022. [DOI: 10.1039/d2nj02253b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The mechanism of the reaction between Rh0 and Ir0 NPs with H2 was measured in the absence of an electrical bias via monitoring the catalytic reduction of PW12O403− and it was compared to the previous results of Pt0 NPs.
Collapse
Affiliation(s)
- Aswin Kottapurath Vijay
- Department of Chemical Science and The Radical Research Center, Ariel University, Ariel, Israel
- Department of Chemistry Ben-Gurion University, Beer-Sheva, Israel
| | - Dan Meyerstein
- Department of Chemical Science and The Radical Research Center, Ariel University, Ariel, Israel
- Department of Chemistry Ben-Gurion University, Beer-Sheva, Israel
| | - Vered Marks
- Department of Chemical Science Ariel University, Ariel, Israel
| | - Yael Albo
- Department of Chemical Engineering and The Radical Research Center Ariel University, Ariel, Israel
| |
Collapse
|
33
|
Pantalon Juraj N, Tandarić T, Tadić V, Perić B, Moreth D, Schatzschneider U, Brozovic A, Vianello R, Kirin SI. Tuning the coordination properties of chiral pseudopeptide bis(2-picolyl)amine and iminodiacetamide ligands in Zn( ii) and Cu( ii) complexes. Dalton Trans 2022; 51:17008-17021. [DOI: 10.1039/d2dt02895f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Modifications of the chiral side chains of bpa and imda ligands lead to different metal ion coordination and hydrogen bonding ability.
Collapse
Affiliation(s)
| | | | | | | | - Dominik Moreth
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Ulrich Schatzschneider
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | | | | | | |
Collapse
|
34
|
Enhancing the efficiency of the ruthenium catalysts in the reductive amination without an external hydrogen source. J Catal 2022. [DOI: 10.1016/j.jcat.2021.12.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
35
|
MacInnes MM, Jones ZR, Li B, Anderson NH, Batista ER, DiMucci IM, Eiroa-Lledo C, Knope KE, Livshits MY, Kozimor SA, Mocko V, Pace KA, Rocha FR, Stein BW, Wacker JN, Yang P. Using molten salts to probe outer-coordination sphere effects on lanthanide(III)/(II) electron-transfer reactions. Dalton Trans 2021; 50:15696-15710. [PMID: 34693951 DOI: 10.1039/d1dt02708e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Controlling structure and reactivity by manipulating the outer-coordination sphere around a given reagent represents a longstanding challenge in chemistry. Despite advances toward solving this problem, it remains difficult to experimentally interrogate and characterize outer-coordination sphere impact. This work describes an alternative approach that quantifies outer-coordination sphere effects. It shows how molten salt metal chlorides (MCln; M = K, Na, n = 1; M = Ca, n = 2) provided excellent platforms for experimentally characterizing the influence of the outer-coordination sphere cations (Mn+) on redox reactions accessible to lanthanide ions; Ln3+ + e1- → Ln2+ (Ln = Eu, Yb, Sm; e1- = electron). As a representative example, X-ray absorption spectroscopy and cyclic voltammetry results showed that Eu2+ instantaneously formed when Eu3+ dissolved in molten chloride salts that had strongly polarizing cations (like Ca2+ from CaCl2) via the Eu3+ + Cl1- → Eu2+ + ½Cl2 reaction. Conversely, molten salts with less polarizing outer-sphere M1+ cations (e.g., K1+ in KCl) stabilized Ln3+. For instance, the Eu3+/Eu2+ reduction potential was >0.5 V more positive in CaCl2 than in KCl. In accordance with first-principle molecular dynamics (FPMD) simulations, we postulated that hard Mn+ cations (high polarization power) inductively removed electron density from Lnn+ across Ln-Cl⋯Mn+ networks and stabilized electron-rich and low oxidation state Ln2+ ions. Conversely, less polarizing Mn+ cations (like K1+) left electron density on Lnn+ and stabilized electron-deficient and high-oxidation state Ln3+ ions.
Collapse
Affiliation(s)
- Molly M MacInnes
- Los Alamos National Laboratory (LANL), P.O. Box 1663, Los Alamos, New Mexico, 87545, USA.
| | - Zachary R Jones
- Los Alamos National Laboratory (LANL), P.O. Box 1663, Los Alamos, New Mexico, 87545, USA.
| | - Bo Li
- Los Alamos National Laboratory (LANL), P.O. Box 1663, Los Alamos, New Mexico, 87545, USA.
| | - Nickolas H Anderson
- Los Alamos National Laboratory (LANL), P.O. Box 1663, Los Alamos, New Mexico, 87545, USA.
| | - Enrique R Batista
- Los Alamos National Laboratory (LANL), P.O. Box 1663, Los Alamos, New Mexico, 87545, USA.
| | - Ida M DiMucci
- Los Alamos National Laboratory (LANL), P.O. Box 1663, Los Alamos, New Mexico, 87545, USA.
| | - Cecilia Eiroa-Lledo
- Los Alamos National Laboratory (LANL), P.O. Box 1663, Los Alamos, New Mexico, 87545, USA.
| | - Karah E Knope
- Department of Chemistry, Georgetown University, 37th and O Streets NW, Washington, D.C. 20057, USA
| | - Maksim Y Livshits
- Los Alamos National Laboratory (LANL), P.O. Box 1663, Los Alamos, New Mexico, 87545, USA.
| | - Stosh A Kozimor
- Los Alamos National Laboratory (LANL), P.O. Box 1663, Los Alamos, New Mexico, 87545, USA.
| | - Veronika Mocko
- Los Alamos National Laboratory (LANL), P.O. Box 1663, Los Alamos, New Mexico, 87545, USA.
| | - Kristen A Pace
- Los Alamos National Laboratory (LANL), P.O. Box 1663, Los Alamos, New Mexico, 87545, USA.
| | - Francisca R Rocha
- Los Alamos National Laboratory (LANL), P.O. Box 1663, Los Alamos, New Mexico, 87545, USA.
| | - Benjamin W Stein
- Los Alamos National Laboratory (LANL), P.O. Box 1663, Los Alamos, New Mexico, 87545, USA.
| | - Jennifer N Wacker
- Los Alamos National Laboratory (LANL), P.O. Box 1663, Los Alamos, New Mexico, 87545, USA. .,Department of Chemistry, Georgetown University, 37th and O Streets NW, Washington, D.C. 20057, USA
| | - Ping Yang
- Los Alamos National Laboratory (LANL), P.O. Box 1663, Los Alamos, New Mexico, 87545, USA.
| |
Collapse
|
36
|
Brewster RC, Labeaga IC, Soden CE, Jarvis AG. Macrocylases as synthetic tools for ligand synthesis: enzymatic synthesis of cyclic peptides containing metal-binding amino acids. ROYAL SOCIETY OPEN SCIENCE 2021; 8:211098. [PMID: 34737880 PMCID: PMC8564625 DOI: 10.1098/rsos.211098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Improving the sustainability of synthesis is a major goal in green chemistry, which has been greatly aided by the development of asymmetric transition metal catalysis. Recent advances in asymmetric catalysis show that the ability to control the coordination sphere of substrates can lead to improvements in enantioselectivity and activity, in a manner resembling the operation of enzymes. Peptides can be used to mimic enzyme structures and their secondary interactions and they are easily accessible through solid-phase peptide synthesis. Despite this, cyclic peptides remain underexplored as chiral ligands for catalysis due to synthetic complications upon macrocyclization. Here, we show that the solid-phase synthesis of peptides containing metal-binding amino acids, bipyridylalanine (1), phenyl pyridylalanine (2) and N,N-dimethylhistidine (3) can be combined with peptide macrocylization using peptide cyclase 1 (PCY1) to yield cyclic peptides under mild conditions. High conversions of the linear peptides were observed (approx. 90%) and the Cu-bound cyclo(FSAS(1)SSKP) was shown to be a competent catalyst in the Friedel-Crafts/conjugate addition of indole. This study shows that PCY1 can tolerate peptides containing amino acids with classic inorganic and organometallic ligands as side chains, opening the door to the streamlined and efficient development of cyclic peptides as metal ligands.
Collapse
Affiliation(s)
- Richard C. Brewster
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Rd, Edinburgh EH9 3FJ, Scotland
| | - Irati Colmenero Labeaga
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Rd, Edinburgh EH9 3FJ, Scotland
| | - Catriona E. Soden
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Rd, Edinburgh EH9 3FJ, Scotland
| | - Amanda G. Jarvis
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Rd, Edinburgh EH9 3FJ, Scotland
| |
Collapse
|
37
|
Poole D, Mathew S, Reek JNH. Just Add Water: Modulating the Structure-Derived Acidity of Catalytic Hexameric Resorcinarene Capsules. J Am Chem Soc 2021; 143:16419-16427. [PMID: 34591465 PMCID: PMC8517980 DOI: 10.1021/jacs.1c04924] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Indexed: 12/26/2022]
Abstract
The hexameric undecyl-resorcin[4]arene capsule (C11R6) features eight discrete structural water molecules located at the vertices of its cubic suprastructure. Combining NMR spectroscopy with classical molecular dynamics (MD), we identified and characterized two distinct species of this capsule, C11R6-A and C11R6-B, respectively featuring 8 and 15 water molecules incorporated into their respective hydrogen-bonded networks. Furthermore, we found that the ratio of the C11R6-A and C11R6-B found in solution can be modulated by controlling the water content of the sample. The importance of this supramolecular modulation in C11R6 capsules is highlighted by its ability to perform acid-catalyzed transformations, which is an emergent property arising from the hydrogen bonding within the suprastructure. We show that the conversion of C11R6-A to C11R6-B enhances the catalytic rate of a model Diels-Alder cyclization by 10-fold, demonstrating the cofactor-derived control of a supramolecular catalytic process that emulates natural enzymatic systems.
Collapse
Affiliation(s)
- David
A. Poole
- Homogeneous, Supramolecular,
and Bioinspired Catalysis Group, van’t Hoff Institute for Molecular
Science (HIMS), University of Amsterdam
(UvA), Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Simon Mathew
- Homogeneous, Supramolecular,
and Bioinspired Catalysis Group, van’t Hoff Institute for Molecular
Science (HIMS), University of Amsterdam
(UvA), Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Joost N. H. Reek
- Homogeneous, Supramolecular,
and Bioinspired Catalysis Group, van’t Hoff Institute for Molecular
Science (HIMS), University of Amsterdam
(UvA), Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
38
|
Kiernicki JJ, Norwine EE, Zeller M, Szymczak NK. Substrate Specific Metal-Ligand Cooperative Binding: Considerations for Weak Intramolecular Lewis Acid/Base Pairs. Inorg Chem 2021; 60:13806-13810. [PMID: 34242009 DOI: 10.1021/acs.inorgchem.1c01382] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Metal-ligand cooperative binding modes were interrogated in a series of zinc bis(thiophenoxide) complexes. A weak B-S binding interaction is observed in solution between the weakly Lewis basic thiophenoxide ligands and an appended trialkylborane. The energy of this binding event is dependent upon the strength of the Lewis acid and its proximity to the zinc thiophenoxide.
Collapse
Affiliation(s)
- John J Kiernicki
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Emily E Norwine
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Matthias Zeller
- H. C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Nathaniel K Szymczak
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
39
|
|
40
|
Somerville RJ, Campos J. Cooperativity in Transition Metal Tetrylene Complexes. Eur J Inorg Chem 2021; 2021:3488-3498. [PMID: 34690540 PMCID: PMC8518731 DOI: 10.1002/ejic.202100460] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/02/2021] [Indexed: 12/20/2022]
Abstract
Cooperative reactivity between transition metals and ligands, or between two metals, has created significant opportunities for the development of new transformations that would be difficult to carry out with a single metal. Here we explore cooperativity between transition metals and divalent heavier group 14 elements (tetrylenes), a less-explored facet of the field of cooperativity. Tetrylenes combine their strong σ-donor properties with an empty p-orbital that can accept electron density. This ambiphilicity has allowed them to form metal tetrylene and metallotetrylene complexes that place a reactive site adjacent to the metal. We have selected examples to demonstrate what has been achieved so far regarding cooperative reactivity, as this already spans metal-, tetrylene- or multi-site-centred bond cleavage, cycloaddition, migration, metathesis, and insertion. We also highlight some challenges that need to be overcome for this cooperativity to make it to catalysis.
Collapse
Affiliation(s)
- Rosie J. Somerville
- Instituto de Investigaciones Químicas (IIQ)Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA)Consejo Superior de Investigaciones Científicas (CSIC) andUniversity of SevillaAvenida Américo Vespucio 4941092SevillaSpain
| | - Jesús Campos
- Instituto de Investigaciones Químicas (IIQ)Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA)Consejo Superior de Investigaciones Científicas (CSIC) andUniversity of SevillaAvenida Américo Vespucio 4941092SevillaSpain
| |
Collapse
|
41
|
Trouvé J, Zardi P, Al-Shehimy S, Roisnel T, Gramage-Doria R. Enzyme-like Supramolecular Iridium Catalysis Enabling C-H Bond Borylation of Pyridines with meta-Selectivity. Angew Chem Int Ed Engl 2021; 60:18006-18013. [PMID: 33704892 DOI: 10.1002/anie.202101997] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Indexed: 01/14/2023]
Abstract
The use of secondary interactions between substrates and catalysts is a promising strategy to discover selective transition metal catalysts for atom-economy C-H bond functionalization. The most powerful catalysts are found via trial-and-error screening due to the low association constants between the substrate and the catalyst in which small stereo-electronic modifications within them can lead to very different reactivities. To circumvent these limitations and to increase the level of reactivity prediction in these important reactions, we report herein a supramolecular catalyst harnessing Zn⋅⋅⋅N interactions that binds to pyridine-like substrates as tight as it can be found in some enzymes. The distance and spatial geometry between the active site and the substrate binding site is ideal to target unprecedented meta-selective iridium-catalyzed C-H bond borylations with enzymatic Michaelis-Menten kinetics, besides unique substrate selectivity and dormant reactivity patterns.
Collapse
Affiliation(s)
| | - Paolo Zardi
- Univ Rennes, CNRS, ISCR-UMR6226, 35000, Rennes, France
| | | | | | | |
Collapse
|
42
|
Martí-Rujas J, Guo F. Dehydrohalogenation reactions in second-sphere coordination complexes. Dalton Trans 2021; 50:11665-11680. [PMID: 34323900 DOI: 10.1039/d1dt02099d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The latest advances of solid-state dehydrohalogenation and halogenation reactions of hydrogen bonded halometallate salts from the second sphere coordination perspective are reported. Since the second sphere englobes many different materials, our focus has been limited to outer sphere adducts where protonated organic cations act as outer sphere hydrogen bond donors and transition metal anions act as first sphere hydrogen bond acceptors. This is our attempt to analyze dehydrohalogenation/hydrohalogenation reactions viewed as transformations from the second sphere coordination to first sphere coordination of a complex and vice versa. The examples describe a unique solid-state chemistry and reactivity in outer sphere adducts where C-H, N-H and M-X chemical bonds are cleaved and new M-N and H-X bonds are formed (where M = Cu, Zn, Co, Pt, Pd, Hg and X = Cl, Br). The transformations are induced by external stimuli, mainly by mechanochemical and thermal methods. Different reactivities have been observed depending on the lability of the transition metals, the position of the reacting functional groups in the cations and the relative position of organic cations and metal anions. The reverse hydrohalogenation reactions (i.e., from the first sphere coordination to second sphere coordination) via the gas-solid chemisorption process occur even if the materials are non-porous implying a rather dynamic behaviour of these materials. Moreover, due to the implicit changes in the coordination sphere of transition metal ions, dehydrohalogenation/halogenation reactions allow structure-function correlation to be established, for instance involving optical, sensing and magnetic aspects.
Collapse
Affiliation(s)
- Javier Martí-Rujas
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milan, Italy.
| | | |
Collapse
|
43
|
García-Márquez A, Frontera A, Roisnel T, Gramage-Doria R. Ultrashort H δ+H δ- intermolecular distance in a supramolecular system in the solid state. Chem Commun (Camb) 2021; 57:7112-7115. [PMID: 34179902 DOI: 10.1039/d1cc02143e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Herein we report experimental evidence for the shortest intermolecular distance reported for two electronically-different hydrogen atoms in the solid state. The Hδ+Hδ- non-covalent interaction was studied using theoretical calculations indicating that electrostatic and dispersion forces are of paramount importance.
Collapse
Affiliation(s)
- Alfonso García-Márquez
- Univ Rennes, CNRS, ISCR-UMR6226, Rennes F-35000, France. and Facultad de Quimica, Universidad Nacional Autonoma de Mexico, Av. Insurgentes Sur 3000, Ciudad Universitaria, Mexico C.P. 10200, Mexico
| | - Antonio Frontera
- Department of Quimica, Universitat de les Illes Balears, Crta. De Valldemossa km 7.5, Palma de Mallorca 07122, Baleares, Spain.
| | | | | |
Collapse
|
44
|
Leone L, D’Alonzo D, Maglio O, Pavone V, Nastri F, Lombardi A. Highly Selective Indole Oxidation Catalyzed by a Mn-Containing Artificial Mini-Enzyme. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01985] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Linda Leone
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia 21, Napoli 80126, Italy
| | - Daniele D’Alonzo
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia 21, Napoli 80126, Italy
| | - Ornella Maglio
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia 21, Napoli 80126, Italy
- Institute of Biostructures and Bioimages—National Research Council, Via Mezzocannone 16, Napoli 80134, Italy
| | - Vincenzo Pavone
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia 21, Napoli 80126, Italy
| | - Flavia Nastri
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia 21, Napoli 80126, Italy
| | - Angela Lombardi
- Department of Chemical Sciences, University of Napoli Federico II, Via Cintia 21, Napoli 80126, Italy
| |
Collapse
|
45
|
Olivo G, Capocasa G, Del Giudice D, Lanzalunga O, Di Stefano S. New horizons for catalysis disclosed by supramolecular chemistry. Chem Soc Rev 2021; 50:7681-7724. [PMID: 34008654 DOI: 10.1039/d1cs00175b] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The adoption of a supramolecular approach in catalysis promises to address a number of unmet challenges, ranging from activity (unlocking of novel reaction pathways) to selectivity (alteration of the innate selectivity of a reaction, e.g. selective functionalization of C-H bonds) and regulation (switch ON/OFF, sequential catalysis, etc.). Supramolecular tools such as reversible association and recognition, pre-organization of reactants and stabilization of transition states upon binding offer a unique chance to achieve the above goals disclosing new horizons whose potential is being increasingly recognized and used, sometimes reaching the degree of ripeness for practical use. This review summarizes the main developments that have opened such new frontiers, with the aim of providing a guide to researchers approaching the field. We focus on artificial supramolecular catalysts of defined stoichiometry which, under homogeneous conditions, unlock outcomes that are highly difficult if not impossible to attain otherwise, namely unnatural reactivity or selectivity and catalysis regulation. The different strategies recently explored in supramolecular catalysis are concisely presented, and, for each one, a single or very few examples is/are described (mainly last 10 years, with only milestone older works discussed). The subject is divided into four sections in light of the key design principle: (i) nanoconfinement of reactants, (ii) recognition-driven catalysis, (iii) catalysis regulation by molecular machines and (iv) processive catalysis.
Collapse
Affiliation(s)
- Giorgio Olivo
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", Dipartimento di Chimica and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, I-00185 Rome, Italy.
| | - Giorgio Capocasa
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", Dipartimento di Chimica and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, I-00185 Rome, Italy.
| | - Daniele Del Giudice
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", Dipartimento di Chimica and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, I-00185 Rome, Italy.
| | - Osvaldo Lanzalunga
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", Dipartimento di Chimica and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, I-00185 Rome, Italy.
| | - Stefano Di Stefano
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", Dipartimento di Chimica and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, I-00185 Rome, Italy.
| |
Collapse
|
46
|
Trouvé J, Zardi P, Al‐Shehimy S, Roisnel T, Gramage‐Doria R. Enzyme‐like Supramolecular Iridium Catalysis Enabling C−H Bond Borylation of Pyridines with
meta
‐Selectivity. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101997] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Paolo Zardi
- Univ Rennes CNRS, ISCR-UMR6226 35000 Rennes France
| | | | | | | |
Collapse
|