1
|
Velmurugan G, Baur P, Comba P. A Dicopper(II)-Based Carbonic Anhydrase Model-Quantum-Chemical Evaluation of the Mechanistic Pathway. Angew Chem Int Ed Engl 2024; 63:e202319530. [PMID: 38628137 DOI: 10.1002/anie.202319530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Indexed: 06/11/2024]
Abstract
The cyanobacterium Prochloron didemni, an obligate symbiont of different species of colonial ascidians, occurring in the Pacific and Indian Oceans, produces a variety of cyclic peptides. These patellamide-type macrocycles lead to relatively stable dicopper(II) complexes that are extremely efficient carbonic anhydrase mimics, the most active model systems known so far. Importantly, it recently was shown that copper(II) is coordinated to patellamide derivatives in Prochloron cells. An interesting question therefore is, whether the biological function of patellamide-type macrocycles is related to the catalytic activity in CO2 hydration or its reverse. Here, we present a computational study to evaluate the energetics of the catalytic cycle in search of a possible answer to these questions and compare the computed energy barriers with the experimental kinetic data. It emerges that release of the bridging carbonate is a critical step and that the catalysis product inhibits catalysis at pH values above approx. 7. Therefore, carbonate transport rather than CO2 hydrolysis is proposed as the biological function of copper(II)-patellamide complexes in the Prochloron-Ascidian symbiosis.
Collapse
Affiliation(s)
- Gunasekaran Velmurugan
- Universität Heidelberg, Anorganisch-Chemisches Institut and Interdisziplinäres Zentrum für Wissenschaftliches Rechnen (IWR), INF 270, D-69120, Heidelberg, Germany
| | - Philipp Baur
- Universität Heidelberg, Anorganisch-Chemisches Institut and Interdisziplinäres Zentrum für Wissenschaftliches Rechnen (IWR), INF 270, D-69120, Heidelberg, Germany
| | - Peter Comba
- Universität Heidelberg, Anorganisch-Chemisches Institut and Interdisziplinäres Zentrum für Wissenschaftliches Rechnen (IWR), INF 270, D-69120, Heidelberg, Germany
| |
Collapse
|
2
|
Sen A, Britto NJ, Kass D, Ray K, Rajaraman G. Origin of Unprecedented Formation and Reactivity of Fe IV═O Species via Oxygen Activation: Role of Noncovalent Interactions and Magnetic Coupling. Inorg Chem 2024; 63:9809-9822. [PMID: 38739843 DOI: 10.1021/acs.inorgchem.4c00371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Emulating the capabilities of the soluble methane monooxygenase (sMMO) enzymes, which effortlessly activate oxygen at diiron(II) centers to form a reactive diiron(IV) intermediate Q, which then performs the challenging oxidation of methane to methanol, poses a significant challenge. Very recently, one of us reported the mononuclear complex [(cyclam)FeII(CH3CN)2]2+ (1), which performed a rare bimolecular activation of the molecule of O2 to generate two molecules of FeIV═O without the requirement of external proton or electron sources, similar to sMMO. In the present study, we employed the density functional theory (DFT) calculations to investigate this unique mechanism of O2 activation. We show that secondary hydrogen-bonding interactions between ligand N-H groups and O2 play a vital role in reducing the energy barrier associated with the initial O2 binding at 1 and O-O bond cleavage to form the FeIV═O complex. Further, the unique reactivity of FeIV═O species toward simultaneous C-H and O-H bond activation process has been demonstrated. Our study unveils that the nature of the magnetic coupling between the diiron centers is also crucial. Given that the influence of magnetic coupling and noncovalent interactions in catalysis remains largely unexplored, this unexplored realm presents numerous avenues for experimental chemists to develop novel structural and functional analogues of sMMO.
Collapse
Affiliation(s)
- Asmita Sen
- Department of Chemistry, IIT Bombay, Powai, Mumbai-400076, India
| | | | - Dustin Kass
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Kallol Ray
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | | |
Collapse
|
3
|
Sen A, Ansari A, Swain A, Pandey B, Rajaraman G. Probing the Origins of Puzzling Reactivity in Fe/Mn-Oxo/Hydroxo Species toward C-H Bonds: A DFT and Ab Initio Perspective. Inorg Chem 2023; 62:14931-14941. [PMID: 37650771 DOI: 10.1021/acs.inorgchem.3c01632] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Activation of C-H bonds using an earth-abundant metal catalyst is one of the top challenges of chemistry, where high-valent Mn/Fe-oxo(hydroxo) biomimic species play an important role. There are several open questions related to the comparative oxidative abilities of these species, and a unifying concept that could accommodate various factors influencing reactivity is lacking. To shed light on these open questions, here, we have used a combination of density functional theory (DFT) (B3LYP-D3/def2-TZVP) and ab initio (CASSCF/NEVPT2) calculations to study a series of high-valent metal-oxo species [Mn+H3buea(O/OH)] (M = Mn and Fe, n = II to V; H3buea = tris[(N'-tert-butylureaylato)-N-ethylene)]aminato towards the activation of dihydroanthracene (DHA). The H-bonding network in the ligand architecture influences the ground state-excited state gap and brings several excited states of the same spin multiplicity closer in energy, which triggers reactivity via one of those excited states, reducing the kinetic barriers for the C-H bond activation and rationalizing several puzzling reactivity trends observed in various high-valent Mn/Fe-oxo(hydroxo) species.
Collapse
Affiliation(s)
- Asmita Sen
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai400076, India
| | - Azaj Ansari
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai400076, India
| | - Abinash Swain
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai400076, India
| | - Bhawana Pandey
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai400076, India
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai400076, India
| |
Collapse
|
4
|
Singh J, Sharma S, Prakasham AP, Rajaraman G, Ghosh P. Accessing Bioactive Hydrazones by the Hydrohydrazination of Terminal Alkynes Catalyzed by Gold(I) Acyclic Aminooxy Carbene Complexes and Their Gold(I) Arylthiolato and Gold(III) Tribromo Derivatives: A Combined Experimental and Computational Study. ACS OMEGA 2023; 8:21042-21073. [PMID: 37323414 PMCID: PMC10268297 DOI: 10.1021/acsomega.3c01925] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/05/2023] [Indexed: 06/17/2023]
Abstract
Hydrohydrazination of terminal alkynes with hydrazides yielding hydrazones 5-14 were successfully catalyzed by a series of gold(I) acyclic aminooxy carbene complexes of the type [{(4-R2-2,6-t-Bu2-C6H2O)(N(R1)2)}methylidene]AuCl, where R2 = H, R1 = Me (1b); R2 = H, R1 = Cy (2b); R2 = t-Bu, R1 = Me (3b); R2 = t-Bu, R1 = Cy (4b). The mass spectrometric evidence corroborated the existence of the catalytically active solvent-coordinated [(AAOC)Au(CH3CN)]SbF6 (1-4)A species and the acetylene-bound [(AAOC)Au(HC≡CPhMe)]SbF6 (3B) species of the proposed catalysis cycle. The hydrohydrazination reaction was successfully employed in synthesizing several bioactive hydrazone compounds (15-18) with anticonvulsant properties using a representative precatalyst (2b). The DFT studies favored the 4-ethynyltoluene (HC≡CPhMe) coordination pathway over the p-toluenesulfonyl hydrazide (NH2NHSO2C6H4CH3) coordination pathway, and that proceeded by a crucial intermolecular hydrazide-assisted proton transfer step. The gold(I) complexes (1-4)b were synthesized from the {[(4-R2-2,6-t-Bu2-C6H2O)(N(R1)2)]CH}+OTf- (1-4)a by treatment with (Me2S)AuCl in the presence of NaH as a base. The reactivity studies of (1-4)b yielded the gold(III) [{(4-R2-2,6-t-Bu2-C6H2O)(N(R1)2)}methylidene]AuBr3 (1-4)c complexes upon reaction with molecular bromine and the gold(I) perfluorophenylthiolato derivatives, [{(4-R2-2,6-t-Bu2-C6H2O)(N(R1)2)}methylidene]AuSC6F5 (1-4)d, upon treatment with C6F5SH.
Collapse
|
5
|
Sen A, Rajaraman G. Does the Spin State and Oriented External Electric Field Boost the Efficiency of Fe(II) Pincer Catalyst toward CO 2 Hydrogenation Reaction? Inorg Chem 2023; 62:2342-2358. [PMID: 36689485 DOI: 10.1021/acs.inorgchem.2c04119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In this study, we have explored the catalytic reactivities of four PNP-pincer supported Fe(II) complexes, namely, [(iPrPNMeP)FeH2(CO)] (1), [(iPrPNMeP)FeH(CO)(BH4)] (2), [(iPrPNHP)FeH2(CO)] (3), and [(iPrPNMeP)FeH(BH4)] (4) (iPrPNMeP = MeN{CH2CH2(PiPr2)}2 and iPrPNHP = HN{CH2CH2(PiPr2)}2) toward reductive CO2 hydrogenation for formate production. Our density functional theory and ab initio complete active space self-consistent field study have identified three fundamental steps in this catalytic transformation: (i) anchoring of the CO2 molecule in the vicinity of the metal using noncovalent interactions, (ii) catalyst regeneration via H2 cleavage, and (iii) formate rebound step leading to catalytic poisoning. The variations in the catalytic efficiency observed among these catalysts were attributed to either easing of steps (i) and (ii) or the hampering step (iii). This can be achieved in various chemical/non-chemical ways, for instance, (a) incorporation of strong-field ligands such as CO facilitating single-state reactivity and eliminating two-state reactivity that generally enhances the rate and (b) inclusion of Lewis acids such as LiOTf and strong bases found to either avoid catalytic poisoning or ease the H-H cleavages, to enhance the rate of reaction (c) evading mixing of excited open-shell singlet states to the ground closed-shell singlet state that hampers the catalytic regeneration. We have probed the role of oriented external electric fields (OEEFs) in the entire mechanistic profile for the best and worst catalyst, and our study suggests that imposing OEEFs opposite to the reaction axis (z-axis) fastens the catalytic regeneration step and, at the same time, hampers catalytic poisoning. The application of OEEFs is found to regulate the energetics of various spin states and can hamper two-state reactivity, therefore increasing the efficiency. Thus, this study provides insights into the CO2 hydrogenation mechanism where the role of bases/Lewis acid, ligand design, spin states, and electric field in a particular direction has been established and is, therefore, likely to pave the way forward for a new generation of catalysts.
Collapse
Affiliation(s)
- Asmita Sen
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai400076, India
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai400076, India
| |
Collapse
|
6
|
Sen A, Rajaraman G. Can you break the oxo-wall? A multiconfigurational perspective. Faraday Discuss 2022; 234:175-194. [PMID: 35147623 DOI: 10.1039/d1fd00072a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The concept of the "oxo-wall" was conceived about 60 years ago by Harry B. Gray, and has been found to be related to the non-existence of high-valent M-oxo species in the +IV oxidation state in a tetragonal geometry beyond group 8 in the periodic table. Several efforts have been made in the past decades to test and find examples that violate this theory. Several claims of violation in the past were attributed to the difference in the geometries/coordination number and, therefore, these are not examples of true violation. In recent years, substantial efforts have been undertaken to synthesise a true CoIVO species with various ligand architectures. CoIVO and CoIII-O˙ are electromers and, while they are interchangeably used in the literature; the former violates the oxo-wall while the latter does not. The possibility that these two species could exist in various proportions similar to resonating structures has not been considered in detail in this area. Furthermore, there have been no attempts to quantify such mixing. In this direction, we have employed density functional theory (DFT) and ab initio CASSCF/NEVPT2 methods to quantify the co-existence of CoIVO and CoIII-O˙ isomeric species. By thoroughly studying six different metal-oxo species, we affirm that the nature of such electromeric mixing is minimal/negligible for FeIVO and MnIVO species - both are pre-oxo-wall examples. By studying four different ligand architectures with Co-oxo species, our results unveil that the mixing of CoIVO ↔ CoIII-O˙ is substantial in all geometries, with dominant CoIVO species favourable for the S = 3/2 intermediate spin state. The percentage of the CoIII-O˙ species is enhanced substantially for the S = 1/2 low-spin state. We have attempted to develop a tool to estimate the percentage of the CoIII-O˙ species using various structural parameters. Among those tested, a linear relationship between % of CoIII-O˙ and a bond length based ratio is found (, where d(Co-O) and d(Co-Nax) are the axial Co-O and Co-Nax bond lengths in Å, respectively). It is found that the higher the Rd, the greater the CoIII-O˙ character will be and the geometrically portable correlation developed offers a way to qualitatively compute the % of CoIII-O˙ character for unknown geometries.
Collapse
Affiliation(s)
- Asmita Sen
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| |
Collapse
|
7
|
Ma Z, Hada M, Nakatani N. Mechanistic insights into the selectivity of norcarane oxidation by oxoMn(V) porphyrin complexes. Chemphyschem 2022; 23:e202100810. [PMID: 34981629 DOI: 10.1002/cphc.202100810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/27/2021] [Indexed: 11/05/2022]
Abstract
OxoMn(V) porphyrin complexes perform competitive hydroxylation, desaturation, and radical rearrangement reactions using diagnostic substrate norcarane. Initial C-H cleavage proceeds through the two hydrogen abstraction steps from the two adjacent carbon on the norcarane, then the selective reaction is performed to generate various products. Using density functional theory calculations, we show that the hydroxylation and desaturation reactions are triggered by a rate-determining H-abstraction step, whereas the rate-determining step for the radical rearrangement is located at the rebound step ( TS2 ). We find that the endo- 2 reaction is favorable over other reactions, which is consistent with the experimental result. Furthermore, the competitive pathways for norcarane oxidation depend on the non-covalent interaction between norcarane and porphyrin-ring, and orbital energy gaps between donor and acceptor orbitals because of stable or unstable acceptor orbital. The stereo- and regio-selectivities of norcarane oxidation are hardly sensitive to the zero-point energy and thermal free energy corrections.
Collapse
Affiliation(s)
- Zhifeng Ma
- Tokyo Metropolitan University, Chemistry, 1-1 Minami-Osawa, 192-0397, Tokyo, JAPAN
| | - Masahiko Hada
- Tokyo Metropolitan University - Minamiosawa Campus: Shuto Daigaku Tokyo, Chemistry, JAPAN
| | - Naoki Nakatani
- Tokyo Metropolitan University - Minamiosawa Campus: Shuto Daigaku Tokyo, Chemistry, JAPAN
| |
Collapse
|
8
|
Sen A, Kumar R, Rajaraman G. A theoretical perspective on the reactivity of high-valent Mn-Oxo/nitrene species towards oxidative transformations. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2021.120654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Kumar R, Pandey B, Singh A, Rajaraman G. Mechanistic Insights into the Oxygen Atom Transfer Reactions by Nonheme Manganese Complex: A Computational Case Study on the Comparative Oxidative Ability of Manganese-Hydroperoxo vs High-Valent Mn IV═O and Mn IV-OH Intermediates. Inorg Chem 2021; 60:12085-12099. [PMID: 34293860 DOI: 10.1021/acs.inorgchem.1c01306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Understanding the comparative oxidative abilities of high-valent metal-oxo/hydroxo/hydroperoxo species holds the key to robust biomimic catalysts that perform desired organic transformations with very high selectivity and efficiency. The comparative oxidative abilities of popular high-valent iron-oxo and manganese-oxo species are often counterintuitive, for example, oxygen atom transfer (OAT) reaction by [(Me2EBC)MnIV-OOH]3+, [(Me2EBC)MnIV-OH]3+, and [(Me2EBC)MnIV═O]2+ (Me2EBC = 4,11-dimethyl-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane) shows extremely high reactivity for MnIV-OOH species and no reactivity for MnIV-OH and MnIV═O species toward alkyl/aromatic sulfides. Using a combination of density functional theory (DFT) and ab initio domain-based local pair natural orbital coupled-cluster with single, double, and perturbative triples excitation (DLPNO-CCSD(T)) and complete-active space self-consistent field/N-electron valence perturbation theory second order (CASSCF/NEVPT2) calculations, here, we have explored the electronic structures and sulfoxidation mechanism of these species. Our calculations unveil that MnIV-OOH reacts through distal oxygen atom with the substrate via electron transfer (ET) mechanism with a very small kinetic barrier (16.5 kJ/mol), placing this species at the top among the best-known catalysts for such transformations. The MnIV-OH and MnIV═O species have a much larger barrier. The mechanism has also been found to switch from ET in the former to concerted in the latter, rendering both unreactive under the tested experimental conditions. Intrinsic differences in the electronic structures, such as the presence and absence of the multiconfigurational character coupled with the steric effects, are responsible for such variations observed. This comparative oxidative ability that runs contrary to the popular iron-oxo/hydroperoxo reactivity will have larger mechanistic implications in understanding the reactivity of biomimic catalysts and the underlying mechanisms in PSII.
Collapse
Affiliation(s)
- Ravi Kumar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Bhawana Pandey
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Akta Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
10
|
Zima AM, Lyakin OY, Bushmin DS, Soshnikov IE, Bryliakov KP, Talsi EP. Non-heme perferryl intermediates: Effect of spin state on the epoxidation enantioselectivity. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|