1
|
Ma J, Ungeheuer F, Zheng F, Du W, Wang Y, Cai J, Zhou Y, Yan C, Liu Y, Kulmala M, Daellenbach KR, Vogel AL. Nontarget Screening Exhibits a Seasonal Cycle of PM 2.5 Organic Aerosol Composition in Beijing. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7017-7028. [PMID: 35302359 PMCID: PMC9179655 DOI: 10.1021/acs.est.1c06905] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/09/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
The molecular composition of atmospheric particulate matter (PM) in the urban environment is complex, and it remains a challenge to identify its sources and formation pathways. Here, we report the seasonal variation of the molecular composition of organic aerosols (OA), based on 172 PM2.5 filter samples collected in Beijing, China, from February 2018 to March 2019. We applied a hierarchical cluster analysis (HCA) on a large nontarget-screening data set and found a strong seasonal difference in the OA chemical composition. Molecular fingerprints of the major compound clusters exhibit a unique molecular pattern in the Van Krevelen-space. We found that summer OA in Beijing features a higher degree of oxidation and a higher proportion of organosulfates (OSs) in comparison to OA during wintertime, which exhibits a high contribution from (nitro-)aromatic compounds. OSs appeared with a high intensity in summer-haze conditions, indicating the importance of anthropogenic enhancement of secondary OA in summer Beijing. Furthermore, we quantified the contribution of the four main compound clusters to total OA using surrogate standards. With this approach, we are able to explain a small fraction of the OA (∼11-14%) monitored by the Time-of-Flight Aerosol Chemical Speciation Monitor (ToF-ACSM). However, we observe a strong correlation between the sum of the quantified clusters and OA measured by the ToF-ACSM, indicating that the identified clusters represent the major variability of OA seasonal cycles. This study highlights the potential of using nontarget screening in combination with HCA for gaining a better understanding of the molecular composition and the origin of OA in the urban environment.
Collapse
Affiliation(s)
- Jialiang Ma
- Institute
for Atmospheric and Environmental Sciences, Goethe-University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Florian Ungeheuer
- Institute
for Atmospheric and Environmental Sciences, Goethe-University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Feixue Zheng
- Aerosol
and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter
Science and Engineering, Beijing University
of Chemical Technology, 100029 Beijing, P. R. China
| | - Wei Du
- Aerosol
and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter
Science and Engineering, Beijing University
of Chemical Technology, 100029 Beijing, P. R. China
- Institute
for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
| | - Yonghong Wang
- Aerosol
and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter
Science and Engineering, Beijing University
of Chemical Technology, 100029 Beijing, P. R. China
- Institute
for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
- Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, 100085 Beijing, P. R. China
| | - Jing Cai
- Aerosol
and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter
Science and Engineering, Beijing University
of Chemical Technology, 100029 Beijing, P. R. China
- Institute
for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
| | - Ying Zhou
- Aerosol
and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter
Science and Engineering, Beijing University
of Chemical Technology, 100029 Beijing, P. R. China
| | - Chao Yan
- Aerosol
and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter
Science and Engineering, Beijing University
of Chemical Technology, 100029 Beijing, P. R. China
- Institute
for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
| | - Yongchun Liu
- Aerosol
and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter
Science and Engineering, Beijing University
of Chemical Technology, 100029 Beijing, P. R. China
| | - Markku Kulmala
- Aerosol
and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter
Science and Engineering, Beijing University
of Chemical Technology, 100029 Beijing, P. R. China
- Institute
for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
| | - Kaspar R. Daellenbach
- Aerosol
and Haze Laboratory, Beijing Advanced Innovation Center for Soft Matter
Science and Engineering, Beijing University
of Chemical Technology, 100029 Beijing, P. R. China
- Institute
for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, 00014 Helsinki, Finland
- Laboratory
of Atmospheric Chemistry, Paul Scherrer
Institute, 5232 Villigen, Switzerland
| | - Alexander L. Vogel
- Institute
for Atmospheric and Environmental Sciences, Goethe-University Frankfurt, 60438 Frankfurt am Main, Germany
| |
Collapse
|