1
|
Chatterjee T, Guha P, Dutta B, Khan S, Siddiqui MR, Wabaidur SM, Hedayetullah Mir M, Mafiz Alam S. Structural Characteristics and DNA Groove Binding Abilities of Two Zinc-Based Isoreticular MOFs. Chem Asian J 2025; 20:e202400922. [PMID: 39412201 DOI: 10.1002/asia.202400922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/01/2024] [Indexed: 11/14/2024]
Abstract
In this study, we have synthesized two zinc(II)-based metal-organic frameworks (MOFs) designated as [Zn(4-nvp)(bdc)] ⋅ (MeOH) (1) and [Zn2(4-nvp)2(bpdc)2] ⋅ (DMF) (2) [4-nvp=4-(1-naphthylvinyl) pyridine, H2bdc=1,4-benzendicarboxylic acid and H2bpdc=4,4'-biphenyldicarboxylic acid]. Single-crystal X-ray diffraction (SCXRD) of both compounds unveiled an interesting paddle-wheel [Zn2(O2C-C)4] secondary building block (SBB) composed of dinuclear Zn (II) centers and four dicarboxylate groups with a (4,4) square grid topology. These SBBs are interconnected giving rise to an infinite 2D layer architecture. Notably, the grid structure is composed of MeOH molecules in compound 1 and DMF molecules in compound 2, both of them arranged in a free lattice. In both compounds, 3D supramolecular architecture is ultimately formed through the stacking of 2D layers. Since the length of the bpdc ligand is higher than that of the bdc ligand, the solvent-accessible void volume is comparatively higher for compound 2. To corroborate all non-bonded interactions, Hirshfeld analysis was carried out for synthesized compounds. DNA binding application was extensively investigated through docking study. Results indicated that the synthesized compounds have strong affinities towards DNA via DNA groove binding. Henceforth, the synthesized compounds 1 and 2 would open the door for their potential applications as particular protein binders and bioactive substances.
Collapse
Affiliation(s)
- Taposi Chatterjee
- Department of Chemistry, Aliah University, New Town, Kolkata, 700 160, India
- Department of Basic Science & Humanities, Techno International New Town, Kolkata, 700 156, India
| | - Priyam Guha
- Department of Chemistry, Aliah University, New Town, Kolkata, 700 160, India
| | - Basudeb Dutta
- Department of Chemistry, Aliah University, New Town, Kolkata, 700 160, India
- Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Samim Khan
- Department of Chemistry, Aliah University, New Town, Kolkata, 700 160, India
- Institut des Matériaux Poreux de Paris, Ecole Normale Supérieure, ESPCI Paris, CNRS, PSL University, 75005, Paris, France
| | - Masoom Raza Siddiqui
- Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Saikh M Wabaidur
- Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | | | - Seikh Mafiz Alam
- Department of Chemistry, Aliah University, New Town, Kolkata, 700 160, India
| |
Collapse
|
2
|
Ren WB, Fu Y, Zheng H, Hou B, Cui D, Zhao L, Zang HY, Wang X. Hydrogen-Bonded Organic Framework and Metal-Organic Framework Assembly of Waterwheel PgC-Noria Molecule: Regulating Microstructure Enables Iodine Transfer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2405725. [PMID: 39548924 DOI: 10.1002/smll.202405725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/01/2024] [Indexed: 11/18/2024]
Abstract
Hydrogen-bonded organic frameworks (HOFs) are a type of crystalline porous materials self-assembled from organic or metal-organic building blocks via intermolecular hydrogen bonding, which have received increasing attention due to their reversible and flexible hydrogen bonding properties. Currently, it remains a challenge to construct HOFs based on complex or porous organic cages as molecular building blocks. Herein, a 3D HOF (PgC-HOF) featuring honeycomb-shaped channels is crafted utilizing a sizable waterwheel-like PgC-noria organic molecule cage. The pivotal role of intermolecular multipoint hydrogen bonding interactions in upholding structural integrity and stability is underscored by the possession of 36 phenolic hydroxyl groups in PgC-HOF. Interestingly, the introduction of calcium ions into the reaction system results in the formation of the metal-organic framework (PgC-MOF), with the channel dimensions increasing from 6.8 to 9.1 Å. Furthermore, I2 sorption/release experiments are conducted on PgC-HOF and PgC-MOF, achieving an increase in the optimal adsorption amount from 1.45 to 2.19 g g-1 and a transition from an irreversible adsorbent to a reversible adsorbent.
Collapse
Affiliation(s)
- Wei-Bo Ren
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| | - Yaomei Fu
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang, 262700, P. R. China
| | - Haiyan Zheng
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| | - Baoshan Hou
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| | - Dongxu Cui
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| | - Liang Zhao
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| | - Hong-Ying Zang
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| | - Xinlong Wang
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| |
Collapse
|
3
|
Peng G, Zhou GX, Dong XT, Peng YB, Zhang RY, Ma YZ, Ren XM. Multifunctional chiral metal hydrogen-bonded organic frameworks constructed from lanthanide ions with a trigonal prismatic coordination environment. Dalton Trans 2024; 54:152-158. [PMID: 39526395 DOI: 10.1039/d4dt02131b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Two pairs of chiral enantiomers D/L-Dy(PMP)3·2H2O (D-1/L-1) and D/L-Yb(PMP)3·2H2O (D-2/L-2) were synthesized by the introduction of enantiomerically pure D/L-PMP (PMP = (phosphonomethyl)proline) ligands into lanthanide coordination chemistry. The chiral characteristics of these products were confirmed by single crystal X-ray diffraction, second harmonic generation (SHG) measurements and circular dichroism (CD) spectroscopy. These complexes are composed of 1D chains constructed from lanthanide ions with a trigonal prismatic coordination geometry and PMP ligands. The assembly of the 1D chains led to the formation of a lanthanide hydrogen-bonded organic framework with 1D water chains filled in the channels. Zero-field slow relaxation of magnetization was detected in L-1, whereas L-2 showed field-induced single-molecule magnet (SMM) behavior. Complexes D-1, L-1 and L-2 show proton conductive ability and their conductivity values reach the order of 10-5 S cm-1 at 90 °C and 98% relative humidity.
Collapse
Affiliation(s)
- Guo Peng
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Guo-Xing Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Xiang-Tao Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Yong-Bo Peng
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Rong-Yan Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | - Ying-Zhao Ma
- Chongqing Key Laboratory of Green Synthesis and Application, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Xiao-Ming Ren
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
4
|
Dong J, Huang L, Shi L, Yang J, Wan Y, Shao D. Metalo Hydrogen-Bonded Organic Frameworks Constructed by Coordinated Chains for Magnetic and Proton-Conductive Bifunctionality. Inorg Chem 2024. [PMID: 39229693 DOI: 10.1021/acs.inorgchem.4c01847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Metalo hydrogen-bonded organic frameworks (MHOFs) have received growing interest in designing crystalline functional materials. However, reports on bifunctional MHOFs showing magnetic and proton-conductive properties are extremely limited and their design is challenging. Herein, we investigated the magnetic and proton-conductive properties of two sulfonated CoHOF and MnHOF, {M(H2O)2(abs)2}n (M = Co2+ and Mn2+, Habs = 4-aminoazobenzene-4'-sulfonic anion), constructed by coordination chains. The supramolecular frameworks sustained by H bonds between -SO3- and coordinated water show directional ladder-type H bonds with hydrophilic nanochannels, leading to high proton conduction with exceptionally high conductivity around 10-2 S cm-1 at 100 °C under 97% relative humidity. In particular, the maximum σ value of CoHOF, 2.11 × 10-2 S cm-1, recorded the highest value among the reported proton-conducting materials showing slow magnetic relaxation. Meanwhile, the molecular structure of organosulfonate enables the magnetic isolation of high-spin Co2+ and Mn2+ centers in the frameworks. Magnetic measurements indicated that the MHOFs show field-induced single-ion magnet (SIM) properties, making these compounds rare magnetic-proton-conductive MHOFs. The work provides not only two unique MHOFs with SIM behavior and high proton conduction performance but also avenues for designing stable bifunctional MHOFs via a coordination chain approach.
Collapse
Affiliation(s)
- Jing Dong
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, China
| | - Long Huang
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, China
| | - Le Shi
- State Key Laboratory of Chemical Engineering, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Jiong Yang
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Yi Wan
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, China
| | - Dong Shao
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, China
| |
Collapse
|
5
|
Hamsayegan S, Raissi H, Ghahari A. Selective detection of food contaminants using engineered gallium-organic frameworks with MD and metadynamics simulations. Sci Rep 2024; 14:18144. [PMID: 39103470 PMCID: PMC11300645 DOI: 10.1038/s41598-024-69111-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/31/2024] [Indexed: 08/07/2024] Open
Abstract
The exclusion mechanism of food contaminants such as bisphenol A (BPA), Flavonoids (FLA), and Goitrin (GOI) onto the novel gallium-metal organic framework (MOF) and functionalized MOF with oxalamide group (MOF-OX) is evaluated by utilizing molecular dynamics (MD) and Metadynamics simulations. The atoms in molecules (AIM) analysis detected different types of atomic interactions between contaminant molecules and substrates. To assess this procedure, a range of descriptors including interaction energies, root mean square displacement, radial distribution function (RDF), density, hydrogen bond count (HB), and contact numbers are examined across the simulation trajectories. The most important elements in the stability of the systems under examination are found to be stacking π-π and HB interactions. It was confirmed by a significant value of total interaction energy for BPA/MOF-OX (- 338.21 kJ mol-1) and BPA/MOF (- 389.95 kJ mol-1) complexes. Evaluation of interaction energies reveals that L-J interaction plays an essential role in the adsorption of food contaminants on the substrates. The free energy values for the stability systems of BPA/MOF and BPA/MOF-OX complexes at their global minima reached about BPA/MOF = - 254.29 kJ mol-1 and BPA/MOF-OX = - 187.62 kJ mol-1, respectively. Nevertheless, this work provides a new strategy for the preparation of a new hierarchical tree-dimensional of the Ga-MOF hybrid material for the adsorption and exclusion of food contaminates and their effect on human health.
Collapse
Affiliation(s)
| | - Heidar Raissi
- Department of Chemistry, University of Birjand, Birjand, Iran.
| | - Afsaneh Ghahari
- Department of Chemistry, University of Birjand, Birjand, Iran
| |
Collapse
|
6
|
Hu S, Zhao H, Liang M, Hao J, Xue P. Interconversion and functional composites of metal-organic frameworks and hydrogen-bonded organic frameworks. Chem Commun (Camb) 2024; 60:8140-8152. [PMID: 39028023 DOI: 10.1039/d4cc01875c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Metal-organic frameworks (MOFs), an emerging class of highly ordered crystalline porous materials, possess structural tunability, high specific surface area, well-defined pores, and diverse pore environments and morphologies, making them suitable for various potential applications. Moreover, hydrogen-bonded organic frameworks (HOFs), constructed from organic molecules with complementary hydrogen-bonding patterns, are rapidly evolving into a novel category of porous materials due to their facile mild preparation conditions, solution processability, easy regeneration capability, and excellent biocompatibility. These distinctive advantages have garnered significant attention across diverse fields. Considering the inherent binding affinity between MOFs and HOFs along with the fact that many MOF linkers can serve as building blocks for constructing HOFs, their combination holds promise in creating functional materials with enhanced performance. This feature paper provides an introduction to the interconversion between MOFs and HOFs followed by highlighting the emerging applications of MOF-HOF composites. Finally, we briefly discuss the current challenges associated with future perspectives on MOF-HOF composites.
Collapse
Affiliation(s)
- Siwen Hu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, No. 393, Binshui West Road, Tianjin, 300387, P. R. China.
| | - He Zhao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, No. 393, Binshui West Road, Tianjin, 300387, P. R. China.
| | - Meng Liang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, No. 393, Binshui West Road, Tianjin, 300387, P. R. China.
| | - Jingjun Hao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, No. 393, Binshui West Road, Tianjin, 300387, P. R. China.
| | - Pengchong Xue
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, No. 393, Binshui West Road, Tianjin, 300387, P. R. China.
| |
Collapse
|
7
|
Song YJ, Xie LX, Sang YL, Zhang YH, Li ZF, Li G. Ultrahigh proton conductivity of four ionic hydrogen-bonded organic frameworks based on functionalized terephthalates. J Colloid Interface Sci 2024; 674:1058-1070. [PMID: 39008942 DOI: 10.1016/j.jcis.2024.07.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/10/2024] [Accepted: 07/10/2024] [Indexed: 07/17/2024]
Abstract
Recently, the utilization of hydrogen-bonded organic frameworks (HOFs) with high crystallinity and inherent well-defined H-bonding networks in the field of proton conduction has received increasing attention, but obtaining HOFs with excellent water stability and prominent proton conductivity (σ) remains challenging. Herein, by employing functionalized terephthalic acids, 2,5-dihydroxyterephthalic acid, 2-hydroxyterephthalic acid, 2-nitro terephthalic acid, and terephthalic acid, respectively, four highly water-stable ionic HOFs (iHOFs), [(C8H5O6)(Me2NH2)]∙2H2O (iHOF 1), [(C8H5O5)(Me2NH2)] (iHOF 2), [(C8H4NO6)(Me2NH2)] (iHOF 3) and [(C8H5O4)(Me2NH2)] (iHOF 4) were efficiently prepared by a straightforward synthesis approach in DMF and H2O solutions. The alternating-current (AC) impedance testing in humid conditions revealed that all four iHOFs were temperature- and humidity-dependent σ, with the greatest value reaching 10-2 S·cm-1. As expected, the high density of free carboxylic acid groups, crystallization water, and protonated [Me2NH2]+ units offer adequate protons and hydrophilic environments for effective proton transport. Furthermore, the σ values of these iHOFs with different functional groups were compared. It was discovered that it dropped in the following order under 100 °C and 98 % relative humidity (RH): σ iHOF 1 (1.72 × 10-2 S·cm-1) > σ iHOF 2 (4.03 × 10-3 S·cm-1) > σ iHOF 3 (1.46 × 10-3 S·cm-1) > σ iHOF 4 (4.86 × 10-4 S·cm-1). Finally, we investigated the causes of the above differences and the proton transport mechanism inside the framework using crystal structure data, water contact angle tests, and activation energy values. This study provides new motivation to develop highly proton-conductive materials.
Collapse
Affiliation(s)
- Yong-Jie Song
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, Henan, PR China
| | - Li-Xia Xie
- College of Science, Henan Agricultural University, Zhengzhou 450002, Henan, PR China
| | - Ya-Li Sang
- College of Chemistry and Life Science, Chifeng University, Chifeng 024000, PR China; Inner Mongolia Key Laboratory of Photoelectric Functional Materials, Chifeng 024000, PR China
| | - Yu-Hong Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, Henan, PR China.
| | - Zi-Feng Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, Henan, PR China.
| | - Gang Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, Henan, PR China.
| |
Collapse
|
8
|
Liu H, Zheng ZW, Zhang XY, Li Q, Zhou JJ, Huang K, Qin DB. Metal Hydrogen-Bonded Organic Frameworks as Open Lewis Acid Catalysts for Two Types of CO 2 Transformations. Inorg Chem 2024; 63:11554-11565. [PMID: 38815997 DOI: 10.1021/acs.inorgchem.4c00659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Efficient and multiple CO2 utilization into high-value-added chemicals holds significant importance in carbon neutrality and industry production. However, most catalysis systems generally exhibit only one type of CO2 transformation with the efficiency to be improved. The restricted abundance of active catalytic sites or an inefficient utilization rate of these sites results in the constraint. Consequently, we designed and constructed two metal hydrogen-bonded organic frameworks (M-HOFs) {[M3(L3-)2(H2O)10]·2H2O}n (M = Co (1), Ni (2); L = 1-(4-carboxyphenyl)-1H-pyrazole-3,5-dicarboxylic acid) in this research. 1 and 2 are well-characterized, and both show excellent stability. The networks connected by multiple hydrogen bonds enhance the structural flexibility and create accessible Lewis acidic sites, promoting interactions between the substrates and catalytic centers. This enhancement facilitates efficient catalysis for two types of CO2 transformations, encompassing both cycloaddition reactions with epoxides and aziridines to afford cyclic carbonates and oxazolidinones. The catalytic activities (TON/TOF) are superior compared with those of most other catalysts. These heterogeneous catalysts still exhibited high performance after being reused several times. Mechanistic studies indicated intense interactions between the metal sites and substrates, demonstrating the reason for efficient catalysis. This marks the first instance on M-HOFs efficiently catalyzing two types of CO2 conversions, finding important significance for catalyst design and CO2 utilization.
Collapse
Affiliation(s)
- Hua Liu
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China
| | - Zhi-Wei Zheng
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China
| | - Xiang-Yu Zhang
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (MOE), Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin 300071, People's Republic of China
- Key Laboratories of Fine Chemicals and Surfactants in Sichuan Provincial Universities, College of Chemical Engineering, Sichuan University of Science & Engineering, Zigong 643000, People's Republic of China
| | - Qi Li
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (MOE), Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin 300071, People's Republic of China
| | - Jun-Jie Zhou
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China
| | - Kun Huang
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China
| | - Da-Bin Qin
- Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China
| |
Collapse
|
9
|
Liu X, Liu G, Fu T, Ding K, Guo J, Wang Z, Xia W, Shangguan H. Structural Design and Energy and Environmental Applications of Hydrogen-Bonded Organic Frameworks: A Systematic Review. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400101. [PMID: 38647267 PMCID: PMC11165539 DOI: 10.1002/advs.202400101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/14/2024] [Indexed: 04/25/2024]
Abstract
Hydrogen-bonded organic frameworks (HOFs) are emerging porous materials that show high structural flexibility, mild synthetic conditions, good solution processability, easy healing and regeneration, and good recyclability. Although these properties give them many potential multifunctional applications, their frameworks are unstable due to the presence of only weak and reversible hydrogen bonds. In this work, the development history and synthesis methods of HOFs are reviewed, and categorize their structural design concepts and strategies to improve their stability. More importantly, due to the significant potential of the latest HOF-related research for addressing energy and environmental issues, this work discusses the latest advances in the methods of energy storage and conversion, energy substance generation and isolation, environmental detection and isolation, degradation and transformation, and biological applications. Furthermore, a discussion of the coupling orientation of HOF in the cross-cutting fields of energy and environment is presented for the first time. Finally, current challenges, opportunities, and strategies for the development of HOFs to advance their energy and environmental applications are discussed.
Collapse
Affiliation(s)
- Xiaoming Liu
- Department of Resources and EnvironmentMoutai InstituteRenhuai564507China
| | - Guangli Liu
- College of Environmental Sciences and EngineeringPeking UniversityBeijing100871China
| | - Tao Fu
- College of Environmental Sciences and EngineeringPeking UniversityBeijing100871China
| | - Keren Ding
- AgResearchRuakura Research CentreHamilton3240New Zealand
| | - Jinrui Guo
- College of Environmental Science and EngineeringTongji UniversityShanghai200092China
| | - Zhenran Wang
- School of Environmental Science and EngineeringSouthwest Jiaotong UniversityChengdu611756China
| | - Wei Xia
- Department of Resources and EnvironmentMoutai InstituteRenhuai564507China
| | - Huayuan Shangguan
- Key Laboratory of Urban Environment and HealthInstitute of Urban EnvironmentChinese Academy of SciencesXiamen361021China
| |
Collapse
|
10
|
Su J, Han X, Ke SW, Zhou XC, Yuan S, Ding M, Zuo JL. Construction of a stable radical hydrogen-bonded metal-organic framework with functionalized tetrathiafulvalene linkers. Chem Commun (Camb) 2024; 60:5812-5815. [PMID: 38747473 DOI: 10.1039/d4cc01152j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
A stable two-dimensional radical hydrogen-bonded metal-organic framework, constructed using a modified tetrathiafulvalene-tetrabenzoate ((2-Me)-H4TTFTB) linker and Cd2+ ions, exhibits a high electrical conductivity of 4.1 × 10-4 S m-1 and excellent photothermal conversion with a temperature increase of 137 °C in 15 s under the irradiation of a 0.7 W cm-2 808 nm laser.
Collapse
Affiliation(s)
- Jian Su
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China.
| | - Xiao Han
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Si-Wen Ke
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Xiao-Cheng Zhou
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Shuai Yuan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Mengning Ding
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jing-Lin Zuo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
11
|
Chang B, Chen J, Bao J, Sun T, Cheng Z. Molecularly Engineered Room-Temperature Phosphorescence for Biomedical Application: From the Visible toward Second Near-Infrared Window. Chem Rev 2023; 123:13966-14037. [PMID: 37991875 DOI: 10.1021/acs.chemrev.3c00401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Phosphorescence, characterized by luminescent lifetimes significantly longer than that of biological autofluorescence under ambient environment, is of great value for biomedical applications. Academic evidence of fluorescence imaging indicates that virtually all imaging metrics (sensitivity, resolution, and penetration depths) are improved when progressing into longer wavelength regions, especially the recently reported second near-infrared (NIR-II, 1000-1700 nm) window. Although the emission wavelength of probes does matter, it is not clear whether the guideline of "the longer the wavelength, the better the imaging effect" is still suitable for developing phosphorescent probes. For tissue-specific bioimaging, long-lived probes, even if they emit visible phosphorescence, enable accurate visualization of large deep tissues. For studies dealing with bioimaging of tiny biological architectures or dynamic physiopathological activities, the prerequisite is rigorous planning of long-wavelength phosphorescence, being aware of the cooperative contribution of long wavelengths and long lifetimes for improving the spatiotemporal resolution, penetration depth, and sensitivity of bioimaging. In this Review, emerging molecular engineering methods of room-temperature phosphorescence are discussed through the lens of photophysical mechanisms. We highlight the roles of phosphorescence with emission from visible to NIR-II windows toward bioapplications. To appreciate such advances, challenges and prospects in rapidly growing studies of room-temperature phosphorescence are described.
Collapse
Affiliation(s)
- Baisong Chang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Jie Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Jiasheng Bao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Taolei Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei 430070, China
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264000, China
| |
Collapse
|
12
|
Mena-Gutiérrez S, Pascual-Colino J, Beobide G, Castillo O, Castellanos-Rubio A, Luque A, Maiza-Razkin E, Mentxaka J, Pérez-Yáñez S. Isoreticular Chemistry and Applications of Supramolecularly Assembled Copper-Adenine Porous Materials. Inorg Chem 2023; 62:18496-18509. [PMID: 37910080 PMCID: PMC10647167 DOI: 10.1021/acs.inorgchem.3c02708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 11/03/2023]
Abstract
The useful concepts of reticular chemistry, rigid and predictable metal nodes together with strong and manageable covalent interactions between metal centers and organic linkers, have made the so-called metal-organic frameworks (MOFs) a flourishing area of enormous applicability. In this work, the extension of similar strategies to supramolecularly assembled metal-organic materials has allowed us to obtain a family of isoreticular compounds of the general formula [Cu7(μ-adeninato-κN3:κN9)6(μ3-OH)6(μ-OH2)6](OOC-R-COO)·nH2O (R: ethylene-, acetylene-, naphthalene-, or biphenyl-group) in which the rigid copper-adeninato entities and the organic dicarboxylate anions are held together not by covalent interactions but by a robust and flexible network of synergic hydrogen bonds and π-π stacking interactions based on well-known supramolecular synthons (SMOFs). All compounds are isoreticular, highly insoluble, and water-stable and show a porous crystalline structure with a pcu topology containing a two-dimensional (2D) network of channels, whose dimensions and degree of porosity of the supramolecular network are tailored by the length of the dicarboxylate anion. The partial loss of the crystallization water molecules upon removal from the mother liquor produces a shrinkage of the unit cell and porosity, which leads to a color change of the compounds (from blue to olive green) if complete dehydration is achieved by means of gentle heating or vacuuming. However, the supramolecular network of noncovalent interactions is robust and flexible enough to reverse to the expanded unit cell and color after exposure to a humid atmosphere. This humidity-driven breathing behavior has been used to design a sensor in which the electrical resistance varies reversibly with the degree of humidity, very similar to the water vapor adsorption isotherm of the SMOF. The in-solution adsorption properties were explored for the uptake and release of the widely employed 5-fluorouracil, 4-aminosalycilic acid, 5-aminosalycilic acid, and allopurinol drugs. In addition, cytotoxicity activity assays were completed for the pristine and 5-fluorouracil-loaded samples.
Collapse
Affiliation(s)
- Sandra Mena-Gutiérrez
- Departamento
de Química Orgánica e Inorgánica, Facultad de
Ciencia y Tecnología, Universidad
del País Vasco/Euskal Herriko Unibertsitatea, UPV/EHU, Apartado 644, E-48080 Bilbao, Spain
| | - Jon Pascual-Colino
- Departamento
de Química Orgánica e Inorgánica, Facultad de
Ciencia y Tecnología, Universidad
del País Vasco/Euskal Herriko Unibertsitatea, UPV/EHU, Apartado 644, E-48080 Bilbao, Spain
- BCMaterials,
Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, E-48940 Leioa, Spain
| | - Garikoitz Beobide
- Departamento
de Química Orgánica e Inorgánica, Facultad de
Ciencia y Tecnología, Universidad
del País Vasco/Euskal Herriko Unibertsitatea, UPV/EHU, Apartado 644, E-48080 Bilbao, Spain
- BCMaterials,
Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, E-48940 Leioa, Spain
| | - Oscar Castillo
- Departamento
de Química Orgánica e Inorgánica, Facultad de
Ciencia y Tecnología, Universidad
del País Vasco/Euskal Herriko Unibertsitatea, UPV/EHU, Apartado 644, E-48080 Bilbao, Spain
- BCMaterials,
Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, E-48940 Leioa, Spain
| | - Ainara Castellanos-Rubio
- Departamento
de Genética, Antropología física y Fisiología
animal, Facultad de Medicina, Universidad
del País Vasco/Euskal Herriko Unibertsitatea, UPV/EHU, E-48940 Leioa, Spain
- Ikerbasque, Basque Foundation for Science; E-48011, Bilbao, Spain
- Biobizkaia
Research Institute, E-480903 Barakaldo, Bizkaia Spain
| | - Antonio Luque
- Departamento
de Química Orgánica e Inorgánica, Facultad de
Ciencia y Tecnología, Universidad
del País Vasco/Euskal Herriko Unibertsitatea, UPV/EHU, Apartado 644, E-48080 Bilbao, Spain
- BCMaterials,
Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, E-48940 Leioa, Spain
| | - Ekain Maiza-Razkin
- Departamento
de Química Orgánica e Inorgánica, Facultad de
Ciencia y Tecnología, Universidad
del País Vasco/Euskal Herriko Unibertsitatea, UPV/EHU, Apartado 644, E-48080 Bilbao, Spain
| | - Jon Mentxaka
- Biobizkaia
Research Institute, E-480903 Barakaldo, Bizkaia Spain
- Departamento
de Bioquímica y Biología Molecular, UPV-EHU, E-48940 Leioa, Bizkaia Spain
| | - Sonia Pérez-Yáñez
- Departamento
de Química Orgánica e Inorgánica, Facultad de
Ciencia y Tecnología, Universidad
del País Vasco/Euskal Herriko Unibertsitatea, UPV/EHU, Apartado 644, E-48080 Bilbao, Spain
- BCMaterials,
Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, E-48940 Leioa, Spain
| |
Collapse
|
13
|
Liu H, Yao Y, Samorì P. Taming Multiscale Structural Complexity in Porous Skeletons: From Open Framework Materials to Micro/Nanoscaffold Architectures. SMALL METHODS 2023; 7:e2300468. [PMID: 37431215 DOI: 10.1002/smtd.202300468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/14/2023] [Indexed: 07/12/2023]
Abstract
Recent developments in the design and synthesis of more and more sophisticated organic building blocks with controlled structures and physical properties, combined with the emergence of novel assembly modes and nanofabrication methods, make it possible to tailor unprecedented structurally complex porous systems with precise multiscale control over their architectures and functions. By tuning their porosity from the nanoscale to microscale, a wide range of functional materials can be assembled, including open frameworks and micro/nanoscaffold architectures. During the last two decades, significant progress is made on the generation and optimization of advanced porous systems, resulting in high-performance multifunctional scaffold materials and novel device configurations. In this perspective, a critical analysis is provided of the most effective methods for imparting controlled physical and chemical properties to multifunctional porous skeletons. The future research directions that underscore the role of skeleton structures with varying physical dimensions, from molecular-level open frameworks (<10 nm) to supramolecular scaffolds (10-100 nm) and micro/nano scaffolds (>100 nm), are discussed. The limitations, challenges, and opportunities for potential applications of these multifunctional and multidimensional material systems are also evaluated in particular by addressing the greatest challenges that the society has to face.
Collapse
Affiliation(s)
- Hao Liu
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China
| | - Yifan Yao
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China
| | - Paolo Samorì
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, F-67000, Strasbourg, France
| |
Collapse
|
14
|
Siddig LA, Alzard RH, Abdelhamid AS, Ramachandran T, Nguyen HL, Paz AP, Alzamly A. Cobalt Hydrogen-Bonded Organic Framework as a Visible Light-Driven Photocatalyst for CO 2 Cycloaddition Reaction. Inorg Chem 2023; 62:15550-15564. [PMID: 37698585 DOI: 10.1021/acs.inorgchem.3c02051] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
A novel cobalt hydrogen-bonded organic framework (Co-HOF, C24H14CoN4O8) was synthesized from a mixed linker, that is, 2,5-pyridinedicarboxylic acid (PDC) and 2,2'-bipyridyl (BPY) linkers and cobalt ion through a simple, one-pot, low-cost, and scalable solvothermal method. The Co-HOF was fully characterized using several analytical and spectroscopic techniques including single-crystal X-ray diffraction, diffuse reflectance spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray, and X-ray photoelectron spectroscopy. The Co-HOF exhibits high thermal and chemical stabilities compared to previously reported HOF materials. Moreover, Co-HOF shows excellent photocatalytic activity under visible light irradiation due to its narrow band gap of 2.05 eV. The cycloaddition reaction of CO2 to variable epoxides was investigated to evaluate the photocatalytic performance of Co-HOF under visible light radiation and was found to produce the corresponding cyclic carbonates in yields up to 99.9%.
Collapse
Affiliation(s)
- Lamia A Siddig
- Department of Chemistry, UAE University, P.O. Box 15551, Al-Ain 15551, UAE
| | - Reem H Alzard
- Department of Chemistry, UAE University, P.O. Box 15551, Al-Ain 15551, UAE
| | - Abdalla S Abdelhamid
- Department of Chemistry, UAE University, P.O. Box 15551, Al-Ain 15551, UAE
- Department of Chemical Engineering, UAE University, P.O. Box 15551, Al-Ain 15551, UAE
| | | | - Ha L Nguyen
- Berkeley Global Science Institute, University of California Berkeley, Berkeley,California 94720, United States
| | | | - Ahmed Alzamly
- Department of Chemistry, UAE University, P.O. Box 15551, Al-Ain 15551, UAE
| |
Collapse
|
15
|
Poschmann MPM, Alan Ö, Ito S, Näther C, Friedrichs G, Stock N. Systematic Study on Zirconium Chelidamates: From a Molecular Complex to a M-HOF and a MOF. Inorg Chem 2023. [PMID: 37384893 DOI: 10.1021/acs.inorgchem.3c01079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
We report the synthesis and in-depth characterization of three zirconium chelidamates, a molecular complex (H8C2N)2[Zr(HL)3] (1), a porous metal-containing hydrogen-bonded organic framework (M-HOF) [Zr(H2O)2(HL)2]·xH2O (2), and a metal-organic framework (MOF) (H8C2N)2-2n[Zr(HnL)2]·x solvent (0 ≤ n ≤ 1) (3) using chelidamic acid (H3L, H5C7NO5, 4-hydroxypyridine-2,6-dicarboxylic acid) as the ligand (H8C2N+ = dimethylammonium). High-throughput investigations of the system Zr4+/H3L/HCl/DMF/H2O were carried out, which resulted in highly crystalline compounds. The crystal structures of 1 and 2 were determined by single-crystal X-ray diffraction. Single-crystal three-dimensional (3D) electron diffraction and Rietveld refinements of powder X-ray diffraction (PXRD) data had to be used to elucidate the crystal structure of 3 since only very small single crystals of about 500 nm in diameter could be obtained. In all structures, chelidamate ions act as anionic palindromic pincer ligands, and in 3, a coordinative bond is additionally formed by the aryloxy group. While dense packing of the molecular complexes is found in 1, hydrogen bonding of the molecular complexes in 2 leads to a porous network that shows flexibility depending on the water content. The three-dimensional framework structure of the Zr-MOF 3 contains a mononuclear inorganic building unit (IBU), which is very uncommon in Zr-MOF chemistry. The three compounds are stable in several organic solvents, and thermal decomposition starts above 280 °C. While the hydrogen-bonded framework 2 is only porous toward water with a water uptake of almost 3.75 mol mol-1 at p/p0 = 0.9, 3 is porous against N2, CO2, methanol, ethanol, and water with a specific Brunauer-Emmett-Teller (BET) surface area of aS,BET = 410 m2 g-1 derived from the N2 adsorption isotherm. Stability upon water adsorption covering 10 cycles between 0.5% < p/p0 < 90% for 3 is also demonstrated.
Collapse
Affiliation(s)
- Mirjam P M Poschmann
- Institute of Inorganic Chemistry, Christian-Albrechts-University Kiel, Max-Eyth-Street 2, 24118 Kiel, Germany
| | - Özge Alan
- Institute of Inorganic Chemistry, Christian-Albrechts-University Kiel, Max-Eyth-Street 2, 24118 Kiel, Germany
| | - Sho Ito
- Rigaku Corporation, 3-9-12 Matsubara-cho, Akishima 196-8666, Tokyo, Japan
| | - Christian Näther
- Institute of Inorganic Chemistry, Christian-Albrechts-University Kiel, Max-Eyth-Street 2, 24118 Kiel, Germany
| | - Gernot Friedrichs
- Institute of Physical Chemistry, Christian-Albrechts-University Kiel, Max-Eyth-Street 1, 24118 Kiel, Germany
| | - Norbert Stock
- Institute of Inorganic Chemistry, Christian-Albrechts-University Kiel, Max-Eyth-Street 2, 24118 Kiel, Germany
| |
Collapse
|
16
|
Akhmetova I, Rautenberg M, Das C, Bhattacharya B, Emmerling F. Synthesis and In Situ Monitoring of Mechanochemical Preparation of Highly Proton Conductive Hydrogen-Bonded Metal Phosphonates. ACS OMEGA 2023; 8:16687-16693. [PMID: 37214731 PMCID: PMC10193405 DOI: 10.1021/acsomega.2c07883] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/23/2023] [Indexed: 05/24/2023]
Abstract
Crystalline porous materials are recognized as promising proton conductors for the proton exchange membrane (PEM) in fuel cell technology owing to their tunable framework structure. However, it is still a challenging bulk synthesis for real-world applications of these materials. Herein, we report the mechanochemical gram-scale synthesis of two isostructural metal hydrogen-bonded organic frameworks (MHOFs) of Co(II) and Ni(II) based on 1-hydroxyethylidenediphosphonic acid (HEDPH4) with 2,2'-bipyridine (2,2'-bipy): Co(HEDPH3)2(2,2'-bipy)·H2O (1) and Ni(HEDPH3)2(2,2'-bipy)·H2O (2). In situ monitoring of the mechanochemical synthesis using different synchrotron-based techniques revealed a one-step mechanism - the starting materials are directly converted to the product. With the existence of extensive hydrogen bonds with amphiprotic uncoordinated phosphonate hydroxyl and oxygen atoms, both frameworks exhibited proton conduction in the range of 10-4 S cm-1 at room temperature under humid conditions. This study demonstrates the potential of green mechanosynthesis for bulk material preparation of framework-based solid-state proton conductors.
Collapse
Affiliation(s)
- Irina Akhmetova
- BAM
Federal Institute for Materials Research and Testing, Richard-Willstätter-Str.
11, 12489 Berlin, Germany
- Department
of Chemistry, Humboldt-Universität
zu Berlin, Brook-Taylor-Str.
2, 12489 Berlin, Germany
| | - Max Rautenberg
- BAM
Federal Institute for Materials Research and Testing, Richard-Willstätter-Str.
11, 12489 Berlin, Germany
- Department
of Chemistry, Humboldt-Universität
zu Berlin, Brook-Taylor-Str.
2, 12489 Berlin, Germany
| | - Chayanika Das
- BAM
Federal Institute for Materials Research and Testing, Richard-Willstätter-Str.
11, 12489 Berlin, Germany
| | - Biswajit Bhattacharya
- BAM
Federal Institute for Materials Research and Testing, Richard-Willstätter-Str.
11, 12489 Berlin, Germany
| | - Franziska Emmerling
- BAM
Federal Institute for Materials Research and Testing, Richard-Willstätter-Str.
11, 12489 Berlin, Germany
- Department
of Chemistry, Humboldt-Universität
zu Berlin, Brook-Taylor-Str.
2, 12489 Berlin, Germany
| |
Collapse
|
17
|
Application of Hydrogen-Bonded Organic Frameworks in Environmental Remediation: Recent Advances and Future Trends. SEPARATIONS 2023. [DOI: 10.3390/separations10030196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
The hydrogen-bonded organic frameworks (HOFs) are a class of porous materials with crystalline frame structures, which are self-assembled from organic structures by hydrogen bonding in non-covalent bonds π-π packing and van der Waals force interaction. HOFs are widely used in environmental remediation due to their high specific surface area, ordered pore structure, pore modifiability, and post-synthesis adjustability of various physical and chemical forms. This work summarizes some rules for constructing stable HOFs and the synthesis of HOF-based materials (synthesis of HOFs, metallized HOFs, and HOF-derived materials). In addition, the applications of HOF-based materials in the field of environmental remediation are introduced, including adsorption and separation (NH3, CO2/CH4 and CO2/N2, C2H2/C2He and CeH6, C2H2/CO2, Xe/Kr, etc.), heavy metal and radioactive metal adsorption, organic dye and pesticide adsorption, energy conversion (producing H2 and CO2 reduced to CO), organic dye degradation and pollutant sensing (metal ion, aniline, antibiotic, explosive steam, etc.). Finally, the current challenges and further studies of HOFs (such as functional modification, molecular simulation, application extension as remediation of contaminated soil, and cost assessment) are discussed. It is hoped that this work will help develop widespread applications for HOFs in removing a variety of pollutants from the environment.
Collapse
|
18
|
Liu Y, Chang G, Zheng F, Chen L, Yang Q, Ren Q, Bao Z. Hybrid Hydrogen-Bonded Organic Frameworks: Structures and Functional Applications. Chemistry 2023; 29:e202202655. [PMID: 36414543 DOI: 10.1002/chem.202202655] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022]
Abstract
As a new class of porous crystalline materials, hydrogen-bonded organic frameworks (HOFs) assembled from building blocks by hydrogen bonds have gained increasing attention. HOFs benefit from advantages including mild synthesis, easy purification, and good recyclability. However, some HOFs transform into unstable frameworks after desolvation, which hinders their further applications. Nowadays, the main challenges of developing HOFs lie in stability improvement, porosity establishment, and functionalization. Recently, more and more stable and permanently porous HOFs have been reported. Of all these design strategies, stronger charge-assisted hydrogen bonds and coordination bonds have been proven to be effective for developing stable, porous, and functional solids called hybrid HOFs, including ionic and metallized HOFs. This Review discusses the rational design synthesis principles of hybrid HOFs and their cutting-edge applications in selective inclusion, proton conduction, gas separation, catalysis and so forth.
Collapse
Affiliation(s)
- Ying Liu
- Key Laboratory of Biomass Chemical Engineering of, Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang Province, 310027, P.R. China
| | - Ganggang Chang
- State Key Laboratory of Advanced Technology for, Materials Synthesis and Processing, School of Chemistry Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan, Hubei Province, 430070, P.R. China
| | - Fang Zheng
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province, 324000, P.R. China
| | - Lihang Chen
- Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province, 324000, P.R. China
| | - Qiwei Yang
- Key Laboratory of Biomass Chemical Engineering of, Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang Province, 310027, P.R. China.,Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province, 324000, P.R. China
| | - Qilong Ren
- Key Laboratory of Biomass Chemical Engineering of, Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang Province, 310027, P.R. China.,Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province, 324000, P.R. China
| | - Zongbi Bao
- Key Laboratory of Biomass Chemical Engineering of, Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang Province, 310027, P.R. China.,Institute of Zhejiang University-Quzhou, 99 Zheda Road, Quzhou, Zhejiang Province, 324000, P.R. China
| |
Collapse
|
19
|
Yoshinari N, Konno T. Multitopic metal–organic carboxylates available as supramolecular building units. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
20
|
Shao D, Zhou Y, Yang X, Yue J, Ming S, Wei XQ, Tian Z. Supramolecular encapsulation of hexaaquacobalt(II) cations in a hydrogen-bonded framework for slow magnetic relaxation and high proton conduction. Dalton Trans 2022; 51:18514-18519. [PMID: 36440615 DOI: 10.1039/d2dt03278c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The supramolecular assembly of hexaaquacobalt(II) nitrate and a tetradentate carboxylate ligand resulted in the isolation of a cobalt hydrogen-bonded organic framework (HOF). Variable-temperature X-ray diffraction experiments reveal high thermal stability of the framework sustained by charge-assisted, multiple hydrogen bonding interactions with the co-former. Interestingly, the material shows field-induced slow relaxation of magnetization originating from the magnetically anisotropic Co2+ ions within the supramolecular framework, revealing a rare single-ion magnet (SIM) HOF. Additionally, the HOF also exhibits high proton conductivity above 100 °C due to the extensive H-bond networks and high content of water and carboxylate within the material. More importantly, these results not only observe the magnetic and electrical properties of an old molecule but also demonstrate a significant turn-on effect of multifunctionalities from non-functional synthons achieved in a supramolecular approach.
Collapse
Affiliation(s)
- Dong Shao
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, P. R. China. .,State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210023, P. R. China
| | - Yue Zhou
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, P. R. China.
| | - Xiaodong Yang
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, P. R. China.
| | - Jing Yue
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, P. R. China.
| | - Shujun Ming
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, P. R. China.
| | - Xiao-Qin Wei
- Department of Material Science and Engineering, Shanxi Province Collaborative Innovation Center for Light Materials Modification and Application, Jinzhong University, Jinzhong, 030619, P. R. China
| | - Zhengfang Tian
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, P. R. China.
| |
Collapse
|
21
|
Iwabuchi Y, Yamaguchi R, Murakami T, Okazaki M, Ohta S. Synthesis, Structural Characterization, and Guest Exchange Properties of Hydrogen-Bonded Organic Frameworks Based on Bis(benzimidazole)ZnCl 2 Complexes. Inorg Chem 2022; 61:19890-19898. [PMID: 36428132 DOI: 10.1021/acs.inorgchem.2c03131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Hydrogen-bonded organic frameworks (HOFs) based on coordination compounds constitute a developing class of interesting porous materials. Herein, we report on the synthesis, crystal structures, and guest exchange properties of four HOFs based on zinc dichlorido complexes that bear a bis(benzimidazolyl)methane ligand (bis(benzimidazole)ZnCl2). The porous structures of these bis(benzimidazole)ZnCl2-based HOFs are characterized predominantly by intermolecular N-H···Cl hydrogen bonds in conjunction with π-π interactions. One of these HOFs was found to exchange guest molecules via single-crystal-to-single-crystal transformations with or without structural change. A single-crystal X-ray diffraction study revealed that the guest exchange accompanied by a structural change is induced by the cleavage of the N-H···Cl hydrogen bonds between the bis(benzimidazole)ZnCl2 complexes, followed by the formation of alternate hydrogen bonds with guest molecules. This result suggests that the use of weaker N-H···Cl hydrogen bonds than those typically used for the construction of HOFs (e.g., carboxylic acid dimers, N-heterocycles, and charge-assisted moieties) may represent a convenient strategy to synthesize flexible HOFs.
Collapse
Affiliation(s)
- Yurika Iwabuchi
- Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University, Hirosaki 036-8561, Japan
| | - Ryoga Yamaguchi
- Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University, Hirosaki 036-8561, Japan
| | - Tatsunari Murakami
- Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University, Hirosaki 036-8561, Japan
| | - Masaaki Okazaki
- Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University, Hirosaki 036-8561, Japan
| | - Shun Ohta
- Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University, Hirosaki 036-8561, Japan
| |
Collapse
|
22
|
Jiang F, Li B, Wu L. Hydrogen-Bonded Framework of a Polyanionic Cluster and Its Growth from 2D to 3D for Dual-Selective Adsorption and pH-Controlled Oxidation. Inorg Chem 2022; 61:20587-20595. [DOI: 10.1021/acs.inorgchem.2c03436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Fengrui Jiang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Bao Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
23
|
Roques N, Tovar‐Molle A, Duhayon C, Brandès S, Spieß A, Janiak C, Sutter J. Modulation of the Sorption Characteristics for an H-bonded porous Architecture by Varying the Chemical Functionalization of the Channel Walls. Chemistry 2022; 28:e202201935. [PMID: 35924893 PMCID: PMC9804838 DOI: 10.1002/chem.202201935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Indexed: 01/09/2023]
Abstract
Five isostructural microporous supramolecular architectures prepared by H-bonded assembly between the hexa-anionic complex [Zr2 (Ox)7 ]6- (Ox=oxalate, (C2 O4 )2- ) and tripodal cations (H3 -TripCH2 -R)3+ with R=H, CH3 , OH and OBn (Bn=CH2 Ph) are reported. The possibility to obtain the same structure using a mixture of tripodal cations with different R group (R=OH and R=CH3 ) has also been successfully explored, providing a unique example of three-component H-bonded porous framework. The resulting SPA-1(R) materials feature 1D pores decorated by R groups, with apparent pore diameters ranging from 3.0 to 8.5 Å. Influence of R groups on the sorption properties of these materials is evidenced through CO2 and H2 O vapor sorption/desorption experiments, as well as with I2 capture/release experiments in liquid media. This study is one of the first to demonstrate the possibility of tuning the porosity and exerting precise control over the chemical functionalization of the pores in a given H-bonded structure, without modifying the topology of the reference structure, and thus finely adjusting the sorption characteristics of the material.
Collapse
Affiliation(s)
- Nans Roques
- Laboratoire de Chimie de Coordination du CNRS (LCC–CNRS)Université de ToulouseCNRSF-31077ToulouseFrance
| | - Anthony Tovar‐Molle
- Laboratoire de Chimie de Coordination du CNRS (LCC–CNRS)Université de ToulouseCNRSF-31077ToulouseFrance
| | - Carine Duhayon
- Laboratoire de Chimie de Coordination du CNRS (LCC–CNRS)Université de ToulouseCNRSF-31077ToulouseFrance
| | - Stéphane Brandès
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUBUMR CNRS 6302)Université Bourgogne Franche-Comté9 Avenue Alain SavaryF-21078DijonFrance
| | - Alex Spieß
- Institut für Nanoporöse und Nanoskalierte MaterialienHeinrich-Heine-Universität DüsseldorfD-40225DüsseldorfGermany
| | - Christoph Janiak
- Institut für Nanoporöse und Nanoskalierte MaterialienHeinrich-Heine-Universität DüsseldorfD-40225DüsseldorfGermany
| | - Jean‐Pascal Sutter
- Laboratoire de Chimie de Coordination du CNRS (LCC–CNRS)Université de ToulouseCNRSF-31077ToulouseFrance
| |
Collapse
|
24
|
Zhou Y, Zhang YL, Zhang Q, Yang SY, Wei XQ, Tian Z, Shao D. Supramolecular porous frameworks of two Ni(II) coordination polymers with varying structures, porosities, and magnetic properties. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
25
|
Santamaria-Garcia VJ, Flores-Hernandez DR, Contreras-Torres FF, Cué-Sampedro R, Sánchez-Fernández JA. Advances in the Structural Strategies of the Self-Assembly of Photoresponsive Supramolecular Systems. Int J Mol Sci 2022; 23:7998. [PMID: 35887350 PMCID: PMC9317886 DOI: 10.3390/ijms23147998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 12/11/2022] Open
Abstract
Photosensitive supramolecular systems have garnered attention due to their potential to catalyze highly specific tasks through structural changes triggered by a light stimulus. The tunability of their chemical structure and charge transfer properties provides opportunities for designing and developing smart materials for multidisciplinary applications. This review focuses on the approaches reported in the literature for tailoring properties of the photosensitive supramolecular systems, including MOFs, MOPs, and HOFs. We discuss relevant aspects regarding their chemical structure, action mechanisms, design principles, applications, and future perspectives.
Collapse
Affiliation(s)
- Vivian J. Santamaria-Garcia
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Avenida Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (V.J.S.-G.); (D.R.F.-H.); (F.F.C.-T.); (R.C.-S.)
| | - Domingo R. Flores-Hernandez
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Avenida Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (V.J.S.-G.); (D.R.F.-H.); (F.F.C.-T.); (R.C.-S.)
| | - Flavio F. Contreras-Torres
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Avenida Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (V.J.S.-G.); (D.R.F.-H.); (F.F.C.-T.); (R.C.-S.)
| | - Rodrigo Cué-Sampedro
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Avenida Eugenio Garza Sada 2501, Monterrey 64849, Mexico; (V.J.S.-G.); (D.R.F.-H.); (F.F.C.-T.); (R.C.-S.)
| | - José Antonio Sánchez-Fernández
- Procesos de Polimerización, Centro de Investigación en Química Aplicada, Blvd. Enrique Reyna No. 140, Saltillo 25294, Mexico
| |
Collapse
|
26
|
Shao D, Peng P, You M, Shen LF, She SY, Zhang YQ, Tian Z. Hydrogen-Bonded Framework of a Cobalt(II) Complex Showing Superior Stability and Field-Induced Slow Magnetic Relaxation. Inorg Chem 2022; 61:3754-3762. [PMID: 35167748 DOI: 10.1021/acs.inorgchem.2c00034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A unique hydrogen-bonded organic-inorganic framework (HOIF) constructed from a mononuclear cobalt(II) complex, [Co(MCA)2·(H2O)2] (HMCA = 4-imidazolecarboxylic acid), via multiple hydrogen-bonding interactions was synthesized and structurally characterized. The Co(II) center in the HOIF features a highly distorted octahedral coordination environment. Remarkably, the CoII HOIF showed permanent porosity with superior stability as established by combined thermogravimetric analysis (TGA), variable-temperature infrared spectra (IR), variable-temperature powder X-ray diffraction data (PXRD), and a CO2 isotherm. Structural studies reveal that short multiple hydrogen bonds should be responsible for the superior thermal and chemical stability of a HIOF. Magnetic investigations reveal the large easy-plane magnetic anisotropy of the Co2+ ions with the fitted D values being 22.1 (magnetic susceptibility and magnetization data) and 29.1 cm-1 (reduced magnetization data). In addition, the HOIF exhibits field-induced slow magnetic relaxation at low temperature with an effective energy barrier of Ueff = 45.2 cm-1, indicative of a hydrogen-bonded framework single-ion magnet of the compound. The origin of the significant magnetic anisotropy of the complex was also understood from computational studies. In addition, BS-DFT calculations indicate that the superexchange interactions between the neighboring CoII ions are non-negligible antiferromagnetism with JCo-Co = -0.5 cm-1. The foregoing results provide not only a carboxylate-imidazole ligand approach toward a stable HOIF but also a promising way to build a robust single-ion magnet via hydrogen-bond interactions.
Collapse
Affiliation(s)
- Dong Shao
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, P. R. China
| | - Peng Peng
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, P. R. China
| | - Maolin You
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Lin-Feng Shen
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, P. R. China
| | - Shi-Yuan She
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, P. R. China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Zhengfang Tian
- Hubei Key Laboratory of Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, P. R. China
| |
Collapse
|
27
|
Maalej W, Jaballi R, Rached AB, Guionneau P, Daro N, Elaoud Z. Supramolecular architectures of mononuclear nickel(II) and homobinuclear copper(II) complexes with the 5,5′-dimethyl-2,2′-bipyridine ligand: Syntheses, crystal structures and Hirshfeld surface analyses. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Shao D, She SY, Shen LF, Yang X, Tian Z. Field-induced single-ion magnet behavior in a hydrogen-bonded supramolecular cobalt(II) complex. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
29
|
KENFACK TSOBNANG P, Nchedoung Sakam YT, Fröhlich D, Porcher F, Rustam L, Hastürk E, Janiak C. Structural Transitions during the Water Sorption Process in two Layered Metal Hydrogen-Bonded Organic Frameworks and the Effect of the H-Bonds Strength between the Layers. CrystEngComm 2022. [DOI: 10.1039/d2ce00138a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The supramolecular network material [Co(amp)3][Cr(ox)3] (amp = 2-aminomethylpyridine, ox = oxalate) (I’) shows in its powder X-ray diffraction (PXRD) carpet plot during the water adsorption process two sets of diffraction...
Collapse
|
30
|
Yu S, Hu HC, Liu D, Liang Y, Liang F, Yin B, Chen Z. Structural and magnetic studies of six-coordinated Schiff base Dy(III) complexes. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00356b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With the aim to tune magnetic anisotropies of six-coordinated Dy(III) complexes, four bis-Schiff bases bearing different spacers and one mono-Schiff base were designed, which are bis(2-hydroxylnaphthalenylmethylene)hydrazine (H2L1), bis(2-hydroxylnaphthylmethylene)ethylenediamine (H2L2), bis(2-hydroxylnaphthylmethylene)-propylenediamine...
Collapse
|
31
|
KANETOMO T, Ni Z, Enomoto M. Hydrogen-Bonded Cobalt(II)-Organic Framework: Normal and Reverse Spin-Crossover Behaviours. Dalton Trans 2022; 51:5034-5040. [DOI: 10.1039/d2dt00453d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel hydrogen-bonded metal-organic framework (H-MOF) [Co(HL)2](DMF)1.2(H2O)2.4 (1·solv), in which L = 2,2’:6’,2”-terpyridine-5,5’-diyl biscarboxylate, was prepared. An intermolecular single H-bond between carboxy and carboxylate sites was present in this compound....
Collapse
|
32
|
Jana K, Pramanik U, Ingle KS, Maity R, Mukherjee S, Nayak SK, Chandra Debnath S, Maity T, Maity S, Chandra Samanta B. Copper(II) complexes with NNN and NNO Schiff base ligands as efficient photodegradation agents for methylene blue, preferential BSA binder and biomaterial transplants. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
33
|
Konovalov DI, Ivanov AA, Vorotnikov YA, Kuratieva NV, Eltsov IV, Kovalenko KA, Shestopalov MA. Self-Assembled Microporous M-HOFs Based on an Octahedral Rhenium Cluster with Benzimidazole. Inorg Chem 2021; 60:14687-14696. [PMID: 34516105 DOI: 10.1021/acs.inorgchem.1c01771] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Substitution of apical halide ligands in [{Re6Sei8}Xa6]3- (X = Cl, Br) by benzimidazole (bimzH) accompanied by a self-assembly process leads to the formation of microporous Re6-based hydrogen-bonded organic frameworks (Re6-HOFs) constructed on N-H···X hydrogen bonds and π-π-stacking interactions between bimzH ligands. Re6-HOFs demonstrate sorption properties with a Brunauer-Emmett-Teller surface area of up to 443 m2 g-1 and luminescence with a quantum yield and an emission lifetime of up to 0.16 and 16 μs, respectively. The compounds obtained complement small groups of transition-metal cluster-based HOFs, which are a perspective for the development of multifunctional frameworks.
Collapse
Affiliation(s)
- Dmitry I Konovalov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Science, 3 Acad. Lavrentiev Avenue, Novosibirsk 630090, Russian Federation
| | - Anton A Ivanov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Science, 3 Acad. Lavrentiev Avenue, Novosibirsk 630090, Russian Federation
| | - Yuri A Vorotnikov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Science, 3 Acad. Lavrentiev Avenue, Novosibirsk 630090, Russian Federation
| | - Natalia V Kuratieva
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Science, 3 Acad. Lavrentiev Avenue, Novosibirsk 630090, Russian Federation
| | - Ilia V Eltsov
- Novosibirsk State University, 2 Pirogova Street, Novosibirsk 630090, Russian Federation
| | - Konstantin A Kovalenko
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Science, 3 Acad. Lavrentiev Avenue, Novosibirsk 630090, Russian Federation
| | - Michael A Shestopalov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Science, 3 Acad. Lavrentiev Avenue, Novosibirsk 630090, Russian Federation
| |
Collapse
|
34
|
Doustkhah E, Tahawy R, Simon U, Tsunoji N, Ide Y, Hanaor DAH, Assadi MHN. Bispropylurea bridged polysilsesquioxane: A microporous MOF-like material for molecular recognition. CHEMOSPHERE 2021; 276:130181. [PMID: 33735650 DOI: 10.1016/j.chemosphere.2021.130181] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/20/2021] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
Microporous organosilicas assembled from polysilsesquioxane (POSS) building blocks are promising materials that are yet to be explored in-depth. Here, we investigate the processing and molecular structure of bispropylurea bridged POSS (POSS-urea), synthesised through the acidic condensation of 1,3-bis(3-(triethoxysilyl)propyl)urea (BTPU). Experimentally, we show that POSS-urea has excellent functionality for molecular recognition toward acetonitrile with an adsorption level of 74 mmol/g, which compares favourably to MOFs and zeolites, with applications in volatile organic compounds (VOC). The acetonitrile adsorption capacity was 132-fold higher relative to adsorption capacity for toluene, which shows the pores are highly selective towards acetonitrile adsorption due to their size and arrangement. Theoretically, our tight-binding density functional and molecular dynamics calculations demonstrated that this BTPU based POSS is microporous with an irregular placement of the pores. Structural studies confirm maximal pore sizes of ∼1 nm, with POSS cages possessing an approximate edge length of ∼3.16 Å.
Collapse
Affiliation(s)
- Esmail Doustkhah
- International Center for Materials Nanoarchitechtonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.
| | - Rafat Tahawy
- International Center for Materials Nanoarchitechtonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Ulla Simon
- Fachgebiet Keramische Werkstoffe, Technische Universität Berlin, 10623 Berlin, Germany
| | - Nao Tsunoji
- Graduate School of Advanced Science and Engineering, Applied Chemistry Program, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima, 739-8527, Japan
| | - Yusuke Ide
- International Center for Materials Nanoarchitechtonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Dorian A H Hanaor
- Fachgebiet Keramische Werkstoffe, Technische Universität Berlin, 10623 Berlin, Germany
| | - M Hussein N Assadi
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
35
|
Naresh P, Pramodh B, Naveen S, Ganguly S, Panda J, Sunitha K, Maniukiewicz W, Lokanath N. Cis and trans isomers of 1-(5-bromothiophen-2-yl)-3-(10-chloroanthracen-9-yl)prop-2-en-1-one: Synthesis and characterization. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
36
|
di Nunzio MR, Hisaki I, Douhal A. HOFs under light: Relevance to photon-based science and applications. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2021. [DOI: 10.1016/j.jphotochemrev.2021.100418] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
37
|
|
38
|
Singha S, Khanra B, Goswami S, Mondal R, Jana R, Dey A, Dey SK, Ray PP, Rizzoli C, Saha R, Kumar S. Structural, optical, dielectric and electrical transport properties of a [Mg(H 2O) 6] 2+-templated proton conducting, semiconducting and photoresponsive 3D hydrogen bonded supramolecular framework. NEW J CHEM 2021. [DOI: 10.1039/d1nj04237h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
{[Co(2,5-Pdc)2,(H2O)2]2−·[Mg(H2O)6]2+·4(H2O)} (where 2,5-pdc = 2,5-pyridinedicarboxylate): a proton conducting semiconducting photoresponsive [Mg(H2O)6]2+ templated 3D hydrogen bonded supramolecular framework (HSF).
Collapse
Affiliation(s)
- Soumen Singha
- Department of Physics, Jadavpur University, Jadavpur, Kolkata-700032, WB, India
| | - Bhaskar Khanra
- Department of Physics, Jadavpur University, Jadavpur, Kolkata-700032, WB, India
| | - Somen Goswami
- Department of Physics, Jadavpur University, Jadavpur, Kolkata-700032, WB, India
| | - Rituparna Mondal
- Department of Electronics, Barrackpore Rastraguru Surendranath College, Barrackpore, West Bengal 700120, India
| | - Rajkumar Jana
- Department of Physics, Jadavpur University, Jadavpur, Kolkata-700032, WB, India
- Department of Physics, Techno India University, EM-4, Sector-V, Salt lake, Kolkata-700091, India
| | - Arka Dey
- Department of Physics, Jadavpur University, Jadavpur, Kolkata-700032, WB, India
| | - Sanjoy Kumar Dey
- Purulia Polytechnic, Vivekananda Nagar, Purulia, 723147, WB, India
| | - Partha Pratim Ray
- Department of Physics, Jadavpur University, Jadavpur, Kolkata-700032, WB, India
| | - Corrado Rizzoli
- Dipartimento SCVSA, Università di Parma, Parco Area delle Scienze 17/A, Parma, Italy
| | - Rajat Saha
- Department of Chemistry, Kazi Nazrul University, Asansol-713340, WB, India
| | - Sanjay Kumar
- Department of Physics, Jadavpur University, Jadavpur, Kolkata-700032, WB, India
| |
Collapse
|
39
|
Xu Y, Liu C, Wang H, Zhang D, Li Z. Intermolecular Halogen Bonding-Controlled Self-Assembly of Hydrogen Bonded Aromatic Amide Foldamers. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202102012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
40
|
Li J, Tang J, Zou H, Mo K, Wen C, Liang F. Binuclear Ln (III) complexes: High‐efficiency sensing of acetonitrile/dichloromethane and magnetocaloric effect. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.6130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Juan Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmacy of Guangxi Normal University Guilin China
| | - Ji‐Xia Tang
- School of Foreign Language and International Business Guilin University of Aerospace Technology Guilin China
| | - Hua‐Hong Zou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmacy of Guangxi Normal University Guilin China
| | - Kai‐Qiang Mo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmacy of Guangxi Normal University Guilin China
| | - Chang‐Chun Wen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmacy of Guangxi Normal University Guilin China
| | - Fu‐Pei Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmacy of Guangxi Normal University Guilin China
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering Guilin University of Technology Guilin China
| |
Collapse
|
41
|
Mahesha, Hema MK, Karthik CS, Pampa KJ, Mallu P, Lokanath NK. Solvent induced mononuclear and dinuclear mixed ligand Cu( ii) complex: structural diversity, supramolecular packing polymorphism and molecular docking studies. NEW J CHEM 2020. [DOI: 10.1039/d0nj03567j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Phenolate bridged dinuclear and solvent induced mononuclear supramolecular isomers of Cu(ii) complex have been reported to explore the structural diversity and their antibacterial activity supported by molecular docking studies.
Collapse
Affiliation(s)
- Mahesha
- Department of Studies in Physics
- University of Mysore
- Mysuru-570 006
- India
| | - M. K. Hema
- Department of Studies in Physics
- University of Mysore
- Mysuru-570 006
- India
| | - C. S. Karthik
- Department of Chemistry
- SJCE
- JSS Science and Technology University
- Mysuru-570 006
- India
| | - K. J. Pampa
- Department of Biotechnology
- University of Mysore
- Mysuru-570 006
- India
| | - P. Mallu
- Department of Chemistry
- SJCE
- JSS Science and Technology University
- Mysuru-570 006
- India
| | - N. K. Lokanath
- Department of Studies in Physics
- University of Mysore
- Mysuru-570 006
- India
| |
Collapse
|