1
|
Lucas J, Padmanabha Naveen NS, Janik MJ, Alexopoulos K, Noh G, Aireddy D, Ding K, Dorman JA, Dooley KM. Improved Selectivity and Stability in Methane Dry Reforming by Atomic Layer Deposition on Ni-CeO 2-ZrO 2/Al 2O 3 Catalysts. ACS Catal 2024; 14:9115-9133. [PMID: 38933468 PMCID: PMC11197040 DOI: 10.1021/acscatal.4c02019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024]
Abstract
Ni can be used as a catalyst for dry reforming of methane (DRM), replacing more expensive and less abundant noble metal catalysts (Pt, Pd, and Rh) with little sacrifice in activity. Ni catalysts deactivate quickly under realistic DRM conditions. Rare earth oxides such as CeO2, or as CeO2-ZrO2-Al2O3 (CZA), are supports that improve both the activity and stability of Ni DRM systems due to their redox activity. However, redox-active supports can also enhance the undesired reverse water gas shift (RWGS) reaction, reducing the hydrogen selectivity. In this work, Ni on CZA was coated with an ultrathin Al2O3 overlayer using atomic layer deposition (ALD) to study the effects of the overlayer on catalyst activity, stability, and H2/CO ratio. A low-conversion screening method revealed improved DRM activity and lower coking rate upon the addition of the Al2O3 ALD overcoat, and improvements were subsequently confirmed in a high-conversion reactor at long times onstream. The overcoated samples gave an H2/CO ratio of ∼1 at high conversion, much greater than uncoated catalysts, and no evidence of deactivation. Characterization of used (but still active) catalysts using several techniques suggests that active Ni is in formal oxidation state >0, Ni-Ce-Al is most likely present as a mixed oxide at the surface, and a nominal thickness of 0.5 nm for the Al2O3 overcoat is optimal.
Collapse
Affiliation(s)
- Jonathan Lucas
- Department
of Chemical Engineering, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
| | | | - Michael J. Janik
- Department
of Chemical Engineering, The Pennsylvania
State University, University
Park, Pennsylvania 16802, United States
| | - Konstantinos Alexopoulos
- Department
of Chemical Engineering, The Pennsylvania
State University, University
Park, Pennsylvania 16802, United States
| | - Gina Noh
- Department
of Chemical Engineering, The Pennsylvania
State University, University
Park, Pennsylvania 16802, United States
| | - Divakar Aireddy
- Department
of Chemical Engineering, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
| | - Kunlun Ding
- Department
of Chemical Engineering, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
| | - James A. Dorman
- Department
of Chemical Engineering, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
| | - Kerry M. Dooley
- Department
of Chemical Engineering, Louisiana State
University, Baton
Rouge, Louisiana 70803, United States
| |
Collapse
|
2
|
Olowoyo JO, Gharahshiran VS, Zeng Y, Zhao Y, Zheng Y. Atomic/molecular layer deposition strategies for enhanced CO 2 capture, utilisation and storage materials. Chem Soc Rev 2024; 53:5428-5488. [PMID: 38682880 DOI: 10.1039/d3cs00759f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Elevated levels of carbon dioxide (CO2) in the atmosphere and the diminishing reserves of fossil fuels have raised profound concerns regarding the resulting consequences of global climate change and the future supply of energy. Hence, the reduction and transformation of CO2 not only mitigates environmental pollution but also generates value-added chemicals, providing a dual remedy to address both energy and environmental challenges. Despite notable advancements, the low conversion efficiency of CO2 remains a major obstacle, largely attributed to its inert chemical nature. It is imperative to engineer catalysts/materials that exhibit high conversion efficiency, selectivity, and stability for CO2 transformation. With unparalleled precision at the atomic level, atomic layer deposition (ALD) and molecular layer deposition (MLD) methods utilize various strategies, including ultrathin modification, overcoating, interlayer coating, area-selective deposition, template-assisted deposition, and sacrificial-layer-assisted deposition, to synthesize numerous novel metal-based materials with diverse structures. These materials, functioning as active materials, passive materials or modifiers, have contributed to the enhancement of catalytic activity, selectivity, and stability, effectively addressing the challenges linked to CO2 transformation. Herein, this review focuses on ALD and MLD's role in fabricating materials for electro-, photo-, photoelectro-, and thermal catalytic CO2 reduction, CO2 capture and separation, and electrochemical CO2 sensing. Significant emphasis is dedicated to the ALD and MLD designed materials, their crucial role in enhancing performance, and exploring the relationship between their structures and catalytic activities for CO2 transformation. Finally, this comprehensive review presents the summary, challenges and prospects for ALD and MLD-designed materials for CO2 transformation.
Collapse
Affiliation(s)
- Joshua O Olowoyo
- Department of Chemical and Biochemical Engineering, Thompson Engineering Building, Western University, London, ON N6A 5B9, Canada.
| | - Vahid Shahed Gharahshiran
- Department of Chemical and Biochemical Engineering, Thompson Engineering Building, Western University, London, ON N6A 5B9, Canada.
| | - Yimin Zeng
- Natural Resources Canada - CanmetMaterials, Hamilton, Canada
| | - Yang Zhao
- Department of Mechanical and Materials Engineering, Western University, London, ON N6A 5B9, Canada.
| | - Ying Zheng
- Department of Chemical and Biochemical Engineering, Thompson Engineering Building, Western University, London, ON N6A 5B9, Canada.
| |
Collapse
|
3
|
Wolf M, de Oliveira AL, Taccardi N, Maisel S, Heller M, Khan Antara S, Søgaard A, Felfer P, Görling A, Haumann M, Wasserscheid P. Dry reforming of methane over gallium-based supported catalytically active liquid metal solutions. Commun Chem 2023; 6:224. [PMID: 37853170 PMCID: PMC10584823 DOI: 10.1038/s42004-023-01018-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 10/02/2023] [Indexed: 10/20/2023] Open
Abstract
Gallium-rich supported catalytically active liquid metal solutions (SCALMS) were recently introduced as a new way towards heterogeneous single atom catalysis. SCALMS were demonstrated to exhibit a certain resistance against coking during the dehydrogenation of alkanes using Ga-rich alloys of noble metals. Here, the conceptual catalytic application of SCALMS in dry reforming of methane (DRM) is tested with non-noble metal (Co, Cu, Fe, Ni) atoms in the gallium-rich liquid alloy. This study introduces SCALMS to high-temperature applications and an oxidative reaction environment. Most catalysts were shown to undergo severe oxidation during DRM, while Ga-Ni SCALMS retained a certain level of activity. This observation is explained by a kinetically controlled redox process, namely oxidation to gallium oxide species and re-reduction via H2 activation over Ni. Consequentially, this redox process can be shifted to the metallic side when using increasing concentrations of Ni in Ga, which strongly suppresses coke formation. Density-functional theory (DFT) based ab initio molecular dynamics (AIMD) simulations were performed to confirm the increased availability of Ni at the liquid alloy-gas interface. However, leaching of gallium via the formation of volatile oxidic species during the hypothesised redox cycles was identified indicating a critical instability of Ga-Ni SCALMS for prolonged test durations.
Collapse
Affiliation(s)
- Moritz Wolf
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Lehrstuhl für Chemische Reaktionstechnik (CRT), Egerlandstr. 3, 91058, Erlangen, Germany
- Forschungszentrum Jülich, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK 11), Cauerstr. 1, 91058, Erlangen, Germany
| | - Ana Luiza de Oliveira
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Lehrstuhl für Chemische Reaktionstechnik (CRT), Egerlandstr. 3, 91058, Erlangen, Germany
- Forschungszentrum Jülich, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK 11), Cauerstr. 1, 91058, Erlangen, Germany
| | - Nicola Taccardi
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Lehrstuhl für Chemische Reaktionstechnik (CRT), Egerlandstr. 3, 91058, Erlangen, Germany
| | - Sven Maisel
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Lehrstuhl für Theoretische Chemie, Egerlandstr. 3, 91058, Erlangen, Germany
| | - Martina Heller
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Lehrstuhl für Werkstoffwissenschaften (Allgemeine Werkstoffeigenschaften), Martensstr. 5, 91058, Erlangen, Germany
| | - Sharmin Khan Antara
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Lehrstuhl für Chemische Reaktionstechnik (CRT), Egerlandstr. 3, 91058, Erlangen, Germany
| | - Alexander Søgaard
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Lehrstuhl für Chemische Reaktionstechnik (CRT), Egerlandstr. 3, 91058, Erlangen, Germany
| | - Peter Felfer
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Lehrstuhl für Werkstoffwissenschaften (Allgemeine Werkstoffeigenschaften), Martensstr. 5, 91058, Erlangen, Germany
| | - Andreas Görling
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Lehrstuhl für Theoretische Chemie, Egerlandstr. 3, 91058, Erlangen, Germany
| | - Marco Haumann
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Lehrstuhl für Chemische Reaktionstechnik (CRT), Egerlandstr. 3, 91058, Erlangen, Germany
| | - Peter Wasserscheid
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Lehrstuhl für Chemische Reaktionstechnik (CRT), Egerlandstr. 3, 91058, Erlangen, Germany.
- Forschungszentrum Jülich, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK 11), Cauerstr. 1, 91058, Erlangen, Germany.
| |
Collapse
|
4
|
Recent advances and perspectives of perovskite-derived Ni-based catalysts for CO2 reforming of biogas. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Ni-CeO2/SBA-15 Catalyst Prepared by Glycine-Assisted Impregnation Method for Low-Temperature Dry Reforming of Methane. CRYSTALS 2022. [DOI: 10.3390/cryst12050713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Developing low-temperature nickel-based catalysts with good resistance to coking and sintering for dry reforming of methane (DRM) is of great significance. In this work, Ni (5 wt%) and CeO2 (5 wt%) were supported on SBA-15 porous material by glycine-assisted impregnation method to obtain Ni-CeO2/SBA-15-G catalyst. XRD and TEM results showed that the addition of glycine can effectively promote the dispersion of NiO and CeO2 in the pores of SBA-15. H2-TPR and XPS results confirmed the formation of stronger metal-support interaction. In addition, after the addition of glycine, the NixCe1−xOy solid solution content was increased significantly, meanwhile, the Ce3+ concentration was increased from 31% to 49%, accompanied by more oxygen vacancies and generation of active oxygen species. For the above reasons, Ni-CeO2/SBA-15-G had better catalytic performance in the low-temperature DRM test (20 h, 600 °C) with high GHSV (600,000 mL/gcat/h), its CH4 conversion after reaction of 20 h was 2 times that of Ni-CeO2/SBA-15-C catalyst prepared by a conventional impregnation method. TGA-DTA test also proved that Ni-CeO2/SBA-15-G almost completely eliminated carbon deposition. The above advantages of the Ni-CeO2/SBA-15-G catalyst may have originated from the complexation of glycine with metal cations and can prevent them from gathering.
Collapse
|
6
|
Sustainable Synthesis of a Highly Stable and Coke-Free Ni@CeO2 Catalyst for the Efficient Carbon Dioxide Reforming of Methane. Catalysts 2022. [DOI: 10.3390/catal12040423] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
A facile and green synthetic strategy is developed in this paper for the construction of an efficient catalyst for the industrially important carbon dioxide reforming of methane, which is also named the dry reforming of methane (DRM). Through controlling the synthetic strategy and Ni content, a high-performance Ni@CeO2 catalyst was successfully fabricated. The catalyst showed superb efficiency for producing the syngas with high and stable conversions at prolonged operating conditions. Incorporating Ni during the ceria (CeO2) crystallization resulted in a more stable structure and smaller nanoparticle (NP) size with a more robust interaction with the support than loading Ni on CeO2 supports by the conventional impregnation method. The H2/CO ratio was almost 1.0, indicating the promising applicability of utilizing the obtained syngas for the Fischer–Tropsch process to produce worthy chemicals. No carbon deposits were observed over the as-synthesized catalyst after operating the DRM reaction for 50.0 h, even at a more coke-favoring temperature (700 ∘C). Owing to the superb resistance to coke and sintering, control of the size of the Ni-NPs, uniform dispersion of the active phase, and potent metal interaction with the support, the synthesized catalyst achieved a magnificent catalytic activity and durability during serving for the DRM reaction for extended operating periods.
Collapse
|
7
|
Nakazato T, Kai T. Reaction analysis and global kinetics of partial oxidation of methane using Ni–hydroxyapatite composite catalysts. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2021.100210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
8
|
Yang H, Wang H, Wei L, Yang Y, Li YW, Wen XD, Jiao H. Simple mechanisms of CH 4 reforming with CO 2 and H 2O on a supported Ni/ZrO 2 catalyst. Phys Chem Chem Phys 2021; 23:26392-26400. [PMID: 34792065 DOI: 10.1039/d1cp04048k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To understand the metal-support interaction of oxide supported transition metal catalysts, we computed the reaction mechanisms of dry and steam reforming of methane on a tetragonal ZrO2(101) supported Ni catalyst. Based on the limited number of active sites on the surface, an irregular and non-ideal Ni13 cluster on ZrO2(101) is identified as a catalyst. A simple reaction mechanism is proposed, and the first direct dissociation step of CO2, CH4 and H2O is the most difficult based on the computed Gibbs free energies and no surface CHXO and CHXOH intermediates are involved, different from that on the flat Ni(111) surface. Analysis of other supported nickel catalysts shows that not only the support but also the size and shape of the metal clusters play an important role in the reaction mechanisms and kinetics.
Collapse
Affiliation(s)
- Hui Yang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China. .,National Energy Center for Coal to Liquids, Synfuels China Co., Ltd, Huairou District, Beijing, 101400, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Hui Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China. .,National Energy Center for Coal to Liquids, Synfuels China Co., Ltd, Huairou District, Beijing, 101400, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Lisha Wei
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China. .,National Energy Center for Coal to Liquids, Synfuels China Co., Ltd, Huairou District, Beijing, 101400, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Yong Yang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China. .,National Energy Center for Coal to Liquids, Synfuels China Co., Ltd, Huairou District, Beijing, 101400, China
| | - Yong-Wang Li
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China. .,National Energy Center for Coal to Liquids, Synfuels China Co., Ltd, Huairou District, Beijing, 101400, China
| | - Xiao-Dong Wen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China. .,National Energy Center for Coal to Liquids, Synfuels China Co., Ltd, Huairou District, Beijing, 101400, China
| | - Haijun Jiao
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Str. 29a, Rostock, 18059, Germany
| |
Collapse
|
9
|
Wang C, Wu H, Jie X, Zhang X, Zhao Y, Yao B, Xiao T. Yolk-Shell Nanocapsule Catalysts as Nanoreactors with Various Shell Structures and Their Diffusion Effect on the CO 2 Reforming of Methane. ACS APPLIED MATERIALS & INTERFACES 2021; 13:31699-31709. [PMID: 34191495 DOI: 10.1021/acsami.1c06847] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Well-geometric-confined yolk-shell catalysts can act as nanoreactors that are of benefit for the antisintering of metals and resistance to coke formation in high-temperature reactions such as the CO2 reforming of methane. Notwithstanding the credible advances of core/yolk-shell catalysts, the enlarged shell diffusion effects that occur under high space velocity can deactivate the catalysts and hence pose a hurdle for the potential application of these types of catalysts. Here, we demonstrated the importance of the shell thickness and porosity of small-sized Ni@SiO2 nanoreactor catalysts, which can vary the diffusional paths/rates of the diffusants that directly affect the catalytic activity. The nanoreactor with an ∼4.5 nm shell thickness and rich pores performed the best in tolerating the shell diffusion effects, and importantly, no catalytic deactivation was observed. We further proposed a shell diffusion effect scheme by modifying the Weisz-Prater and blocker model and found that the "gas wall/hard blocker" formed on the openings of the shell pores can cause reversible/irreversible interruption of the shell mass transfer and thus temporarily/permanently deactivate the nanoreactor catalysts. This work highlights the shell diffusion effects, apart from the metal sintering and coke formation, as an important factor that are ascribed to the deactivation of a nanoreactor catalyst.
Collapse
Affiliation(s)
- Changzhen Wang
- Engineering Research Center of the Ministry of Education for Fine Chemicals, Shanxi University, Taiyuan 030006, P. R. China
| | - Hao Wu
- Engineering Research Center of the Ministry of Education for Fine Chemicals, Shanxi University, Taiyuan 030006, P. R. China
| | - Xiangyu Jie
- KACST-Oxford Centre of Excellence in Petrochemicals, Inorganic Chemistry Laboratory, University of Oxford, Oxford OX1 3QR, United Kingdom
- Merton College, University of Oxford, Oxford OX1 4JD, United Kingdom
| | - Xiaoming Zhang
- Engineering Research Center of the Ministry of Education for Fine Chemicals, Shanxi University, Taiyuan 030006, P. R. China
| | - Yongxiang Zhao
- Engineering Research Center of the Ministry of Education for Fine Chemicals, Shanxi University, Taiyuan 030006, P. R. China
| | - Benzhen Yao
- KACST-Oxford Centre of Excellence in Petrochemicals, Inorganic Chemistry Laboratory, University of Oxford, Oxford OX1 3QR, United Kingdom
| | - Tiancun Xiao
- Engineering Research Center of the Ministry of Education for Fine Chemicals, Shanxi University, Taiyuan 030006, P. R. China
- KACST-Oxford Centre of Excellence in Petrochemicals, Inorganic Chemistry Laboratory, University of Oxford, Oxford OX1 3QR, United Kingdom
| |
Collapse
|
10
|
Catalyst Deactivation by Carbon Deposition: The Remarkable Case of Nickel Confined by Atomic Layer Deposition. ChemCatChem 2021. [DOI: 10.1002/cctc.202100109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
Lu Y, Wang R, Zhao Y, Wang S, Ma X. Effect of Ce doping on the catalytic performance of
x
NiCeO
y
@SiO
2
catalysts for dry reforming of methane. ASIA-PAC J CHEM ENG 2021. [DOI: 10.1002/apj.2678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yao Lu
- Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin University Tianjin China
| | - Ruilei Wang
- Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin University Tianjin China
| | - Yujun Zhao
- Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin University Tianjin China
| | - Shengping Wang
- Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin University Tianjin China
| | - Xinbin Ma
- Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin University Tianjin China
| |
Collapse
|
12
|
Wolf M. Thermodynamic assessment of the stability of bulk and nanoparticulate cobalt and nickel during dry and steam reforming of methane. RSC Adv 2021; 11:18187-18197. [PMID: 34046175 PMCID: PMC8132427 DOI: 10.1039/d1ra01856f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/15/2021] [Indexed: 11/25/2022] Open
Abstract
The high reaction temperatures during steam and dry reforming of methane inevitably entail catalyst deactivation. Evaluation of the feasibility or potentially relevant mechanisms at play is of utmost importance to develop highly active and stable catalysts. Herein, various oxidation reactions of bulk-sized nickel and cobalt to the corresponding metal oxide or in the presence of a metal oxide carrier are evaluated thermodynamically and linked to approximated conditions during methane reforming. In particular cobalt aluminate, as well as cobalt or nickel titanates are likely to form. As oxidation to bulk-sized metal oxide is unlikely, a thermodynamic analysis of metallic nanoparticles was performed to calculate the size dependent stability against oxidation to nickel oxide or cobalt oxide in water and carbon dioxide-rich environments. The calculations indicate that nickel nanoparticles >3 nm and cobalt nanoparticles >10 nm are expected to withstand oxidation during steam and dry reforming of methane with stoichiometric feed compositions and methane conversion levels >10% at temperatures up to 1100 and 900 °C, respectively. Lastly, the reduced thermal stability of nanoparticles due to melting point suppression was assessed, leading to similar recommendations concerning minimum particle sizes.
Collapse
Affiliation(s)
- Moritz Wolf
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH Egerlandstraße 3 91058 Erlangen Germany
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Lehrstuhl für Chemische Reaktionstechnik (CRT) Egerlandstr. 3 91058 Erlangen Germany
| |
Collapse
|
13
|
Zhang S, Yang T, Yu J, Zhan W, Wang L, Guo Y, Guo Y. Robust nanosheet-assembled Al 2O 3-supported Ni catalysts for the dry reforming of methane: the effect of nickel content on the catalytic performance and carbon formation. NEW J CHEM 2021. [DOI: 10.1039/d1nj03954g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nanosheet-assembled Al2O3 for loading Ni were successfully prepared. Enhancing Ni loading decreases the Ni dispersion and the interaction between Ni and support. 5%-Ni/(NA-Al2O3) catalyst possesses an excellent activity and coke resistance for dry reforming of methane.
Collapse
Affiliation(s)
- Shuangshuang Zhang
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Tao Yang
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jun Yu
- Research Institute of Applied Catalysis, School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Wangcheng Zhan
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Li Wang
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yun Guo
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yanglong Guo
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|