1
|
Moon BU, Li K, Malic L, Morton K, Shao H, Banh L, Viswanathan S, Young EWK, Veres T. Reversible bonding in thermoplastic elastomer microfluidic platforms for harvestable 3D microvessel networks. LAB ON A CHIP 2024; 24:4948-4961. [PMID: 39291591 DOI: 10.1039/d4lc00530a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Transplantable ready-made microvessels have therapeutic potential for tissue regeneration and cell replacement therapy. Inspired by the natural rapid angiogenic sprouting of microvessels in vivo, engineered injectable 3D microvessel networks are created using thermoplastic elastomer (TPE) microfluidic devices. The TPE material used here is flexible, optically transparent, and can be robustly yet reversibly bonded to a variety of plastic substrates, making it a versatile choice for microfluidic device fabrication because it overcomes the weak self-adhesion properties and limited manufacturing options of poly(dimethylsiloxane) (PDMS). By leveraging the reversible bonding characteristics of TPE material templates, we present their utility as an organ-on-a-chip platform for forming and handling microvessel networks, and demonstrate their potential for animal-free tissue generation and transplantation in clinical applications. We first show that TPE-based devices have nearly 6-fold higher bonding strength during the cell culture step compared to PDMS-based devices while simultaneously maintaining a full reversible bond to (PS) culture plates, which are widely used for biological cell studies. We also demonstrate the successful generation of perfusable and interconnected 3D microvessel networks using TPE-PS microfluidic devices on both single and multi-vessel loading platforms. Importantly, after removing the TPE slab, microvessel networks remain intact on the PS substrate without any structural damage and can be effectively harvested following gel digestion. The TPE-based organ-on-a-chip platform offers substantial advantages by facilitating the harvesting procedure and maintaining the integrity of microfluidic-engineered microvessels for transplant. To the best of our knowledge, our TPE-based reversible bonding approach marks the first confirmation of successful retrieval of organ-specific vessel segments from the reversibly-bonded TPE microfluidic platform. We anticipate that the method will find applications in organ-on-a-chip and microphysiological system research, particularly in tissue analysis and vessel engraftment, where flexible and reversible bonding can be utilized.
Collapse
Affiliation(s)
- Byeong-Ui Moon
- Medical Devices, Life Sciences Division, National Research Council of Canada, Boucherville, QC J4B 6Y4, Canada.
- Center for Research and Applications in Fluidic Technologies (CRAFT), Toronto, ON M5S 3G8, Canada
| | - Kebin Li
- Medical Devices, Life Sciences Division, National Research Council of Canada, Boucherville, QC J4B 6Y4, Canada.
- Center for Research and Applications in Fluidic Technologies (CRAFT), Toronto, ON M5S 3G8, Canada
| | - Lidija Malic
- Medical Devices, Life Sciences Division, National Research Council of Canada, Boucherville, QC J4B 6Y4, Canada.
- Center for Research and Applications in Fluidic Technologies (CRAFT), Toronto, ON M5S 3G8, Canada
- Department of Biomedical Engineering, McGill University, Montreal, QC H3A 2B4, Canada
| | - Keith Morton
- Medical Devices, Life Sciences Division, National Research Council of Canada, Boucherville, QC J4B 6Y4, Canada.
- Center for Research and Applications in Fluidic Technologies (CRAFT), Toronto, ON M5S 3G8, Canada
| | - Han Shao
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Lauren Banh
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, ON M5T 0S8, Canada
- Krembil Research Institute, University Health Network, ON M5T 0S8, Canada
| | - Sowmya Viswanathan
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, ON M5T 0S8, Canada
- Krembil Research Institute, University Health Network, ON M5T 0S8, Canada
| | - Edmond W K Young
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Teodor Veres
- Medical Devices, Life Sciences Division, National Research Council of Canada, Boucherville, QC J4B 6Y4, Canada.
- Center for Research and Applications in Fluidic Technologies (CRAFT), Toronto, ON M5S 3G8, Canada
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| |
Collapse
|
2
|
Li X, Chen T, Zheng Z, Gao J, Wu Y, Wu X, Jiang T, Zhu Z, Xu RX. Magnetic Liquid Gating Valve Terminal for Patterned Droplet Generation and Transportation of Highly Viscous Bioactive Fluids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2404952. [PMID: 39380418 DOI: 10.1002/smll.202404952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/10/2024] [Indexed: 10/10/2024]
Abstract
As an open microfluidic technology with excellent anti-fouling and energy-saving properties, liquid gating technology can selectively separate or transfer multiphase fluids, which has shown great application value in the field of biomedical engineering. However, no study has demonstrated that liquid gating technology has the ability to transfer high-viscosity fluids and biologically active substances, and current liquid gating valves are unable to realize smart-responsive pulsed-patterned transfer, which severely limits their application scope. In this paper, liquid gating technology is combined with magnetically responsive materials to prepare a liquid-based magnetic porous membrane (LMPM) with excellent magnetostatic deformation capability and antifouling properties. On this basis, a magnetic liquid gating valve terminal (MLGVT) with patterning transfer capability is developed, and the feasibility of liquid gating technology for transferring high-viscosity fluids and hydrogel bioinks is explored. Meanwhile, a flexible MLGVT is prepared and realized for targeted drug delivery. This study expands the potential of liquid gating technology for drug delivery, cellular transport and smart patches.
Collapse
Affiliation(s)
- Xin Li
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215000, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Tianao Chen
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215000, China
- School of Biomedical Engineering, Division of Life Sciences and Medicine, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, China
| | - Zhiyuan Zheng
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jie Gao
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215000, China
- School of Biomedical Engineering, Division of Life Sciences and Medicine, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, China
| | - Yongqi Wu
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215000, China
- School of Biomedical Engineering, Division of Life Sciences and Medicine, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, China
| | - Xizhi Wu
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215000, China
- School of Biomedical Engineering, Division of Life Sciences and Medicine, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, China
| | - Tao Jiang
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215000, China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Zhiqiang Zhu
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Ronald X Xu
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215000, China
- School of Biomedical Engineering, Division of Life Sciences and Medicine, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, China
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
3
|
Haack AJ, Brown LG, Goldstein AJ, Mulimani P, Berthier J, Viswanathan AR, Kopyeva I, Whitten JM, Lin A, Nguyen SH, Leahy TP, Bouker EE, Padgett RM, Mazzawi NA, Tokihiro JC, Bretherton RC, Wu A, Tapscott SJ, DeForest CA, Popowics TE, Berthier E, Sniadecki NJ, Theberge AB. Suspended Tissue Open Microfluidic Patterning (STOMP). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.04.616662. [PMID: 39416011 PMCID: PMC11482760 DOI: 10.1101/2024.10.04.616662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Cell-laden hydrogel constructs suspended between pillars are powerful tools for modeling tissue structure and physiology, though current fabrication techniques often limit them to uniform compositions. In contrast, tissues are complex in nature with spatial arrangements of cell types and extracellular matrices. Thus, we present Suspended Tissue Open Microfluidic Patterning (STOMP), which utilizes a removable, open microfluidic patterning channel to pattern multiple spatial regions across a single suspended tissue. The STOMP platform contains capillary pinning features along the open channel that controls the fluid front, allowing multiple cell and extracellular matrix precursors to be pipetted into one tissue. We have used this technique to pattern suspended tissues with multiple regional components using a variety of native and synthetic extracellular matrices, including fibrin, collagen, and poly(ethylene glycol). Here, we demonstrate that STOMP models a region of fibrosis in a functional heart tissue and a bone-ligament junction in periodontal tissues. Additionally, the STOMP platform can be customized to allow patterning of suspended cores and more spatial configurations, enhancing its utility in complex tissue modeling. STOMP is a versatile technique for generating suspended tissue models with increased control over cell and hydrogel composition to model interfacial tissue regions in a suspended tissue.
Collapse
Affiliation(s)
- Amanda J. Haack
- Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
- Medical Scientist Training Program, University of Washington School of Medicine, Seattle, WA, 98195 USA
| | - Lauren G. Brown
- Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
| | - Alex J. Goldstein
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109 USA
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195 USA
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, 98195 USA
| | - Priti Mulimani
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109 USA
- Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, 98195 USA
| | - Jean Berthier
- Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
| | | | - Irina Kopyeva
- Department of Bioengineering, University of Washington, Seattle, WA, 98195 USA
| | - Jamison M. Whitten
- Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
| | - Ariel Lin
- Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA, 98109 USA
| | - Serena H. Nguyen
- Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
| | - Thomas P. Leahy
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109 USA
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195 USA
| | - Ella E. Bouker
- Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
| | - Ruby M. Padgett
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109 USA
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195 USA
| | - Natalie A. Mazzawi
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109 USA
- Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, 98195 USA
- Department of Microbiology, University of Washington, Seattle, WA, 98195 USA
| | - Jodie C. Tokihiro
- Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
| | - Ross C. Bretherton
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109 USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195 USA
| | - Aaliyah Wu
- Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
| | - Stephen J. Tapscott
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Neurology, University of Washington, Seattle WA 98195, USA
| | - Cole A. DeForest
- Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109 USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195 USA
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA, 98109 USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195 USA
- Institute for Protein Design, University of Washington, Seattle, WA, 98195 USA
| | - Tracy E. Popowics
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109 USA
- Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, 98195 USA
| | - Erwin Berthier
- Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
| | - Nathan J. Sniadecki
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98109 USA
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, 98195 USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195 USA
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195 USA
| | - Ashleigh B. Theberge
- Department of Chemistry, University of Washington, Seattle, WA, 98195 USA
- Department of Urology, University of Washington School of Medicine, Seattle, WA, 98195 USA
| |
Collapse
|
4
|
Liu X, Gao M, Li B, Liu R, Chong Z, Gu Z, Zhou K. Bioinspired Capillary Transistors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310797. [PMID: 39139014 DOI: 10.1002/adma.202310797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 05/29/2024] [Indexed: 08/15/2024]
Abstract
Inspired by the unidirectional liquid spreading on Nepenthes peristome, Araucaria leaf, butterfly wings, etc., various microfluidic devices have been developed for water collection, irrigation, physical/chemical reaction, and oil-water separation. Despite extensive progress, most natural and artificial structures fail to enhance the Laplace pressure difference or capillary force, thus suffering from a low unidirectional capillary height (<30 mm). In this work, asymmetric re-entrant structures with long overhangs and connected forward/lateral microchannels are fabricated by 3D printing, resulting in a significantly increased unidirectional capillary height of 102.3 mm for water, which approximately corresponds to the theoretical limit. The overhangs can partially overlap the forward microchannels of the front structures without direct contact, thus enhancing the Laplace pressure difference and capillary force simultaneously. Based on asymmetric and symmetric re-entrant structures, capillary transistors are proposed and realized to programmably adjust the capillary direction, height, and width, which are envisioned to function as switches/valves and amplifiers/attenuators for highly efficient liquid patterning, desalination, and biochemical microreaction in 3D space.
Collapse
Affiliation(s)
- Xiaojiang Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Ming Gao
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Boyuan Li
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Ruoyu Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Zhejun Chong
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Zhongze Gu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Kun Zhou
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
5
|
Nebuloni F, Do QB, Cook PR, Walsh EJ, Wade-Martins R. A fluid-walled microfluidic platform for human neuron microcircuits and directed axotomy. LAB ON A CHIP 2024; 24:3252-3264. [PMID: 38841815 PMCID: PMC11198392 DOI: 10.1039/d4lc00107a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/27/2024] [Indexed: 06/07/2024]
Abstract
In our brains, different neurons make appropriate connections; however, there remain few in vitro models of such circuits. We use an open microfluidic approach to build and study neuronal circuits in vitro in ways that fit easily into existing bio-medical workflows. Dumbbell-shaped circuits are built in minutes in standard Petri dishes; the aqueous phase is confined by fluid walls - interfaces between cell-growth medium and an immiscible fluorocarbon, FC40. Conditions are established that ensure post-mitotic neurons derived from human induced pluripotent stem cells (iPSCs) plated in one chamber of a dumbbell remain where deposited. After seeding cortical neurons on one side, axons grow through the connecting conduit to ramify amongst striatal neurons on the other - an arrangement mimicking unidirectional cortico-striatal connectivity. We also develop a moderate-throughput non-contact axotomy assay. Cortical axons in conduits are severed by a media jet; then, brain-derived neurotrophic factor and striatal neurons in distal chambers promote axon regeneration. As additional conduits and chambers are easily added, this opens up the possibility of mimicking complex neuronal networks, and screening drugs for their effects on connectivity.
Collapse
Affiliation(s)
- Federico Nebuloni
- Osney Thermofluids Institute, Department of Engineering Science, University of Oxford, Osney Mead, Oxford OX2 0ES, UK.
- The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Quyen B Do
- Oxford Parkinson's Disease Centre and Department of Physiology, Anatomy and Genetics, University of Oxford, South Park Road, Oxford OX1 3QU, UK.
- Kavli Institute for Neuroscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Park Road, Oxford OX1 3QU, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Peter R Cook
- The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Edmond J Walsh
- Osney Thermofluids Institute, Department of Engineering Science, University of Oxford, Osney Mead, Oxford OX2 0ES, UK.
| | - Richard Wade-Martins
- Oxford Parkinson's Disease Centre and Department of Physiology, Anatomy and Genetics, University of Oxford, South Park Road, Oxford OX1 3QU, UK.
- Kavli Institute for Neuroscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Park Road, Oxford OX1 3QU, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| |
Collapse
|
6
|
Ge T, Hu W, Zhang Z, He X, Wang L, Han X, Dai Z. Open and closed microfluidics for biosensing. Mater Today Bio 2024; 26:101048. [PMID: 38633866 PMCID: PMC11022104 DOI: 10.1016/j.mtbio.2024.101048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/19/2024] Open
Abstract
Biosensing is vital for many areas like disease diagnosis, infectious disease prevention, and point-of-care monitoring. Microfluidics has been evidenced to be a powerful tool for biosensing via integrating biological detection processes into a palm-size chip. Based on the chip structure, microfluidics has two subdivision types: open microfluidics and closed microfluidics, whose operation methods would be diverse. In this review, we summarize fundamentals, liquid control methods, and applications of open and closed microfluidics separately, point out the bottlenecks, and propose potential directions of microfluidics-based biosensing.
Collapse
Affiliation(s)
- Tianxin Ge
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, PR China
| | - Wenxu Hu
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, PR China
| | - Zilong Zhang
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, PR China
| | - Xuexue He
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, PR China
| | - Liqiu Wang
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, PR China
| | - Xing Han
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, PR China
| | - Zong Dai
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, PR China
| |
Collapse
|
7
|
Orme B, Torun H, Unthank M, Fu YQ, Ford B, Agrawal P. Capillary wave tweezer. Sci Rep 2024; 14:12448. [PMID: 38816398 DOI: 10.1038/s41598-024-63154-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/25/2024] [Indexed: 06/01/2024] Open
Abstract
Precise control of microparticle movement is crucial in high throughput processing for various applications in scalable manufacturing, such as particle monolayer assembly and 3D bio-printing. Current techniques using acoustic, electrical and optical methods offer precise manipulation advantages, but their scalability is restricted due to issues such as, high input powers and complex fabrication and operation processes. In this work, we introduce the concept of capillary wave tweezers, where mm-scale capillary wave fields are dynamically manipulated to control the position of microparticles in a liquid volume. Capillary waves are generated in an open liquid volume using low frequency vibrations (in the range of 10-100 Hz) to trap particles underneath the nodes of the capillary waves. By shifting the displacement nodes of the waves, the trapped particles are precisely displaced. Using analytical and numerical models, we identify conditions under which a stable control over particle motion is achieved. By showcasing the ability to dynamically control the movement of microparticles, our concept offers a simple and high throughput method to manipulate particles in open systems.
Collapse
Affiliation(s)
- Bethany Orme
- Smart Materials and Surfaces Laboratory, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Hamdi Torun
- Smart Materials and Surfaces Laboratory, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Matthew Unthank
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Yong-Qing Fu
- Smart Materials and Surfaces Laboratory, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Bethan Ford
- Smart Materials and Surfaces Laboratory, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Prashant Agrawal
- Smart Materials and Surfaces Laboratory, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.
| |
Collapse
|
8
|
Holler C, Taylor RW, Schambony A, Möckl L, Sandoghdar V. A paintbrush for delivery of nanoparticles and molecules to live cells with precise spatiotemporal control. Nat Methods 2024; 21:512-520. [PMID: 38347139 PMCID: PMC10927540 DOI: 10.1038/s41592-024-02177-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 01/08/2024] [Indexed: 03/13/2024]
Abstract
Delivery of very small amounts of reagents to the near-field of cells with micrometer spatial precision and millisecond time resolution is currently out of reach. Here we present μkiss as a micropipette-based scheme for brushing a layer of small molecules and nanoparticles onto the live cell membrane from a subfemtoliter confined volume of a perfusion flow. We characterize our system through both experiments and modeling, and find excellent agreement. We demonstrate several applications that benefit from a controlled brush delivery, such as a direct means to quantify local and long-range membrane mobility and organization as well as dynamical probing of intercellular force signaling.
Collapse
Affiliation(s)
- Cornelia Holler
- Max Planck Institute for the Science of Light, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
- Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Richard William Taylor
- Max Planck Institute for the Science of Light, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Alexandra Schambony
- Max Planck Institute for the Science of Light, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
- Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Leonhard Möckl
- Max Planck Institute for the Science of Light, Erlangen, Germany
| | - Vahid Sandoghdar
- Max Planck Institute for the Science of Light, Erlangen, Germany.
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany.
- Department of Physics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
9
|
Ye WQ, Zhang W, Xu ZR. Shape-memory microfluidic chips for fluid and droplet manipulation. BIOMICROFLUIDICS 2024; 18:021301. [PMID: 38566823 PMCID: PMC10987193 DOI: 10.1063/5.0188227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Abstract
Fluid manipulation is an important foundation of microfluidic technology. Various methods and devices have been developed for fluid control, such as electrowetting-on-dielectric-based digital microfluidic platforms, microfluidic pumps, and pneumatic valves. These devices enable precise manipulation of small volumes of fluids. However, their complexity and high cost limit the commercialization and widespread adoption of microfluidic technology. Shape memory polymers as smart materials can adjust their shape in response to external stimuli. By integrating shape memory polymers into microfluidic chips, new possibilities for expanding the application areas of microfluidic technology emerge. These shape memory polymers can serve as actuators or regulators to drive or control fluid flow in microfluidic systems, offering innovative approaches for fluid manipulation. Due to their unique properties, shape memory polymers provide a new solution for the construction of intelligent and automated microfluidic systems. Shape memory microfluidic chips are expected to be one of the future directions in the development of microfluidic technology. This article offers a summary of recent research achievements in the field of shape memory microfluidic chips for fluid and droplet manipulation and provides insights into the future development direction of shape memory microfluidic devices.
Collapse
Affiliation(s)
| | - Wei Zhang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Zhang-Run Xu
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, China
| |
Collapse
|
10
|
Zhu Z, Chen T, Huang F, Wang S, Zhu P, Xu RX, Si T. Free-Boundary Microfluidic Platform for Advanced Materials Manufacturing and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304840. [PMID: 37722080 DOI: 10.1002/adma.202304840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/14/2023] [Indexed: 09/20/2023]
Abstract
Microfluidics, with its remarkable capacity to manipulate fluids and droplets at the microscale, has emerged as a powerful platform in numerous fields. In contrast to conventional closed microchannel microfluidic systems, free-boundary microfluidic manufacturing (FBMM) processes continuous precursor fluids into jets or droplets in a relatively spacious environment. FBMM is highly regarded for its superior flexibility, stability, economy, usability, and versatility in the manufacturing of advanced materials and architectures. In this review, a comprehensive overview of recent advancements in FBMM is provided, encompassing technical principles, advanced material manufacturing, and their applications. FBMM is categorized based on the foundational mechanisms, primarily comprising hydrodynamics, interface effects, acoustics, and electrohydrodynamic. The processes and mechanisms of fluid manipulation are thoroughly discussed. Additionally, the manufacturing of advanced materials in various dimensions ranging from zero-dimensional to three-dimensional, as well as their diverse applications in material science, biomedical engineering, and engineering are presented. Finally, current progress is summarized and future challenges are prospected. Overall, this review highlights the significant potential of FBMM as a powerful tool for advanced materials manufacturing and its wide-ranging applications.
Collapse
Affiliation(s)
- Zhiqiang Zhu
- Department of Precision Machinery and Precision Instrumentation, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Tianao Chen
- School of Biomedical Engineering, Division of Life Sciences and Medicine, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, China
| | - Fangsheng Huang
- Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Shiyu Wang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Pingan Zhu
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Ronald X Xu
- Department of Precision Machinery and Precision Instrumentation, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui, 230026, China
- School of Biomedical Engineering, Division of Life Sciences and Medicine, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, China
| | - Ting Si
- Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
11
|
Dong R, Wang L, Li Z, Jiao J, Wu Y, Feng Z, Wang X, Chen M, Cui C, Lu Y, Jiang X. Stretchable, Self-Rolled, Microfluidic Electronics Enable Conformable Neural Interfaces of Brain and Vagus Neuromodulation. ACS NANO 2024; 18:1702-1713. [PMID: 38165231 DOI: 10.1021/acsnano.3c10028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Implantable neuroelectronic interfaces have gained significant importance in long-term brain-computer interfacing and neuroscience therapy. However, due to the mechanical and geometrical mismatches between the electrode-nerve interfaces, personalized and compatible neural interfaces remain serious issues for peripheral neuromodulation. This study introduces the stretchable and flexible electronics class as a self-rolled neural interface for neurological diagnosis and modulation. These stretchable electronics are made from liquid metal-polymer conductors with a high resolution of 30 μm using microfluidic printing technology. They exhibit high conformability and stretchability (over 600% strain) during body movements and have good biocompatibility during long-term implantation (over 8 weeks). These stretchable electronics offer real-time monitoring of epileptiform activities with excellent conformability to soft brain tissue. The study also develops self-rolled microfluidic electrodes that tightly wind the deforming nerves with minimal constraint (160 μm in diameter). The in vivo signal recording of the vagus and sciatic nerve demonstrates the potential of self-rolled cuff electrodes for sciatic and vagus neural modulation by recording action potential and reducing heart rate. The findings of this study suggest that the robust, easy-to-use self-rolled microfluidic electrodes may provide useful tools for compatible neuroelectronics and neural modulation.
Collapse
Affiliation(s)
- Ruihua Dong
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, No. 369, Dengyun Road, Gaoxin District, Qingdao, Shandong 266013, P. R. China
| | - Lulu Wang
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen 518055, P. R. China
| | - Zebin Li
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Jincheng Jiao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, P. R. China
| | - Yan Wu
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Zhuowei Feng
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Xufang Wang
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen 518055, P. R. China
| | - Minglong Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, P. R. China
| | - Chang Cui
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, P. R. China
| | - Yi Lu
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen 518055, P. R. China
| | - Xingyu Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| |
Collapse
|
12
|
Zhang Q, Lin L, Yi X, Xie T, Xing G, Li Y, Wang X, Lin JM. Microfluidic Sampling of Undissolved Components from Subcellular Regions of Living Single Cells for Mass Spectrometry Analysis. Anal Chem 2023; 95:18082-18090. [PMID: 38032315 DOI: 10.1021/acs.analchem.3c03086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Precise sampling of undissolved chemical components from subcellular regions of living single cells is a prerequisite for their in-depth analysis, which could promote understanding of subtle early stage physiological or pathological processes. Here we report a microfluidic method to extract undissolved components from subcellular regions for MS analysis. The target single cell was isolated by the microchamber beneath the microfluidic probe and washed by the injected biocompatible isotonic glucose aqueous solution (IGAS). Then, the sampling solvent was injected to extract undissolved components from the expected subcellular region of the living single cell, where the position and size of the sampling region could be controlled. The components immobilized by undissolved cellular structures were proven to be successfully extracted. Since unextracted subcellular regions were protected by IGAS, the single cell could survive after a tiny part was extracted, providing the possibility of repetitive sampling of the same living cell. Phospholipids extracted from the subcellular regions were successfully identified. The results demonstrated the feasibility of our method for subcellular sampling and analysis.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Ling Lin
- Department of Bioengineering, Beijing Technology and Business University, Beijing 100048, China
| | - Xizhen Yi
- Department of Chemistry, Tshinghua University, Beijing 100084, China
| | - Tianze Xie
- Department of Chemistry, Tshinghua University, Beijing 100084, China
| | - Gaowa Xing
- Department of Chemistry, Tshinghua University, Beijing 100084, China
| | - Yuxuan Li
- Department of Chemistry, Tshinghua University, Beijing 100084, China
| | - Xiaorui Wang
- Department of Bioengineering, Beijing Technology and Business University, Beijing 100048, China
| | - Jin-Ming Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| |
Collapse
|
13
|
Murakami T, Teratani H, Aoki D, Noguchi M, Tsugane M, Suzuki H. Single-cell trapping and retrieval in open microfluidics. iScience 2023; 26:108323. [PMID: 38026163 PMCID: PMC10656270 DOI: 10.1016/j.isci.2023.108323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 09/28/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Among various single-cell analysis platforms, hydrodynamic cell trapping systems remain relevant because of their versatility. Among those, deterministic hydrodynamic cell-trapping systems have received significant interest; however, their applications are limited because trapped cells are kept within the closed microchannel, thus prohibiting access to external cell-picking devices. In this study, we develop a hydrodynamic cell-trapping system in an open microfluidics architecture to allow external access to trapped cells. A technique to render only the inside of a polydimethylsiloxane (PDMS) microchannel hydrophilic is developed, which allows the precise confinement of spontaneous capillary flow in the open-type microchannel with a width on the order of several tens of micrometers. Efficient trapping of single beads and single cells is achieved, in which trapped cells can be retrieved via automated robotic pipetting. The present system can facilitate the development of new single-cell analytical systems by bridging between microfluidic devices and macro-scale apparatus used in conventional biology.
Collapse
Affiliation(s)
- Tomoki Murakami
- Department of Precision Mechanics, Graduate School of Science and Engineering, Chuo University, Kasuga 1-13-27, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Hiroto Teratani
- Department of Precision Mechanics, Graduate School of Science and Engineering, Chuo University, Kasuga 1-13-27, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Dai’ichiro Aoki
- Aeternus Co., Ltd, Minamidai 2-1-14, Fujimino, Saitama 356-0036, Japan
| | - Masao Noguchi
- Caravell Co., Ltd, Surugadai 1-29-39, Funabashi, Chiba 273-0862, Japan
| | - Mamiko Tsugane
- Department of Precision Mechanics, Graduate School of Science and Engineering, Chuo University, Kasuga 1-13-27, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Hiroaki Suzuki
- Department of Precision Mechanics, Graduate School of Science and Engineering, Chuo University, Kasuga 1-13-27, Bunkyo-ku, Tokyo 112-8551, Japan
| |
Collapse
|
14
|
Zhang Q, Xie T, Yi X, Xing G, Feng S, Chen S, Li Y, Lin JM. Microfluidic Aqueous Two-Phase Focusing of Chemical Species for In Situ Subcellular Stimulation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45640-45650. [PMID: 37733946 DOI: 10.1021/acsami.3c09665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Confinement of chemical species in a controllable micrometer-level (several to a dozen micrometers) space in an aqueous environment is essential for precisely manipulating chemical events in subcellular regions. However, rapid diffusion and hard-to-control micrometer-level fluids make it a tough challenge. Here, a versatile open microfluidic method based on an aqueous two-phase system (ATPS) is developed to restrict species inside an open space with micron-level width. Unequal standard chemical potentials of the chemical species in two phases and space-time correspondence in the microfluidic system prevent outward diffusion across the phase interface, retaining the target species inside its preferred phase flow and creating a sharp boundary with a dramatic concentration change. Then, the chemical flow (the preferred phase with target chemical species) is precisely manipulated by a microfluidic probe, which can be compressed to a micron-level width and aimed at an arbitrary position of the sample. As a demonstration of the feasibility and versatility of the strategy, chemical flow is successfully applied to subcellular regions of various kinds of living single cells. Subcellular regions are successfully labeled (cytomembrane and mitochondria) and damaged. Healing-regeneration behaviors of living single cells are triggered by subcellular damage and analyzed. The method is relatively general regarding the species of chemicals and biosamples, which could promote deeper cell research.
Collapse
Affiliation(s)
- Qiang Zhang
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Tianze Xie
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xizhen Yi
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Gaowa Xing
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Shuo Feng
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Shulang Chen
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yuxuan Li
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jin-Ming Lin
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
15
|
Hou Y, Yao H, Lin JM. Recent advancements in single-cell metabolic analysis for pharmacological research. J Pharm Anal 2023; 13:1102-1116. [PMID: 38024859 PMCID: PMC10658044 DOI: 10.1016/j.jpha.2023.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/12/2023] [Accepted: 08/18/2023] [Indexed: 12/01/2023] Open
Abstract
Cellular heterogeneity is crucial for understanding tissue biology and disease pathophysiology. Pharmacological research is being advanced by single-cell metabolic analysis, which offers a technique to identify variations in RNA, proteins, metabolites, and drug molecules in cells. In this review, the recent advancement of single-cell metabolic analysis techniques and their applications in drug metabolism and drug response are summarized. High-precision and controlled single-cell isolation and manipulation are provided by microfluidics-based methods, such as droplet microfluidics, microchamber, open microfluidic probe, and digital microfluidics. They are used in tandem with variety of detection techniques, including optical imaging, Raman spectroscopy, electrochemical detection, RNA sequencing, and mass spectrometry, to evaluate single-cell metabolic changes in response to drug administration. The advantages and disadvantages of different techniques are discussed along with the challenges and future directions for single-cell analysis. These techniques are employed in pharmaceutical analysis for studying drug response and resistance pathway, therapeutic targets discovery, and in vitro disease model evaluation.
Collapse
Affiliation(s)
- Ying Hou
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hongren Yao
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jin-Ming Lin
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
16
|
Shang Y, Xing G, Lin H, Chen S, Xie T, Lin JM. Portable Biosensor with Bimetallic Metal-Organic Frameworks for Visual Detection and Elimination of Bacteria. Anal Chem 2023; 95:13368-13375. [PMID: 37610723 DOI: 10.1021/acs.analchem.3c02841] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
A multifunctional platform that meets the demands of both bacterial detection and elimination is urgently needed because of their harm to human health. Herein, a "sense-and-treat" biosensor was developed by using immunomagnetic beads (IMBs) and AgPt nanoparticle-decorated PCN-223-Fe (AgPt/PCN-223-Fe, PCN stands for porous coordination network) metal-organic frameworks (MOFs). The synthesized AgPt/PCN-223-Fe not only exhibited excellent peroxidase-like activity but also could efficiently kill bacteria under near infrared (NIR) irradiation. This biosensor enabled the colorimetric detection of E. coli O157:H7 in the range of 103-108 CFU/mL with a limit of detection of 276 CFU/mL, accompanied with high selectivity, good reproducibility, and wide applicability in diverse real samples. Furthermore, the biosensor possessed a highly effective antibacterial rate of 99.94% against E. coli O157:H7 under 808 nm light irradiation for 20 min. This strategy can provide a reference for the design of novel versatile biosensors for bacterial discrimination and antibacterial applications.
Collapse
Affiliation(s)
- Yuting Shang
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | - Gaowa Xing
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | - Haifeng Lin
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | - Shulang Chen
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | - Tianze Xie
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| | - Jin-Ming Lin
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
17
|
Chen DP, Wu PY, Lin YH. Irregular Antibody Screening Using a Microdroplet Platform. BIOSENSORS 2023; 13:869. [PMID: 37754103 PMCID: PMC10526156 DOI: 10.3390/bios13090869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/28/2023]
Abstract
The screening procedure for antibodies is considered the most tedious among the three pretransfusion operations, i.e., ABO and Rhesus (Rh) typing, irregular antibody screening/identification, and crossmatching tests. The commonly used screening method for irregular antibodies in clinics at present is a manual polybrene test (MP). The MP test involves numerous reagent replacement and centrifuge procedures, and the sample volume is expected to be relatively less. Herein, screening red blood cells (RBCs) and serum irregular antibodies are encapsulated in microdroplets with a diameter of ~300 μm for a hemagglutination reaction. Owing to the advantage of spatial limitation in microdroplets, screening RBCs and irregular antibodies can be directly agglutinated, thereby eliminating the need for centrifugation and the addition of reagents to promote agglutination, as required by the MP method. Furthermore, the results for a large number of repeated tests can be concurrently obtained, further simplifying the steps of irregular antibody screening and increasing accuracy. Eight irregular antibodies are screened using the proposed platform, and the results are consistent with the MP method. Moreover, the volume of blood samples and antibodies can be reduced to 10 μL and 5 μL, respectively, which is ten times less than that using the MP method.
Collapse
Affiliation(s)
- Ding-Ping Chen
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan City 33305, Taiwan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Pei-Yu Wu
- Department of Electronic Engineering, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Yen-Heng Lin
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan City 33305, Taiwan
- Department of Biomedical Engineering, Chang Gung University, Taoyuan City 33302, Taiwan
| |
Collapse
|
18
|
Liu X, Li B, Gu Z, Zhou K. 4D Printing of Butterfly Scale-Inspired Structures for Wide-Angle Directional Liquid Transport. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207640. [PMID: 37078893 DOI: 10.1002/smll.202207640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Indexed: 05/03/2023]
Abstract
Unidirectional liquid transport has been extensively explored for water/fog harvesting, electrochemical sensing, and desalination. However, current research mainly focuses on linear liquid transport (transport angle α = 0°), which exhibits hindered lateral liquid spreading and low unidirectional transport efficiency. Inspired by the wide-angle (0° < α < 180°) liquid transport on butterfly wings, this work successfully achieves linear (α = 0°), wide-angle, and even ultra-wide-angle (α = 180°) liquid transport by four-dimensional (4D) printing of butterfly scale-inspired re-entrant structures. These asymmetric re-entrant structures can achieve unidirectional liquid transport, and their layout can control the Laplace pressure in the forward (structure-tilting) and lateral directions to adjust the transport angle. Specifically, high transport efficiency and programmable forward/lateral transport paths are simultaneously achieved by the ultra-wide-angle transport, where liquid fills the lateral path before being transported forward. Moreover, the ultra-wide-angle transport is also validated in 3D space, which provides an innovative platform for advanced biochemical microreaction, large-area evaporation, and self-propelled oil-water separation.
Collapse
Affiliation(s)
- Xiaojiang Liu
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Boyuan Li
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Kun Zhou
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
19
|
Ma ZC, Fan J, Wang H, Chen W, Yang GZ, Han B. Microfluidic Approaches for Microactuators: From Fabrication, Actuation, to Functionalization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300469. [PMID: 36855777 DOI: 10.1002/smll.202300469] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Indexed: 06/02/2023]
Abstract
Microactuators can autonomously convert external energy into specific mechanical motions. With the feature sizes varying from the micrometer to millimeter scale, microactuators offer many operation and control possibilities for miniaturized devices. In recent years, advanced microfluidic techniques have revolutionized the fabrication, actuation, and functionalization of microactuators. Microfluidics can not only facilitate fabrication with continuously changing materials but also deliver various signals to stimulate the microactuators as desired, and consequently improve microfluidic chips with multiple functions. Herein, this cross-field that systematically correlates microactuator properties and microfluidic functions is comprehensively reviewed. The fabrication strategies are classified into two types according to the flow state of the microfluids: stop-flow and continuous-flow prototyping. The working mechanism of microactuators in microfluidic chips is discussed in detail. Finally, the applications of microactuator-enriched functional chips, which include tunable imaging devices, micromanipulation tools, micromotors, and microsensors, are summarized. The existing challenges and future perspectives are also discussed. It is believed that with the rapid progress of this cutting-edge field, intelligent microsystems may realize high-throughput manipulation, characterization, and analysis of tiny objects and find broad applications in various fields, such as tissue engineering, micro/nanorobotics, and analytical devices.
Collapse
Affiliation(s)
- Zhuo-Chen Ma
- Department of Automation, Shanghai Jiao Tong University, Shanghai, 200240, China
- Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai, 200240, China
- Shanghai Engineering Research Center of Intelligent Control and Management, Shanghai, 200240, China
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| | - Jiahao Fan
- Department of Automation, Shanghai Jiao Tong University, Shanghai, 200240, China
- Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai, 200240, China
- Shanghai Engineering Research Center of Intelligent Control and Management, Shanghai, 200240, China
| | - Hesheng Wang
- Department of Automation, Shanghai Jiao Tong University, Shanghai, 200240, China
- Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai, 200240, China
- Shanghai Engineering Research Center of Intelligent Control and Management, Shanghai, 200240, China
| | - Weidong Chen
- Department of Automation, Shanghai Jiao Tong University, Shanghai, 200240, China
- Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai, 200240, China
- Shanghai Engineering Research Center of Intelligent Control and Management, Shanghai, 200240, China
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| | - Guang-Zhong Yang
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| | - Bing Han
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
20
|
Ye WQ, Liu XP, Ma RF, Yang CG, Xu ZR. Open-channel microfluidic chip based on shape memory polymer for controllable liquid transport. LAB ON A CHIP 2023; 23:2068-2074. [PMID: 36928455 DOI: 10.1039/d3lc00027c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Open microfluidics has attracted increasing attention over the last decade because of its flexibility and simplicity with respect to cell culture and clinical diagnosis. However, traditional valves and pumps are difficult to integrate on open-channel microfluidic chips, in which a liquid is usually driven by capillary forces. Poor fluid control performance is a common drawback of open microfluidics. Herein, we proposed a method for controlling the liquid flow in open channels by controlling the continuous Laplace pressure induced by the deformation of the shape memory microstructures. The uniformly arranged cuboidal microcolumns in the open channels have magnetic/light dual responses, and the bending angle of the microcolumns can be controlled by adjusting Laplace pressure using near-infrared laser irradiation in a magnetic field. Laplace pressure and capillary force drove the liquid flow together, and the controllable fluid transport was realized by adjusting the hydrophilicity of the channel surface and the bending angle of the microcolumns. We demonstrated the controllability of the flow rate and the directional transport of water along a preset path. In addition, the start and stop of water transport were realized via local hydrophobic modification. The proposed strategy improves poor fluid control in traditional open systems and makes fluid flow highly controllable. We tried to extract and detect rhodamine B in tiny droplets on the open microfluidic chip, demonstrating the advantages of the proposed strategy in the separation and analysis of tiny samples.
Collapse
Affiliation(s)
- Wen-Qi Ye
- Research Center for Analytical Sciences, Northeastern University, Shenyang, 110819, China.
| | - Xiao-Peng Liu
- Research Center for Analytical Sciences, Northeastern University, Shenyang, 110819, China.
| | - Ruo-Fei Ma
- Research Center for Analytical Sciences, Northeastern University, Shenyang, 110819, China.
| | - Chun-Guang Yang
- Research Center for Analytical Sciences, Northeastern University, Shenyang, 110819, China.
| | - Zhang-Run Xu
- Research Center for Analytical Sciences, Northeastern University, Shenyang, 110819, China.
| |
Collapse
|
21
|
Berli CLA, Bellino MG. Toward droplets displaying life-like interaction behaviors. BIOMICROFLUIDICS 2023; 17:021302. [PMID: 37056636 PMCID: PMC10089683 DOI: 10.1063/5.0142115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/24/2023] [Indexed: 06/19/2023]
Abstract
Developments in synthetic biology usually bring the conception of individual artificial cells. A key feature of living systems is, however, the interaction between individuals, in which living units can interact autonomously and display a role differentiation such as the case of entities chasing each other. On the other hand, droplets have become a very useful and exciting medium for modern microengineering and biomedical technologies. In this Perspective, we show a brief discussion-outlook of different approaches to recreate predator-prey interactions in both swimmer and crawling droplet systems toward a new generation of synthetic life with impact in both fundamental insights and relevant applications.
Collapse
Affiliation(s)
- Claudio L. A. Berli
- INTEC (Universidad Nacional del Litoral-CONICET) Predio CCT CONICET Santa Fe, RN 168, 3000 Santa Fe, Argentina
| | - Martín G. Bellino
- Instituto de Nanociencia y Nanotecnología (CNEA-CONICET), Av. Gral. Paz 1499, San Martín, Buenos Aires, Argentina
| |
Collapse
|
22
|
Recent advances in nanowire sensor assembly using laminar flow in open space. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
23
|
Recent development of microfluidic biosensors for the analysis of antibiotic residues. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Xing G, Ai J, Wang N, Pu Q. Recent progress of smartphone-assisted microfluidic sensors for point of care testing. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
25
|
An integrated microfluidic device for the simultaneous detection of multiple antibiotics. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
26
|
An automated microfluidic system with one-dimensional beads array for multiplexed torch detection at point-of-care testing. Biomed Microdevices 2022; 24:38. [DOI: 10.1007/s10544-022-00629-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2022] [Indexed: 11/05/2022]
|
27
|
Liu Y, Fan Z, Qiao L, Liu B. Advances in microfluidic strategies for single-cell research. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
Ren J, Wang N, Guo P, Fan Y, Lin F, Wu J. Recent advances in microfluidics-based cell migration research. LAB ON A CHIP 2022; 22:3361-3376. [PMID: 35993877 DOI: 10.1039/d2lc00397j] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cell migration is crucial for many biological processes, including normal development, immune response, and tissue homeostasis and many pathological processes such as cancer metastasis and wound healing. Microfluidics has revolutionized the research in cell migration since its inception as it reduces the cost of studies and allows precise manipulation of different parameters that affect cell migratory response. Over the past decade, the field has made great strides in many directions, such as techniques for better control of the cellular microenvironment, application-oriented physiological-like models, and machine-assisted cell image analysis methods. Here we review recent developments in the field of microfluidic cell migration through the following aspects: 1) the co-culture models for studying host-pathogen interactions at single-cell resolution; 2) the spatiotemporal manipulation of the chemical gradients guiding cell migration; 3) the organ-on-chip models to study cell transmigration; and 4) the deep learning image processing strategies for cell migration data analysis. We further discuss the challenges, possible improvement and future perspectives of using microfluidic techniques to study cell migration.
Collapse
Affiliation(s)
- Jiaqi Ren
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Ning Wang
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Piao Guo
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Zhejiang University Cancer Center, Hangzhou, 310003, China
| | - Yanping Fan
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Francis Lin
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| | - Jiandong Wu
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
29
|
Kim H, Skinner DJ, Glass DS, Hamby AE, Stuart BAR, Dunkel J, Riedel-Kruse IH. 4-bit adhesion logic enables universal multicellular interface patterning. Nature 2022; 608:324-329. [PMID: 35948712 PMCID: PMC9365691 DOI: 10.1038/s41586-022-04944-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 06/07/2022] [Indexed: 01/01/2023]
Abstract
Multicellular systems, from bacterial biofilms to human organs, form interfaces (or boundaries) between different cell collectives to spatially organize versatile functions1,2. The evolution of sufficiently descriptive genetic toolkits probably triggered the explosion of complex multicellular life and patterning3,4. Synthetic biology aims to engineer multicellular systems for practical applications and to serve as a build-to-understand methodology for natural systems5-8. However, our ability to engineer multicellular interface patterns2,9 is still very limited, as synthetic cell-cell adhesion toolkits and suitable patterning algorithms are underdeveloped5,7,10-13. Here we introduce a synthetic cell-cell adhesin logic with swarming bacteria and establish the precise engineering, predictive modelling and algorithmic programming of multicellular interface patterns. We demonstrate interface generation through a swarming adhesion mechanism, quantitative control over interface geometry and adhesion-mediated analogues of developmental organizers and morphogen fields. Using tiling and four-colour-mapping concepts, we identify algorithms for creating universal target patterns. This synthetic 4-bit adhesion logic advances practical applications such as human-readable molecular diagnostics, spatial fluid control on biological surfaces and programmable self-growing materials5-8,14. Notably, a minimal set of just four adhesins represents 4 bits of information that suffice to program universal tessellation patterns, implying a low critical threshold for the evolution and engineering of complex multicellular systems3,5.
Collapse
Affiliation(s)
- Honesty Kim
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Dominic J Skinner
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David S Glass
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Alexander E Hamby
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Bradey A R Stuart
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Jörn Dunkel
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ingmar H Riedel-Kruse
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA.
- Department of Applied Mathematics, University of Arizona, Tucson, AZ, USA.
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
30
|
Xie X, Wang Y, Siu SY, Chan CW, Zhu Y, Zhang X, Ge J, Ren K. Microfluidic synthesis as a new route to produce novel functional materials. BIOMICROFLUIDICS 2022; 16:041301. [PMID: 36035887 PMCID: PMC9410731 DOI: 10.1063/5.0100206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
By geometrically constraining fluids into the sub-millimeter scale, microfluidics offers a physical environment largely different from the macroscopic world, as a result of the significantly enhanced surface effects. This environment is characterized by laminar flow and inertial particle behavior, short diffusion distance, and largely enhanced heat exchange. The recent two decades have witnessed the rapid advances of microfluidic technologies in various fields such as biotechnology; analytical science; and diagnostics; as well as physical, chemical, and biological research. On the other hand, one additional field is still emerging. With the advances in nanomaterial and soft matter research, there have been some reports of the advantages discovered during attempts to synthesize these materials on microfluidic chips. As the formation of nanomaterials and soft matters is sensitive to the environment where the building blocks are fed, the unique physical environment of microfluidics and the effectiveness in coupling with other force fields open up a lot of possibilities to form new products as compared to conventional bulk synthesis. This Perspective summarizes the recent progress in producing novel functional materials using microfluidics, such as generating particles with narrow and controlled size distribution, structured hybrid materials, and particles with new structures, completing reactions with a quicker rate and new reaction routes and enabling more effective and efficient control on reactions. Finally, the trend of future development in this field is also discussed.
Collapse
Affiliation(s)
- Xinying Xie
- Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Yisu Wang
- Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Sin-Yung Siu
- Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Chiu-Wing Chan
- Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | | | - Xuming Zhang
- Department of Applied Physics, Hong Kong Polytechnic University, Hong Kong 999077, China
| | | | - Kangning Ren
- Author to whom correspondence should be addressed: and
| |
Collapse
|
31
|
Rahman M, Islam KR, Islam MR, Islam MJ, Kaysir MR, Akter M, Rahman MA, Alam SMM. A Critical Review on the Sensing, Control, and Manipulation of Single Molecules on Optofluidic Devices. MICROMACHINES 2022; 13:968. [PMID: 35744582 PMCID: PMC9229244 DOI: 10.3390/mi13060968] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 02/06/2023]
Abstract
Single-molecule techniques have shifted the paradigm of biological measurements from ensemble measurements to probing individual molecules and propelled a rapid revolution in related fields. Compared to ensemble measurements of biomolecules, single-molecule techniques provide a breadth of information with a high spatial and temporal resolution at the molecular level. Usually, optical and electrical methods are two commonly employed methods for probing single molecules, and some platforms even offer the integration of these two methods such as optofluidics. The recent spark in technological advancement and the tremendous leap in fabrication techniques, microfluidics, and integrated optofluidics are paving the way toward low cost, chip-scale, portable, and point-of-care diagnostic and single-molecule analysis tools. This review provides the fundamentals and overview of commonly employed single-molecule methods including optical methods, electrical methods, force-based methods, combinatorial integrated methods, etc. In most single-molecule experiments, the ability to manipulate and exercise precise control over individual molecules plays a vital role, which sometimes defines the capabilities and limits of the operation. This review discusses different manipulation techniques including sorting and trapping individual particles. An insight into the control of single molecules is provided that mainly discusses the recent development of electrical control over single molecules. Overall, this review is designed to provide the fundamentals and recent advancements in different single-molecule techniques and their applications, with a special focus on the detection, manipulation, and control of single molecules on chip-scale devices.
Collapse
Affiliation(s)
- Mahmudur Rahman
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - Kazi Rafiqul Islam
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - Md. Rashedul Islam
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - Md. Jahirul Islam
- Department of Electrical and Electronic Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh;
| | - Md. Rejvi Kaysir
- Department of Electrical and Computer Engineering, University of Waterloo, 200 University Ave. W, Waterloo, ON N2L 3G1, Canada;
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave. W, Waterloo, ON N2L 3G1, Canada
| | - Masuma Akter
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - Md. Arifur Rahman
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| | - S. M. Mahfuz Alam
- Department of Electrical and Electronic Engineering, Dhaka University of Engineering & Technology, Gazipur 1707, Bangladesh; (M.R.); (K.R.I.); (M.R.I.); (M.A.); (M.A.R.)
| |
Collapse
|
32
|
The protective effect of icariin on glucocorticoid-damaged BMECs explored by microfluidic organ chip. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.11.093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
33
|
Filippi M, Buchner T, Yasa O, Weirich S, Katzschmann RK. Microfluidic Tissue Engineering and Bio-Actuation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108427. [PMID: 35194852 DOI: 10.1002/adma.202108427] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Bio-hybrid technologies aim to replicate the unique capabilities of biological systems that could surpass advanced artificial technologies. Soft bio-hybrid robots consist of synthetic and living materials and have the potential to self-assemble, regenerate, work autonomously, and interact safely with other species and the environment. Cells require a sufficient exchange of nutrients and gases, which is guaranteed by convection and diffusive transport through liquid media. The functional development and long-term survival of biological tissues in vitro can be improved by dynamic flow culture, but only microfluidic flow control can develop tissue with fine structuring and regulation at the microscale. Full control of tissue growth at the microscale will eventually lead to functional macroscale constructs, which are needed as the biological component of soft bio-hybrid technologies. This review summarizes recent progress in microfluidic techniques to engineer biological tissues, focusing on the use of muscle cells for robotic bio-actuation. Moreover, the instances in which bio-actuation technologies greatly benefit from fusion with microfluidics are highlighted, which include: the microfabrication of matrices, biomimicry of cell microenvironments, tissue maturation, perfusion, and vascularization.
Collapse
Affiliation(s)
- Miriam Filippi
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Thomas Buchner
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Oncay Yasa
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Stefan Weirich
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Robert K Katzschmann
- Soft Robotics Laboratory, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| |
Collapse
|
34
|
Droplets in underlying chemical communication recreate cell interaction behaviors. Nat Commun 2022; 13:3047. [PMID: 35650217 PMCID: PMC9160030 DOI: 10.1038/s41467-022-30834-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/16/2022] [Indexed: 11/16/2022] Open
Abstract
The sensory-motor interaction is a hallmark of living systems. However, developing inanimate systems with “recognize and attack” abilities remains challenging. On the other hand, controlling the inter-droplet dynamics on surfaces is key in microengineering and biomedical applications. We show here that a pair of droplets can become intelligently interactive (chemospecific stimulus-response inter-droplet autonomous operation) when placed on a nanoporous thin film surface. We find an attacker-victim-like non-reciprocal interaction between spatially separated droplets leading to an only-in-one shape instability that triggers a drop projection to selectively couple, resembling cellular phenomenologies such as pseudopod emission and phagocytic-like functions. The nanopore-driven underlying communication and associated chemical activity are the main physical ingredients behind the observed behavior. Our results reveal that basic features found in many living cell types can emerge from a simple two-droplet framework. This work is a promising step towards the design of microfluidic smart robotics and for origin-of-life protocell models. While a hallmark of living systems, developing sensory-motor interactions in inanimate systems remains challenging. Here, authors show that nanoporous surfaces can be used to create stimuli-responsive droplet interplay with shape transformation and complex behaviours reminiscent of living cell actions.
Collapse
|
35
|
Xie T, Zhang Q, Zhang W, Feng S, Lin JM. Inkjet-Patterned Microdroplets as Individual Microenvironments for Adherent Single Cell Culture. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107992. [PMID: 35362237 DOI: 10.1002/smll.202107992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/26/2022] [Indexed: 06/14/2023]
Abstract
Adhesion of single cells is the foundation of manifold cellular behaviors and life processes. However, investigating the function of a specific cell is still challenging due to deficiency of adhesion or interference from surrounding cells. Herein, an open microfluidic system is reported for culturing adherent single cells, implemented by a micrometer-scale droplet matrix on an inkjet-printed polylysine template. The target cells are isolated from any cell from other droplets, and their adhesion strength is determined to be comparable to conventional petri dishes via an in-situ investigation with a microfluidic extractor. On this proposed platform, isolated single cells are observed to display an entirely distinct spreading behavior featuring total absence of elongation, indicating drastic cell behavior change from their "singleness." This system has high versatility and compatibility for various assaying methods, assuring a promising potential in detailed single cell behavior and cell heterogeneity studies.
Collapse
Affiliation(s)
- Tianze Xie
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, P. R. China
| | - Qiang Zhang
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, P. R. China
| | - Weifei Zhang
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, N 3rd Ring Road E 18, Beijing, 100029, P. R. China
| | - Shuo Feng
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, P. R. China
| | - Jin-Ming Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
36
|
Xing G, Zhang W, Li N, Pu Q, Lin JM. Recent progress on microfluidic biosensors for rapid detection of pathogenic bacteria. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.073] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
37
|
|
38
|
High-throughput optical assays for sensing serine hydrolases in living systems and their applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116620] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
39
|
Chen T, Huang C, Wang Y, Wu J. Microfluidic methods for cell separation and subsequent analysis. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.07.067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
40
|
Contemporary Research Progress on the Detection of Polycyclic Aromatic Hydrocarbons. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19052790. [PMID: 35270481 PMCID: PMC8910359 DOI: 10.3390/ijerph19052790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 02/06/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a class of the most common and widespread contaminants. The accumulation of PAHs has made a certain impact on the environment and is seriously threatening human health. Numerous general analytical methods suitable for PAHs were developed. With the development of economy, the environmental problems of PAHs in modern society are more extensive and prominent, and attract more attention from environmental scientists and analysts. Deeper understanding of the properties of PAHs depends on the advent of detection methods, which can also be more conducive to promoting the protection of the environment. Till now, more sensitive, more high-speed and more high-throughput analytical tools are being invented and have played important roles in the research of PAHs. In this short review article, we focused mainly on the contemporary analytical methods about PAHs. We started with a brief review on the hazards, migration, distribution and traditional analysis methods of PAHs in recent years, including liquid chromatography, gas chromatography, surface enhanced Raman spectroscopy and so on. We also presented the applications of the modern ambient mass spectrometry, especially microwave plasma torch mass spectrometry, in the detection of PAHs, as well as the far out novel results in our lab by using microwave plasma torch (MPT) mass spectrometry; for example, some new insights about Birch reduction, regular hydrogen addition and the robustness of molecular structure. These studies have demonstrated the versatility of MPT MS as a platform in the research of PAHs.
Collapse
|
41
|
Advances in nanomaterial-based microfluidic platforms for on-site detection of foodborne bacteria. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2021.116509] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
42
|
The development and application of dual-comb spectroscopy in analytical chemistry. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.02.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
43
|
Deroy C, Nebuloni F, Cook PR, Walsh EJ. Microfluidics on Standard Petri Dishes for Bioscientists. SMALL METHODS 2021; 5:e2100724. [PMID: 34927960 DOI: 10.1002/smtd.202100724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/17/2021] [Indexed: 06/14/2023]
Abstract
Few microfluidic devices are used in biomedical labs, despite the obvious potential; reasons given include the devices are rarely made with cell-friendly materials, and liquids are inaccessibly buried behind solid confining walls. An open microfluidic approach is reviewed in which aqueous circuits with almost any imaginable 2D shape are fabricated in minutes on standard polystyrene Petri dishes by reshaping two liquids (cell-culture media plus an immiscible and bioinert fluorocarbon, FC40). Then, the aqueous phase becomes confined by fluid FC40 walls firmly pinned to the dish by interfacial forces. Such walls can be pierced at any point with pipets and liquids added or removed through them, while flows can be driven actively using external pumps or passively by exploiting local differences in Laplace pressure. As walls are robust, permeable to O2 plus CO2 , and transparent, cells are grown in incubators and monitored microscopically as usual. It is hoped that this simple, accessible, and affordable fluid-shaping technology provides bioscientists with an easy entrée into microfluidics.
Collapse
Affiliation(s)
- Cyril Deroy
- Osney Thermofluids Institute, Department of Engineering Science, University of Oxford, Osney Mead, Oxford, OX2 0ES, UK
| | - Federico Nebuloni
- Osney Thermofluids Institute, Department of Engineering Science, University of Oxford, Osney Mead, Oxford, OX2 0ES, UK
| | - Peter R Cook
- The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
- iotaSciences Ltd., Begbroke Science Park, Begbroke, Oxford, Oxfordshire, OX5 1PF, UK
| | - Edmond J Walsh
- Osney Thermofluids Institute, Department of Engineering Science, University of Oxford, Osney Mead, Oxford, OX2 0ES, UK
| |
Collapse
|