Moro AJ, Santos M, Outis M, Mateus P, Pereira PM. Selective Coordination of Cu
2+ and Subsequent Anion Detection Based on a Naphthalimide-Triazine-(DPA)
2 Chemosensor.
BIOSENSORS-BASEL 2020;
10:bios10090129. [PMID:
32971802 PMCID:
PMC7558417 DOI:
10.3390/bios10090129]
[Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/10/2020] [Accepted: 09/18/2020] [Indexed: 01/27/2023]
Abstract
A new fluorescent chemosensor for copper (II) and subsequent anion sensing was designed and fully characterized. The sensor consisted of a 1,8-naphthalimide core, bearing two terminal dipicolylamine (DPA) receptor units for binding metal cations, and an ethoxyethanol moiety for enhanced water solubility. The DPA units are connected to position 4 of the fluorophore via a triazine-ethylenediamine spacer. Fluorescence titration studies of the chemosensor revealed a high selectivity for Cu2+ over other divalent ions, the emissions were strongly quenched upon binding, and a stability constant of 5.52 log units was obtained. Given the distance from DPA chelating units and the fluorophore, quenching from the Cu2+ complexation suggests an electron transfer or an electronic energy transfer mechanism. Furthermore, the Cu2+-sensor complex proved to be capable of sensing anionic phosphate derivatives through the displacement of the Cu2+ cation, which translated into a full recovery of the luminescence from the naphthalimide. Super-resolution fluorescence microscopy studies performed in HeLa cells showed there was a high intracellular uptake of the chemosensor. Incubation in Cu2+ spiked media revealed a strong fluorescent signal from mitochondria and cell membranes, which is consistent with a high concentration of ATP at these intracellular sites.
Collapse