1
|
Wild U, Engels E, Hübner O, Kaifer E, Himmel HJ. Redox-Induced Aromatic Substitution: A Study on Guanidino-Functionalized Aromatics. Chemistry 2024; 30:e202403080. [PMID: 39387154 DOI: 10.1002/chem.202403080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/12/2024]
Abstract
Aromatic substitution of redox-active aromatic compounds could be initiated by a preceding redox step. We report on the different reaction pathways of such redox-induced substitution (RIAS) reactions between a redox-active guanidino-functionalized aromatic molecule (GFA) and an amine or guanidine. Oxidation of the GFA leads to an umpolung of the guanidine from a nucleophile to an electrophile and thereby enables addition of the amine or guanidine. Several examples are given, demonstrating the use of redox substitution in synthetic chemistry, e. g. for the convenient synthesis of novel N-heteropolycyclic molecules and unsymmetrically-substituted aromatics.
Collapse
Affiliation(s)
- Ute Wild
- Inorganic Chemistry, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Eliane Engels
- Inorganic Chemistry, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Olaf Hübner
- Inorganic Chemistry, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Elisabeth Kaifer
- Inorganic Chemistry, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Hans-Jörg Himmel
- Inorganic Chemistry, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
2
|
Zueva AY, Bilyachenko AN, Arteev IS, Khrustalev VN, Dorovatovskii PV, Shul'pina LS, Ikonnikov NS, Gutsul EI, Rahimov KG, Shubina ES, Reis Conceição N, Mahmudov KT, Guedes da Silva MFC, Pombeiro AJL. A Family of Hexacopper Phenylsilsesquioxane/Acetate Complexes: Synthesis, Solvent-Controlled Cage Structures, and Catalytic Activity. Chemistry 2024; 30:e202401164. [PMID: 38551412 DOI: 10.1002/chem.202401164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Indexed: 04/26/2024]
Abstract
Convenient self-assembly synthesis of copper(II) complexes via double (phenylsilsesquioxane and acetate) ligation allows to isolate a family of impressive sandwich-like cage compounds. An intriguing feature of these complexes is the difference in the structure of a pair of silsesquioxane ligands despite identical (Cu6) nuclearity and number (four) of acetate fragments. Formation of particular combination of silsesquioxane ligands (cyclic/cyclic vs condensed/condensed vs cyclic/condensed) was found to be dependent on the synthesis/crystallization media. A combination of Si4-cyclic and Si6-condensed silsesquioxane ligands is a brand new feature of cage metallasilsesquioxanes. A representative Cu6-complex (4) (with cyclic silsesquioxanes) exhibited high catalytic activity in the oxidation of alkanes and alcohols with peroxides. Maximum yield of the products of cyclohexane oxidation attained 30 %. The compound 4 was also tested as catalyst in the Baeyer-Villiger oxidation of cyclohexanone by m-chloroperoxybenzoic acid: maximum yields of 88 % and 100 % of ϵ-caprolactone were achieved upon conventional heating at 50 °C for 4 h and MW irradiation at 70 or 80 °C during 30 min, respectively. It was also possible to obtain the lactone (up to 16 % yield) directly from the cyclohexane via a tandem oxidation/Baeyer-Villiger oxidation reaction using the same oxidant.
Collapse
Affiliation(s)
- Anna Y Zueva
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, 119334, Moscow, Russian Federation
- Research Institute of Chemistry, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation
| | - Alexey N Bilyachenko
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, 119334, Moscow, Russian Federation
- Research Institute of Chemistry, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation
| | - Ivan S Arteev
- Research Institute of Chemistry, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation
- Higher Chemical College, Mendeleev University of Chemical Technology of Russia, Miusskaya Sq. 9, 125047, Moscow, Russia
| | - Victor N Khrustalev
- Research Institute of Chemistry, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, 119991, Moscow, Russian Federation
| | - Pavel V Dorovatovskii
- National Research Center "Kurchatov Institute", 1 Akademika Kurchatova Pl., 123182, Moscow, Russian Federation
| | - Lidia S Shul'pina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, 119334, Moscow, Russian Federation
| | - Nikolay S Ikonnikov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, 119334, Moscow, Russian Federation
| | - Evgenii I Gutsul
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, 119334, Moscow, Russian Federation
| | - Karim G Rahimov
- Baku State University, Z. Xalilov Str. 23, Az 1148, Baku, Azerbaijan
| | - Elena S Shubina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, 119334, Moscow, Russian Federation
| | - Nuno Reis Conceição
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Kamran T Mahmudov
- Baku State University, Z. Xalilov Str. 23, Az 1148, Baku, Azerbaijan
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - M Fátima C Guedes da Silva
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Armando J L Pombeiro
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| |
Collapse
|
3
|
Mohammed TP, George A, Sivaramakrishnan MP, Vadivelu P, Balasubramanian S, Sankaralingam M. Deciphering the effect of amine versus imine ligands of copper(II) complexes in 2-aminophenol oxidation. J Inorg Biochem 2023; 247:112309. [PMID: 37451084 DOI: 10.1016/j.jinorgbio.2023.112309] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023]
Abstract
A series of amine (1-6) and imine (5',6') based copper(II) complexes with tridentate (NNO) ligand donors were synthesized and characterized using modern analytical techniques. All the complexes were subjected to 2-aminophenol (OAP) oxidation to form 2-aminophenoxazin-3-one, as a functional analogue of an enzyme, phenoxazinone synthase. In addition, a critical comparison of the reactivity using the amine-based complexes with their respective imine counterparts was achieved in both experimental as well as theoretical studies. For instance, the kinetic measurement revealed that the imine-based copper(II) complexes (kcat, 2.4 × 105-6.2 × 106 h-1) are better than amine-based (kcat, 6.3 × 104-3.9 × 105 h-1) complexes. The complex-substrate adducts [Cu(L3)(OAP)] (7) and [Cu(L3')(OAP)] (7') were characterized for both systems by mass spectrometry. Further, the DFT study was performed with amine- (3) and imine- (3') based copper(II) complexes, to compare their efficacy in the oxidation of OAP. The mechanistic investigations reveal that the key elementary step to determine the reactivity of 3 and 3' is the proton-coupled electron transfer (PCET) step occurring from the intermediates 7/7'. Further, the computed HOMO-LUMO energy gap of 7' was smaller than 7 by 0.8 eV, which indicates the facile PCET compared to that of 7. Moreover, the coupling of the OAP moiety using imine-complexes (ΔGR.E = -5.8 kcal/mol) was found to be thermodynamically more favorable than amine complexes (ΔGR.E = +3.3 kcal/mol). Overall, the theoretical findings are in good agreement with the experimental results.
Collapse
Affiliation(s)
- Thasnim P Mohammed
- Bioinspired & Biomimetic Inorganic Chemistry Lab, Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India
| | - Akhila George
- Bioinspired & Biomimetic Inorganic Chemistry Lab, Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India
| | | | - Prabha Vadivelu
- Department of Chemistry, Central University of Tamil Nadu, Thiruvarur 610 005, India
| | - Sridhar Balasubramanian
- Centre for X-ray Crystallography, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Muniyandi Sankaralingam
- Bioinspired & Biomimetic Inorganic Chemistry Lab, Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India.
| |
Collapse
|
4
|
Sun LJ, Yuan H, Xu JK, Luo J, Lang JJ, Wen GB, Tan X, Lin YW. Phenoxazinone Synthase-like Activity of Rationally Designed Heme Enzymes Based on Myoglobin. Biochemistry 2023; 62:369-377. [PMID: 34665595 DOI: 10.1021/acs.biochem.1c00554] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The design of functional metalloenzymes is attractive for the biosynthesis of biologically important compounds, such as phenoxazinones and phenazines catalyzed by native phenoxazinone synthase (PHS). To design functional heme enzymes, we used myoglobin (Mb) as a model protein and introduced an artificial CXXC motif into the heme distal pocket by F46C and L49C mutations, which forms a de novo disulfide bond, as confirmed by the X-ray crystal structure. We further introduced a catalytic Tyr43 into the heme distal pocket and found that the F43Y/F46C/L49C Mb triple mutant and the previously designed F43Y/F46S Mb exhibit PHS-like activity (80-98% yields in 5-15 min), with the catalytic efficiency exceeding those of natural metalloenzymes, including o-aminophenol oxidase, laccase, and dye-decolorizing peroxidase. Moreover, we showed that the oxidative coupling product of 1,6-disulfonic-2,7-diaminophenazine is a potential pH indicator, with the orange-magenta color change at pH 4-5 (pKa = 4.40). Therefore, this study indicates that functional heme enzymes can be rationally designed by structural modifications of Mb, exhibiting the functionality of the native PHS for green biosynthesis.
Collapse
Affiliation(s)
- Li-Juan Sun
- Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Hong Yuan
- Department of Chemistry and Institute of Biomedical Science, Fudan University, Shanghai 200433, China
| | - Jia-Kun Xu
- Key Lab of Sustainable Development of Polar Fisheries, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Jie Luo
- Lab of Protein Structure and Function, University of South China, Hengyang 421001, China
| | - Jia-Jia Lang
- Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Ge-Bo Wen
- Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xiangshi Tan
- Department of Chemistry and Institute of Biomedical Science, Fudan University, Shanghai 200433, China
| | - Ying-Wu Lin
- Hengyang Medical School, University of South China, Hengyang 421001, China.,Lab of Protein Structure and Function, University of South China, Hengyang 421001, China
| |
Collapse
|
5
|
Lu W, Tang J, Gu Z, Sun L, Wei H, Wang Y, Yang S, Chi X, Xu L. Crystal structure, in vitro cytotoxicity, DNA binding and DFT calculations of new copper (II) complexes with coumarin-amide ligand. J Inorg Biochem 2023; 238:112030. [PMID: 36327496 DOI: 10.1016/j.jinorgbio.2022.112030] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/06/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
Abstract
This work describes the synthesis, anticancer activity and electron structure study of two Cu (II) complexes with coumarin-3-formyl-(3-(aminomethyl) pyridine) ligand (L) - C1 (Cu2L2(OAc)4) and C2 (CuL2(NO3)2). The structure of C1 and C2 was confirmed by elemental analysis, FTIR, and single-crystal X-ray analysis. Complex C1 crystallizes as binuclear where two Cu (II) ions are bridged by four acetate ligands while C2 is a mononuclear complex with twisted octahedral geometry. Density functional theory (DFT) calculations revealed that electronic transitions originate from metal-ligand charge transfer and d-d transitions of metal ions. According to the results of UV-Vis and fluorescence titrations, C1 and C2 intercalate with DNA with the binding constants of 6.9 × 105 M-1 and 5.9 × 105 M-1, respectively. The in vitro cytotoxicity assays on four cancer cell lines (HeLa, HepG2, MCF-7 and A549) and a normal HUVEC cell line indicated higher anti-MCF-7 activity of C2 compared with cisplatin (IC50 = 2.86 ± 0.08 μM vs. 9.07 ± 0.10 μM). Moreover, C2 had superior selectivity since IC50 toward HUVEC cells was over 150 μM compared with 0.58 ± 0.05 μM for cisplatin. We concluded that the anti-MCF activity of mononuclear C2 complex is better than that of binuclear C1 and cisplatin. Therefore, C2 has been selected as a hit compound to develop novel non‑platinum anticancer agents through modification of coumarin-amide structure and variation of copper (II) salts.
Collapse
Affiliation(s)
- Wen Lu
- College of Science, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| | - Jiongya Tang
- College of Science, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Zhenzhen Gu
- College of Science, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Lu Sun
- College of Science, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Haimeng Wei
- College of Science, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yanqin Wang
- College of Science, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Shilong Yang
- The Advanced Analysis and Testing Center, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xingwei Chi
- College of Science, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Li Xu
- College of Science, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Institute of Material Physics&Chemistry, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
6
|
Ressler AJ, Brandt ON, Weaver A, Poor JE, Ream A, Summers NA, McMillen CD, Seeram NP, Dougherty WG, Henry GE. Chromene-based Schiff Base Ligand: DNA Interaction Studies and Characterization of Tetranuclear Zinc, Nickel and Iron Complexes. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
7
|
Diallo AS, Thiam IE, Gueye-Ndiaye M, Dieng M, Orton J, Simon C, Gaye M. Tetra-nuclear copper(II) complex of 2-hydroxy- N, N'-bis-[1-(2-hy-droxy-phen-yl)ethyl-idene]-propane-1,3-di-amine. Acta Crystallogr E Crystallogr Commun 2022; 78:349-353. [PMID: 35492279 PMCID: PMC8983967 DOI: 10.1107/s2056989022002225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/24/2022] [Indexed: 11/25/2022]
Abstract
The title mol-ecular structure, namely, (μ3-acetato)(μ2-acetato)-bis-(μ3-1,3-bis-{[1-(2-oxidophen-yl)ethyl-idene]amino}-propan-2-olato)tetra-copper(II) monohydrate, [Cu4(C19H19N2O3)2(CH3CO2)2]·H2O, corresponds to a non-symmetric tetra-nuclear copper complex. The complex exhibits one ligand mol-ecule that connects two copper CuII metal centres via its ethano-lato oxygen anion acting in a μ2-mode and one ligand mol-ecule that connects three copper CuII metal centres via its ethano-lato oxygen anion acting in a μ3-mode. One bridging acetate group acting in an η1:η1-μ2-mode connects two copper(II) ions while another bridging acetate group connects three copper(II) ions in an η1:-η2-μ3-mode. A chair-like Cu3O3 structure is generated in which the two CuO4N units are connected by one μ2-O ethano-late oxygen atom. These two units are connected respectively to the CuO3N unit via one μ3-O ethano-late oxygen atom and one μ2-O atom from an acetate group. The μ3-O atom also connects one of the CuO4N units and the CuO3N unit to another CuO3N unit, which is out of the chair-like structure. Each of the two penta-coordinated CuII cations has a distorted NO4 square-pyramidal environment. The geometry of each of the two CuNO3 units is best described as a slightly square-planar environment. A series of intra-molecular O-H⋯O hydrogen bonds is observed. In the crystal, the units are connected by inter-molecular C-H⋯O and O-H⋯O hydrogen bonds, thus forming sheets parallel to the ac plane.
Collapse
Affiliation(s)
| | - Ibrahima Elhadji Thiam
- Département de Chimie, Faculté des Sciences et Techniques, Université Cheik Anta Diop, Dakar, Senegal
| | - Mbossé Gueye-Ndiaye
- Département de Chimie, Faculté des Sciences et Techniques, Université Cheik Anta Diop, Dakar, Senegal
| | - Moussa Dieng
- Département de Chimie, UFR SATIC, Université Alioune Diop, Bambey, Senegal
| | - James Orton
- UK National Crystallography Service, School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, SO17 1BJ, UK
| | - Coles Simon
- UK National Crystallography Service, School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, SO17 1BJ, UK
| | - Mohamed Gaye
- Département de Chimie, Faculté des Sciences et Techniques, Université Cheik Anta Diop, Dakar, Senegal
| |
Collapse
|
8
|
Thennarasu AS, Mohammed TP, Sankaralingam M. Mononuclear copper( ii) Schiff base complexes as effective models for phenoxazinone synthase. NEW J CHEM 2022. [DOI: 10.1039/d2nj03934f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Copper(ii) complexes of tridentate (N2O) Schiff base ligands as efficient catalysts for 2-aminophenol oxidation to 2-aminophenoxazin-3-one with excellent reaction rates.
Collapse
Affiliation(s)
- Abinaya Sushana Thennarasu
- Bioinspired & Biomimetic Inorganic Chemistry Lab, Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India
| | - Thasnim P Mohammed
- Bioinspired & Biomimetic Inorganic Chemistry Lab, Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India
| | - Muniyandi Sankaralingam
- Bioinspired & Biomimetic Inorganic Chemistry Lab, Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India
| |
Collapse
|
9
|
Muley A, Karumban KS, Kumbhakar S, Giri B, Maji S. High phenoxazinone synthase activity of two mononuclear cis-dichloro cobalt( ii) complexes with a rigid pyridyl scaffold. NEW J CHEM 2022. [DOI: 10.1039/d1nj03992j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Two mononuclear cis-dichloro cobalt(II) complexes with bidentate pyridyl ligands have been successfully synthesized and employed as active o-aminophenol oxidation catalysts resulting in high turnover numbers under aerobic conditions.
Collapse
Affiliation(s)
- Arabinda Muley
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Kalai Selvan Karumban
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Sadananda Kumbhakar
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Bishnubasu Giri
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Somnath Maji
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| |
Collapse
|
10
|
Jana NC, Ghorai P, Brandão P, Jagličić Z, Panja A. Proton controlled synthesis of two dicopper(II) complexes and their magnetic and biomimetic catalytic studies together with probing the binding mode of the substrate to the metal center. Dalton Trans 2021; 50:15233-15247. [PMID: 34623364 DOI: 10.1039/d1dt02369a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This paper describes the synthesis, and structural and spectroscopic characterizations of two doubly bridged dicopper(II) complexes, [Cu2(μ-H2L)(μ-OMe)](ClO4)4·2H2O (1) and [Cu2(μ-L)(μ-OH)](ClO4)2 (2), with a binucleating ligand (HL) derived from the Schiff base condensation of DFMP and N,N-dimethyldipropylenetriamine, and their biomimetic catalytic activities were related to CAO and phenoxazinone synthase using 3,5-di-tert-butylcatechol and o-aminophenol (OAPH), respectively, as model substrates. Structural studies reveal that the major differences in these structures appear to be from the distinct roles of the tertiary amine groups of the ligands, which are protonated in 1, whereas it coordinates the metal centers in 2. Magnetic studies disclose that two copper(II) centers are strongly antiferromagnetically coupled with slightly different J values, which is further interpreted and discussed. They exhibited very different biomimetic catalytic activities; whereas 2 is an efficient catalyst, complex 1 showed somewhat lower substrate oxidation. The higher reactivity in 2 is rationalized by the strong involvement of the tertiary amine group of the Schiff base ligand, where the substrate oxidation is favored because of the transfer of protons from the substrate to the tertiary amine group, showing the importance of the functional groups in proximity to the bimetallic active site. Emphasis was also given to probing the binding mode of the substrate using an electronically deficient tetrabromomocatechol (Br4CatH2) and the isolated compound [Cu6(μ-HL)2(μ-OH)2(Br4Cat)4](NO3)2·4H2O (3) which suggests that monodentate asymmetric binding of 3,5-di-tert-butylcatechol and OAPH occurs during the course of the catalytic reaction.
Collapse
Affiliation(s)
- Narayan Ch Jana
- Department of Chemistry, Panskura Banamali College, Panskura RS, West Bengal 721152, India.
| | - Pravat Ghorai
- Department of Chemistry, Panskura Banamali College, Panskura RS, West Bengal 721152, India. .,Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Paula Brandão
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Zvonko Jagličić
- Institute of Mathematics, Physics and Mechanics & Faculty of Civil and Geodetic Engineering, University of Ljubljana, Jadranska 19, SI-1000 Ljubljana, Slovenia
| | - Anangamohan Panja
- Department of Chemistry, Panskura Banamali College, Panskura RS, West Bengal 721152, India. .,Department of Chemistry, Gokhale Memorial Girls' College, 1/1 Harish Mukherjee Road, Kolkata 700020, India
| |
Collapse
|
11
|
Sezgin B, Dede B, Tilki T. Structural, theoretical and enzyme-like activities of novel Cu(II) and Mn(II) complexes with coumarin based bidentate ligand. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
12
|
Dhara AK, Maity S, Dhar BB. Visible-Light-Mediated Synthesis of Substituted Phenazine and Phenoxazinone Using Eosin Y as a Photoredox Catalyst. Org Lett 2021; 23:3269-3273. [PMID: 33880922 DOI: 10.1021/acs.orglett.1c00725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This paper describes an efficient, sustainable, one-step procedure for synthesizing substituted phenazines and phenoxazinones from commercially available ortho-substituted aromatic amines with very good yield (≥80%) in water. The procedure uses eosin Y (EY) as a photoredox catalyst at room temperature (RT). The highly reactive o-quinone-diimine or o-quinone-imine intermediate was characterized by the HR-MS technique.
Collapse
Affiliation(s)
- Ashish Kumar Dhara
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Dadri, Uttar Pradesh 201314, India
| | - Sayantan Maity
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Dadri, Uttar Pradesh 201314, India
| | - Basab Bijayi Dhar
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Dadri, Uttar Pradesh 201314, India
| |
Collapse
|
13
|
Nandi NB, Purkayastha A, Roy S, Kłak J, Ganguly R, Alkorta I, Misra TK. Tetranuclear copper( ii) cubane complexes derived from self-assembled 1,3-dimethyl-5-( o-phenolate-azo)-6-aminouracil: structures, non-covalent interactions and magnetic property. NEW J CHEM 2021. [DOI: 10.1039/d0nj05232a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new doubly opened 4 + 2 Cu4O4 cubane cluster exhibits strong antiferromagnetic exchange coupling with J1 = −110.1 cm−1, and J2 = −27.1 cm−1.
Collapse
Affiliation(s)
| | - Atanu Purkayastha
- Department of Chemistry
- National Institute of Technology
- Agartala 799046
- India
| | - Shaktibrata Roy
- Department of Chemistry
- National Institute of Technology
- Agartala 799046
- India
| | - Julia Kłak
- Faculty of Chemistry
- University of Wroclaw
- Wroclaw 50383
- Poland
| | | | - Ibon Alkorta
- Instituto de Química Médica
- CSIC
- 28006 Madrid
- Spain
| | - Tarun Kumar Misra
- Department of Chemistry
- National Institute of Technology
- Agartala 799046
- India
| |
Collapse
|
14
|
Chen ZZ, Zhang WZ, Zhang T, Zhang Y, Dong WK. An insight into the molecular structures, theoretical calculation and catalytic activities of novel heterotrinuclear [CuII2CeIII] and heterohexanuclear [CuII4YIII2] bis(salamo)-based complexes. NEW J CHEM 2020. [DOI: 10.1039/d0nj04126b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Two heteropolynuclear complexes, [CuII2CeIII] [Cu2(L)Ce(NO3)3] and [{Cu2(L)Y(NO3)2(μ-AcO)}{Cu2(L)Y(NO3)2(μ-NO3)(CH3OH)}]·4CH3OH, were synthesized. It was found that only the [CuII2CeIII] complex showed high catecholase and benzoxazinone synthase like catalytic activity.
Collapse
Affiliation(s)
- Zhuang-Zhuang Chen
- School of Chemical and Biological Engineering
- Lanzhou Jiaotong University
- Lanzhou 730070
- P. R. China
| | - Wen-Ze Zhang
- School of Chemical and Biological Engineering
- Lanzhou Jiaotong University
- Lanzhou 730070
- P. R. China
| | - Ting Zhang
- School of Chemical and Biological Engineering
- Lanzhou Jiaotong University
- Lanzhou 730070
- P. R. China
| | - Yang Zhang
- School of Chemical and Biological Engineering
- Lanzhou Jiaotong University
- Lanzhou 730070
- P. R. China
| | - Wen-Kui Dong
- School of Chemical and Biological Engineering
- Lanzhou Jiaotong University
- Lanzhou 730070
- P. R. China
| |
Collapse
|
15
|
Podder N, Mandal S. Aerobic oxidation of 2-aminophenol catalysed by a series of mononuclear copper(ii) complexes: phenoxazinone synthase-like activity and mechanistic study. NEW J CHEM 2020. [DOI: 10.1039/d0nj02558e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Biomimetic catalytic oxidation of 2-aminophenol by three mononuclear copper(ii) complexes and the mechanistic aspects are presented.
Collapse
Affiliation(s)
- Nirmalya Podder
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur 721302
- India
| | - Sukanta Mandal
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur 721302
- India
| |
Collapse
|