1
|
Gupta DS, Gupta DS, Abjani NK, Dave Y, Apte K, Kaur G, Kaur D, Saini AK, Sharma U, Haque S, Tuli HS. Vaccine-based therapeutic interventions in lung cancer management: A recent perspective. Med Oncol 2024; 41:249. [PMID: 39316239 DOI: 10.1007/s12032-024-02489-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/24/2024] [Indexed: 09/25/2024]
Abstract
The incidence of lung cancer continues to grow globally, contributing to an ever-increasing load on healthcare systems. Emerging evidence has indicated lowered efficacy of conventional treatment strategies, such as chemotherapy, surgical interventions and radiotherapy, prompting the need for exploring alternative interventions. A growing focus on immunotherapy and the development of personalized medicine has paved the way for vaccine-based delivery in lung cancer. With various prominent targets such as CD8+T cells and PD-L1, immune-targeted, anti-cancer vaccines have been evaluated in both, pre-clinical and clinical settings, to improve therapeutic outcomes. However, there are a number of challenges that must be addressed, including the scalability of such delivery systems, heterogeneity of lung cancers, and long-term safety as well as efficacy. In addition to this, natural compounds, in combination with immunotherapy, have gained considerable research interest in recent times. This makes it necessary to explore their role in synergism with immune-targeted agents. The authors of this review aim to offer an overview of recent advances in our understanding of lung cancer pathogenesis, detection and management strategies, and the emergence of immunotherapy with a special focus on vaccine delivery. This finding is supported with evidence from testing in non-human and human models, showcasing promising results. Prospects for phytotherapy have also been discussed, in order to combat some pitfalls and limitations. Finally, the future perspectives of vaccine usage in lung cancer management have also been discussed, to offer a holistic perspective to readers, and to prompt further research in the domain.
Collapse
Affiliation(s)
- Dhruv Sanjay Gupta
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle-West, Mumbai, 56, India
| | - Daksh Sanjay Gupta
- Vivekanand Education Society's College of Pharmacy, Chembur, Mumbai, Maharashtra, 400074, India
| | - Nosheen Kamruddin Abjani
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle-West, Mumbai, 56, India
| | - Yash Dave
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle-West, Mumbai, 56, India
| | - Ketaki Apte
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle-West, Mumbai, 56, India
| | - Ginpreet Kaur
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle-West, Mumbai, 56, India.
| | - Damandeep Kaur
- University Center for Research & Development (UCRD), Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Adesh Kumar Saini
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India
| | - Ujjawal Sharma
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bhatinda, 151001, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India.
| |
Collapse
|
2
|
Lei C, Liu D, Zhou Q, Ma S, Qian H. Engineering of dopamine conjugated with bovine serum albumin and zeolite imidazole framework: A promising drug delivery nanocarrier on lung cancer cells. Heliyon 2024; 10:e36580. [PMID: 39281594 PMCID: PMC11401118 DOI: 10.1016/j.heliyon.2024.e36580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 09/18/2024] Open
Abstract
Modern, highly abundant materials called metal-organic structures (MOF) comprise metal ions and organic coordinating molecules and have attracted attention as potential biomedical materials due to their unusual properties. In the present study, the anticancer drug sorafenib (SF) and the Kaempferol (KM) were encapsulated in a nanocomposite made of bovine serum albumin (BA) as the core and pH-dependent zeolitic imidazolate framework-8 (ZIF) coating. To develop a multifunctional nanocarrier, polydopamine, Au3+ chelation, and gallic acid (GL) conjugation were used to build BA@SF@ZIF and BA@SF@ZIF/KM. A variety of characterisation techniques verified the success of the nanocarrier's fabrication. Studies in vitro exhibited that BA@SF@ZIF/DA/GL and BA@SF@ZIF/KM/DA/GL released their respective ligands in a pH-dependent manner due to ZIF-8. These nanocarriers' cytotoxicity and apoptotic effects were measured with the MTT evaluation. Morphological and nuclear damage staining in A549 and H1299 human lung cancer cells. The cytotoxicity investigation displayed that BA@SF@ZIF/DA/GL and BA@SF@ZIF/KM/DA/GL were more efficient than free sorafenib in A549 and H1299 cells with less toxicity in HUVECs. The DNA fragmentation of the cells was assessed by utilizing the comet assay. BA@SF@ZIF/KM/DA/GL increased ROS levels and caused mitochondrial membrane potential and DNA damage, which resulted in apoptosis. Therefore, we believe the developed smart BA@SF@ZIF/KM/DA/GL could be a promising therapeutic approach using sorafenib for lung cancer therapy.
Collapse
Affiliation(s)
- Chenggang Lei
- Department of Cardiothoracic Surgery, Jingzhou Hospital Affiliated to Yangtze University, No.26, Chuyuan Road, Jingzhou District, Jingzhou City, Hubei Province, 434020, China
| | - Di Liu
- Department of Cardiothoracic Surgery, Jingzhou Hospital Affiliated to Yangtze University, No.26, Chuyuan Road, Jingzhou District, Jingzhou City, Hubei Province, 434020, China
| | - Qian Zhou
- Department of Cardiothoracic Surgery, Jingzhou Hospital Affiliated to Yangtze University, No.26, Chuyuan Road, Jingzhou District, Jingzhou City, Hubei Province, 434020, China
| | - Shengwei Ma
- Department of Cardiothoracic Surgery, Jingzhou Hospital Affiliated to Yangtze University, No.26, Chuyuan Road, Jingzhou District, Jingzhou City, Hubei Province, 434020, China
| | - Haiyun Qian
- Department of Cardiothoracic Surgery, Jingzhou Hospital Affiliated to Yangtze University, No.26, Chuyuan Road, Jingzhou District, Jingzhou City, Hubei Province, 434020, China
| |
Collapse
|
3
|
Lin JW, Zhou Y, Xiao HP, Wu LL, Li PC, Huang MD, Xie D, Xu P, Li XX, Li ZX. Antitumor effects of a Sb-rich polyoxometalate on non-small-cell lung cancer by inducing ferroptosis and apoptosis. Chem Sci 2024:d4sc03856h. [PMID: 39246335 PMCID: PMC11376145 DOI: 10.1039/d4sc03856h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024] Open
Abstract
Polyoxometalates (POMs) are a class of anionic metal-oxygen clusters with versatile biological activities. Over the past decade, an increasing number of POMs, especially Sb-rich POMs, have been proven to exert antitumor activity. However, the antitumor effects and mechanisms of POMs in the treatment of non-small cell lung cancer (NSCLC) remain largely unexplored. This study employed a Sb-rich {Sb21Tb7W56} POM (POM-1) for NSCLC therapy and investigated its mechanism of action. Our results demonstrated that POM-1 exhibited cytotoxicity against H1299 and A549 cells with IC50 values of 3.245 μM and 3.591 μM, respectively. The migration and invasion were also inhibited by 28.05% and 76.18% in H1299 cells, as well as 36.88% and 36.98% in A549 cells at a concentration of 5 μM. In a tumor xenograft mouse model, POM-1 suppressed tumor growth by 76.92% and 84.62% at doses of 25 and 50 mg kg-1, respectively. Transcriptomic analysis indicated the alteration of ferroptosis and apoptosis signaling pathways in POM-treated NSCLC cells. Subsequent experimentation confirmed the induction of ferroptosis, evidenced by 5.6-fold elevated lipid peroxide levels with treatment of 5 μM POM-1, alongside increased expression of ferroptosis-associated proteins. Additionally, the apoptosis induced by POM-1 was also validated by the 19.67% and 30.1% increase in apoptotic cells in H1299 and A549 cells treated with 5 μM POM-1, respectively, as well as the upregulated activation of caspase-3. In summary, this study reveals, for the first time, ferroptosis as the antitumor mechanism of Sb-rich POM, and that synergism with ferroptosis and apoptosis is a highly potent antitumor strategy for POM-based antitumor therapy.
Collapse
Affiliation(s)
- Jie-Wei Lin
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University Shanghai 200433 China
| | - Yang Zhou
- College of Chemistry, Fuzhou University Fuzhou Fujian 350108 China
- College of Biological Science and Engineering, Fuzhou University Fuzhou Fujian 350108 China
| | - Hui-Ping Xiao
- College of Chemistry, Fuzhou University Fuzhou Fujian 350108 China
| | - Lei-Lei Wu
- Department of Thoracic Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou Zhejiang 310005 China
| | - Peng-Cheng Li
- Shanghai Tumor Hospital, Fudan University Shanghai 200032 China
| | - Ming-Dong Huang
- College of Chemistry, Fuzhou University Fuzhou Fujian 350108 China
- College of Biological Science and Engineering, Fuzhou University Fuzhou Fujian 350108 China
| | - Dong Xie
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University Shanghai 200433 China
| | - Peng Xu
- College of Biological Science and Engineering, Fuzhou University Fuzhou Fujian 350108 China
| | - Xin-Xiong Li
- College of Chemistry, Fuzhou University Fuzhou Fujian 350108 China
| | - Zhi-Xin Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University Shanghai 200433 China
| |
Collapse
|
4
|
Liu H, Wu XQ, Qin XL, Zhu JH, Xu JD, Zhou SS, Kong M, Shen H, Huo JG, Li SL, Zhu H. Metals/bisulfite system involved generation of 24-sulfonic-25-ene ginsenoside Rg1, a potential quality control marker for sulfur-fumigated ginseng. Food Chem 2024; 448:139112. [PMID: 38569404 DOI: 10.1016/j.foodchem.2024.139112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 04/05/2024]
Abstract
Ginseng is a most popular health-promoting food with ginsenosides as its main bioactive ingredients. Illegal sulfur-fumigation causes ginsenosides convert to toxic sulfur-containing derivatives, and reduced the efficacy/safety of ginseng. 24-sulfo-25-ene ginsenoside Rg1 (25-ene SRg1), one of the sulfur-containing derivatives, is a potential quality control marker of fumigated ginseng, but with low accessibility owing to its unknown generation mechanism. In this study, metals/bisulfite system involved generation mechanism was investigated and verified. The generation of 25-ene SRg1 in sulfur-fumigated ginseng is that SO2, formed during sulfur-fumigation, reacted with water and ionized into HSO3-. On the one hand, under the metals/bisulfite system, HSO3- generates HSO5- and free radicals which converted ginsenoside Rg1 to 24,25-epoxide Rg1; on the other hand, as a nucleophilic group, HSO3- reacted with 24,25-epoxide Rg1 and further dehydrated to 25-ene SRg1. This study provided a technical support for the promotion of 25-ene SRg1 as the characteristic quality control marker of sulfur-fumigated ginseng.
Collapse
Affiliation(s)
- Hui Liu
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Department of Pharmacy, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430016, China
| | - Xiao-Qian Wu
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Xiang-Ling Qin
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Jin-Hao Zhu
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Jin-Di Xu
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, China
| | - Shan-Shan Zhou
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, China
| | - Ming Kong
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, China
| | - Hong Shen
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, China
| | - Jie-Ge Huo
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China.
| | - Song-Lin Li
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, China.
| | - He Zhu
- Drug Clinical Trial Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou 225300, China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, China.
| |
Collapse
|
5
|
Yao ZW, Qin XL, Li QL, Pan LH, Hu WF, Ling SP, Liu H, Zhu H. Fe(III)/peroxymonosulfate oxidation system for the degradation of rhein, a toxic component abundance in rhubarb residue. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116474. [PMID: 38772144 DOI: 10.1016/j.ecoenv.2024.116474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/23/2024]
Abstract
Rhubarb is widely used in health care, but causing a great amount of rhein-containing herbal residue. Rhein with several toxicities might pollute environment, damage ecology and even hazard human health if left untreated. In this study, the degradation effects of bisulfite- (BS) and peroxymonosulfate- (PMS) based oxidation systems on rhein in rhubarb residue were compared and investigated. The effects of BS and PMS with two valence states of ferric ion (Fe) on the degradation of rhein in rhubarb residue were optimized for the selection of optimal oxidation system. The influences of reaction temperature, reaction time and initial pH on the removal of rhein under the optimal oxidation system were evaluated. The chemical profiles of rhubarb residue with and without oxidation process were compared by UPLC-QTOF-MS/MS, and the degradation effects were investigated by PLS-DA and S plot/OPLS-DA analysis. The results manifested that PMS showed relative higher efficiency than BS on the degradation of rhein. Moreover, Fe(III) promoted the degradation effect of PMS, demonstrated that Fe(III)/PMS is the optimal oxidation system to degrade rhein in rhubarb residue. Further studies indicated that the degradation of rhein by the Fe(III)/PMS oxidation system was accelerated with the prolong of reaction time and the elevation of reaction temperature, and also affected by the initial pH. More importantly, Fe(III)/PMS oxidation system could degrade rhein in rhubarb residue completely under the optimal conditions. In conclusion, Fe(III)/PMS oxidation system is a feasible method to treat rhein in rhubarb residue.
Collapse
Affiliation(s)
- Zhong-Wei Yao
- Drug Clinical Trial Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou 225300, China; Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Xiang-Ling Qin
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Qi-Long Li
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Ling-Hui Pan
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Wei-Feng Hu
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Su-Ping Ling
- Drug Clinical Trial Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou 225300, China.
| | - Hui Liu
- Department of Pharmacy, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430016, China.
| | - He Zhu
- Drug Clinical Trial Center, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou 225300, China.
| |
Collapse
|
6
|
Luo X, Yuan M, Lu P, Zhong X, Zhang Y, Li Y, Xi Z, Zhang H, Li S, Xu H. Integrating multi-index determination coupled with hierarchical cluster analysis to evaluate the quality consistency of PVE30, an anti-HSV "glycoprotein" macromolecule of Prunellae Spica. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:530-539. [PMID: 38009261 DOI: 10.1002/pca.3309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/02/2023] [Accepted: 11/04/2023] [Indexed: 11/28/2023]
Abstract
INTRODUCTION Prunellae Spica (PS), derived from the dried fruit spikes of Prunella vulgaris L., is a traditional Chinese medicinal herb. Our previous studies found that PVE30, a water-extracting ethanol-precipitating "glycoprotein" macromolecule of PS, was a potential anti-herpes simplex virus (HSV) candidate. However, due to the complex structure and diverse bioactivity of the "glycoprotein", ensuring its quality consistency across different batches of PVE30 becomes particularly challenging. This poses a significant hurdle for new drug development based on PVE30. OBJECTIVE Our study aimed to integrate multi-index determination coupled with hierarchical cluster analysis (HCA) to holistically profile the quality consistency of "glycoprotein" in PVE30. METHODS High-performance gel permeation chromatography with refractive index detector (HPGPC-RID) was used to characterise the molecular weight (Mw) distribution, HPLC-PDA was used to quantitatively analyse the composed monosaccharides and amino acids, and UV-VIS was used to quantify the contents of polysaccharides and proteins. Qualitative and quantitative consistency was analysed for each single index in 16 batches of PVE30, and a 16 × 38 data matrix, coupled with HCA, was used to evaluate the holistic quality consistency of PVE30. RESULTS The newly developed and validated methods were exclusive, linear, precise, accurate, and stable enough to quantify multi-indexes in PVE30. Single-index analysis revealed that 16 batches of PVE30 were qualitatively consistent in Mw distribution, polysaccharides and proteins, and the composition of composed monosaccharides and amino acids but quantitatively inconsistent in the relative contents of some "glycoprotein" macromolecules, as well as the composed monosaccharides/amino acids. HCA showed that the holistic quality of PVE30 was inconsistent, the inconsistency was uncorrelated with the regions where PS was commercially collected, and the contents of 17 amino acids and 2 monosaccharides contributed most to the holistic quality inconsistency. CONCLUSION Multi-index determination coupled with HCA was successful in evaluating the quality consistency of PVE30, and the significant difference in quantitative indices was not caused by the origin of PS. The cultivating basis should be confirmed for PVE30-based new drug development.
Collapse
Affiliation(s)
- Xiaomei Luo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Man Yuan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Ping Lu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Xuanlei Zhong
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Yibo Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Yang Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Zhichao Xi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Hongmei Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Songlin Li
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine and Jiangsu Branch of China Academy of Chinese Medical Sciences, Nanjing, China
| | - Hongxi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| |
Collapse
|
7
|
Zhao W, Liu Z, Zhang Z, Chen Z, Liu J, Sun P, Li Y, Qi D, Zhang Z. Si Jun Zi decoction inhibits the growth of lung cancer by reducing the expression of PD-L1 through TLR4/MyD88/NF-κB pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116948. [PMID: 37482260 DOI: 10.1016/j.jep.2023.116948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/15/2023] [Accepted: 07/19/2023] [Indexed: 07/25/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Si Jun Zi decoction (SJZT) is a traditional Chinese medicine (TCM) formula with the effect of invigorating the spleen qi and replenishing qi. TCM believes that a strong spleen qi helps to strengthen lung qi. Lung cancer is often caused by a deficiency of lung qi. Based on this theory, TCM often applies SJZT to the treatment of lung cancer and has achieved remarkable results. However, the mechanism of SJZT in the treatment of lung cancer remains unclear and requires further study. AIM OF THE STUDY The main purpose of this study is to explore the mechanism of SJZT against lung cancer. MATERIALS AND METHODS In this study, the chemical constituents in SJZT were analyzed by UPLC-Q-Exactive-MS/MS. MTT and cell scratch test were used to determine the cell viability and inhibition of migration in vitro. The effect of SJZT on the expression of PD-L1 protein in A549 cells was detected by Western Blotting (WB). Apoptosis was detected by crystal violet staining. The mouse model of Lewis lung cancer was established in vivo, and the levels of serum TNF-α and IL-2 were detected by enzyme linked immunosorbent assay (ELISA). The protein levels of TLR4, MyD88, NF-κB and PD-L1 in tumor tissues of mice were detected by WB. Quantitative real-time PCR (qRT-PCR) was used to detect the levels of TLR4, MyD88, NF-κB and PD-L1 mRNA. Finally, hematoxylin and eosin (H&E) staining were used to detect the pathological status of tumor tissues in mice. RESULTS A total of 16 active chemical constituents were identified in SJZT. In vitro experiments showed that SJZT could inhibit the growth of A549, induce apoptosis and reduce the expression of PD-L1. In vivo experiments showed that SJZT regulated TLR4/MyD88/NF-κB signaling pathway, decreased the expression of PD-L1, and inhibited tumor growth. CONCLUSIONS SJZT inhibits the growth of lung cancer by regulating TLR4/MyD88/NF-κB signal pathway and reducing the expression of PD-L1.
Collapse
Affiliation(s)
- Wenjie Zhao
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Zhaidong Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Zhenyong Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Zichao Chen
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Jinhua Liu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Peng Sun
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yaqun Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Dongmei Qi
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Zhen Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
8
|
Zhang R, Liao Y, Gao Y, Tian H, Wu S, Zeng Q, He Q, Zhang R, Wei C, Liu J. Evaluation of the Efficacy, Safety, and Clinical Outcomes of Ginsenosides as Adjuvant Therapy in Hepatocellular Carcinoma: A Meta-Analysis and Systematic Review. Integr Cancer Ther 2024; 23:15347354241293790. [PMID: 39474841 PMCID: PMC11526256 DOI: 10.1177/15347354241293790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/07/2024] [Accepted: 10/09/2024] [Indexed: 11/02/2024] Open
Abstract
Background: Ginsenosides (GS), including total GS, Rh2, Rg3 and compound K (CK), have been utilized as adjuvants in transarterial chemoembolization (TACE), surgery, and chemotherapy for hepatocellular carcinoma (HCC) therapy. However, the safety and efficacy of such combination treatments have been contradictory across different studies. This study aims to systematically evaluate the efficacy and safety of GS as adjuvant therapy for HCC. Methods: A literature search of PubMed, CNKI, Wanfang Data, Cochrane Library, Embase, and Web of Science was conducted up to May 2024 for clinical randomized controlled trials (RCTs) on GS-based adjuvant treatments for HCC. Two researchers independently screened the literature, extracted relevant data, and assessed study quality. Meta-analysis was conducted using RevMan 5.4. Results: Nineteen articles involving 1448 patients were included. Meta-analysis showed that GS as an adjuvant therapy for HCC improved disease control rate (risk ratio (RR) = 1.42, 95% CI [1.26, 1.60]), objective response rate (RR = 1.20, 95% CI [1.09, 1.32]), life quality (RR = 1.49, 95% CI [1.23, 1.79]), 1-year overall survival rate (RR = 1.27, 95% CI [1.06, 1.52]), 2-year overall survival rate (RR = 1.43, 95% CI [1.06, 1.95]), ehanced Child-Pugh in A level (RR = 1.59, 95% CI [1.08, 2.34]), Child-Pugh in B level (RR = 1.28, 95% CI [1.08, 1.52]); increased CD3+ (MD = 8.81, 95% CI [3.91, 13.71]), NKC (MD = 8.00, 95% CI [6.76, 9.24]) and CD4+ (MD = 9.38, 95% CI [8.04, 10.72]), and reduced incidence of adverse reactions including nausea and vomiting (RR = 0.66, 95% CI [0.57, 0.77]), anorexia (RR = 0.33, 95% CI [0.21, 0.50]), leukopenia (RR = 0.55, 95% CI [0.46, 0.67]) and myelosuppression (RR = 0.54, 95% CI [0.40, 0.74]); decreased Child-Pugh in C level (RR = 0.43, 95% CI [0.27, 0.68]) and CD4+/CD8+ ratio (MD = 0.50, 95% CI [0.47, 0.57]). Conclusions: In summary, GS combined with Western medical approaches (TACE, surgery, chemotherapy) for the treatment of HCC can improve clinical efficacy, increase overall survival rates, enhance patient life quality, and reduce the occurrence of adverse reactions. However, due to the generally low quality of the included studies, more large-sample, multi-center, high-quality, RCTs are warranted to further consolidate these findings.
Collapse
Affiliation(s)
- Renjie Zhang
- The First Department of Surgery, Shenzhen Traditional Chinese Medicine Hospital/The fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Futian District, Shenzhen, Guangdong, China
| | - Yiling Liao
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Futian District, Shenzhen, Guangdong, China
| | - Yuan Gao
- The First Department of Surgery, Shenzhen Traditional Chinese Medicine Hospital/The fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Futian District, Shenzhen, Guangdong, China
| | - Hengyu Tian
- The First Department of Surgery, Shenzhen Traditional Chinese Medicine Hospital/The fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Futian District, Shenzhen, Guangdong, China
| | - Shenfeng Wu
- The First Department of Surgery, Shenzhen Traditional Chinese Medicine Hospital/The fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Futian District, Shenzhen, Guangdong, China
| | - Qingteng Zeng
- The First Department of Surgery, Shenzhen Traditional Chinese Medicine Hospital/The fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Futian District, Shenzhen, Guangdong, China
| | - Qinghua He
- The First Department of Surgery, Shenzhen Traditional Chinese Medicine Hospital/The fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Futian District, Shenzhen, Guangdong, China
| | - Ruikun Zhang
- The First Department of Surgery, Shenzhen Traditional Chinese Medicine Hospital/The fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Futian District, Shenzhen, Guangdong, China
| | - Chunshan Wei
- Department of Hepatology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong Province, China
| | - Jialin Liu
- The First Department of Surgery, Shenzhen Traditional Chinese Medicine Hospital/The fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Futian District, Shenzhen, Guangdong, China
| |
Collapse
|
9
|
Tian W, Huang J, Zhang W, Wang Y, Jin R, Guo H, Tang Y, Wang Y, Lai H, Leung ELH. Harnessing natural product polysaccharides against lung cancer and revisit its novel mechanism. Pharmacol Res 2024; 199:107034. [PMID: 38070793 DOI: 10.1016/j.phrs.2023.107034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/22/2023] [Accepted: 12/05/2023] [Indexed: 01/13/2024]
Abstract
The incidence and mortality of lung cancer are on the rise worldwide. However, the benefit of clinical treatment in lung cancer is limited. Owning to important sources of drug development, natural products have received constant attention around the world. Main ingredient polysaccharides in natural products have been found to have various activities in pharmacological research. In recent years, more and more scientists are looking for the effects and mechanisms of different natural product polysaccharides on lung cancer. In this review, we focus on the following aspects: First, natural product polysaccharides have been discovered to directly suppress the growth of lung cancer cells, which can be effective in limiting tumor progression. Additionally, polysaccharides have been considered to enhance immune function, which can play a pivotal role in fighting lung cancer. Lastly, polysaccharides can improve the efficacy of drugs in lung cancer treatment by regulating the gut microbiota. Overall, the research of natural product polysaccharides in the treatment of lung cancer is a promising area that has the potential to lead to new clinical treatments. With better understanding, natural product polysaccharides have the potential to become important components of future lung cancer treatments.
Collapse
Affiliation(s)
- Wangqi Tian
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province, China
| | - Jumin Huang
- Cancer Center, Faculty of Health Sciences, and MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau
| | - Weitong Zhang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province, China
| | - Yifan Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province, China
| | - Ruyi Jin
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province, China
| | - Hui Guo
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province, China
| | - Yuping Tang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province, China
| | - Yuwei Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-xianyang New Economic Zone, Shaanxi Province, China.
| | - Huanling Lai
- Guangzhou National Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangdong Province, China; Guangzhou Laboratory, Guangzhou 510005, Guangdong Province, China.
| | - Elaine Lai-Han Leung
- Cancer Center, Faculty of Health Sciences, and MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau; State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau.
| |
Collapse
|
10
|
Omrani V, Fardid R, Alavi M, Haddadi G, Takhshid MA. Protective effects of Panax Ginseng against 131I-induced genotoxicity in patients with differentiated thyroid cancer. J Cancer Res Ther 2024; 20:304-310. [PMID: 38554338 DOI: 10.4103/jcrt.jcrt_683_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 10/06/2022] [Indexed: 04/01/2024]
Abstract
BACKGROUND Radioiodine (131I) therapy (RAIT) is associated with oxidative stress (OS)-induced DNA damage in patients with differentiated thyroid cancer (DTC). The goal of this study was to evaluate the possible ameliorating effects of Panax Ginseng (PG) on RAIT-induced genotoxicity in patients with DTC. MATERIALS AND METHODS Forty DTC patients who had received 131I (100 to 175 mCi) were enrolled in this study. The patients were randomly classified (n = 10) into control, placebo, PG1 groups (receiving 500 mg/day of PG for 2 days before RAIT), and PG2 group (receiving 500 mg/day of PG for 2 days before to 1 day after RAIT). Blood samples were collected before and 2 days after RAIT. Lymphocyte micronuclei (MN) frequency was measured using the MN assay. Serum total antioxidant capacity (TAC) and ischemia-modified albumin (IMA) were measured using colorimetric assays. Serum albumin, blood urea nitrogen (BUN), creatinine, aspartate aminotransferase (AST), and alanine aminotransferase (ALT) were measured using commercial kits. RESULTS The mean of baseline MN frequency was the same in the four groups. RAIT increased the MN frequencies to at least three times the baseline values in the control (39 ± 5) and placebo groups (38 ± 6) (P < 0.001). PG caused a significant decrease in the MN frequencies in the treated groups compared to the control and placebo groups (P < 0.001). RAIT and PG administration had no significant effects on the serum IMA, TAC, and markers of liver and kidney toxicity. CONCLUSION PG could be considered a useful remedy for the protection against RAIT-induced chromosomal damage in DCT patients.
Collapse
Affiliation(s)
- Vida Omrani
- Department of Radiology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Fardid
- Department of Radiology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- Ionizing and Non-Ionizing Radiation Protection Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrosadat Alavi
- Ionizing and Non-Ionizing Radiation Protection Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Nuclear Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Nuclear Medicine, Namazi Hospital, Zand Street, Shiraz, Iran
| | - Golamhassan Haddadi
- Department of Radiology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- Ionizing and Non-Ionizing Radiation Protection Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Ali Takhshid
- Department of Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Science, Shiraz, Iran
| |
Collapse
|
11
|
Liu J, Yu W, Ma C, Li T, Liang Y, Su S, Zhong G, Xie Z, Wu Q, Chen J, Wang Q. Network Pharmacology and Mechanism Studies of the Protective Effect of Ginseng against Alzheimer's Disease Based on Aβ Pathogenesis. PLANTA MEDICA 2023; 89:990-1000. [PMID: 36649733 DOI: 10.1055/a-2014-6061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Alzheimer's disease (AD) is a critical neurodegenerative disease that manifests as progressive intellectual decline and is pathologically characterized by a progressive loss of neurons in the brain. Despite extensive research on this topic, the pathogenesis of AD is not fully understood, while the beta-amyloid (Aβ) hypothesis remains the dominant one and only a few symptomatic drugs are approved for the treatment of AD. Ginseng has been widely reported as an effective herbal medicine for the treatment of neurodegenerative diseases such as dementia. Therefore, we explore the protective effects of ginseng in AD by a network pharmacological approach based on the pathogenesis of Aβ. Twenty-one major ginsenosides are screened based on ultraperformance liquid chromatography-mass spectrometry/mass spectrometry (HPLC-MS/MS) data. Among them, MAPK8, MAPK9, BACE1, FLT1, CDK2, and CCR5 are the core targets. By molecular docking and validation with the in vitro cell model APPswe-SH-SY5Y, we find that ginsenosides Rg3 and Ro have good neuroprotective effects and can reduce the expression of Aβ 1 - 42 in APPswe-SH-SY5Y. Finally, through RT-qPCR experiment, we find that ginsenoside Rg3 targeted MAPK8, FLT1, and CCR5, while ginsenoside Ro targeted MAPK8, MAPK9, FLT1, and CCR5 for its potential anti-AD efficacy.
Collapse
Affiliation(s)
- Jinman Liu
- Affiliated Jiangmen TCM Hospital of Ji'nan University, Jiangmen, China
| | - Wenqian Yu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Cuiru Ma
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tianyao Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yong Liang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shijie Su
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guangcheng Zhong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhouyuan Xie
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiqing Wu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiaxin Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
12
|
Wang A, Liu Y, Zeng S, Liu Y, Li W, Wu D, Wu X, Zou L, Chen H. Dietary Plant Polysaccharides for Cancer Prevention: Role of Immune Cells and Gut Microbiota, Challenges and Perspectives. Nutrients 2023; 15:3019. [PMID: 37447345 DOI: 10.3390/nu15133019] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Dietary plant polysaccharides, one of the main sources of natural polysaccharides, possess significant cancer prevention activity and potential development value in the food and medicine fields. The anti-tumor mechanisms of plant polysaccharides are mainly elaborated from three perspectives: enhancing immunoregulation, inhibiting tumor cell growth and inhibiting tumor cell invasion and metastasis. The immune system plays a key role in cancer progression, and immunomodulation is considered a significant pathway for cancer prevention or treatment. Although much progress has been made in revealing the relationship between the cancer prevention activity of polysaccharides and immunoregulation, huge challenges are still met in the research and development of polysaccharides. Results suggest that certain polysaccharide types and glycosidic linkage forms significantly affect the biological activity of polysaccharides in immunoregulation. At present, the in vitro anti-tumor effects and immunoregulation of dietary polysaccharides are widely reported in articles; however, the anti-tumor effects and in vivo immunoregulation of dietary polysaccharides are still deserving of further investigation. In this paper, aspects of the mechanisms behind dietary polysaccharides' cancer prevention activity achieved through immunoregulation, the role of immune cells in cancer progression, the role of the mediatory relationship between the gut microbiota and dietary polysaccharides in immunoregulation and cancer prevention are systematically summarized, with the aim of encouraging future research on the use of dietary polysaccharides for cancer prevention.
Collapse
Affiliation(s)
- Anqi Wang
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Ying Liu
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Shan Zeng
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, China
| | - Yuanyuan Liu
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, China
| | - Wei Li
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Dingtao Wu
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Huijuan Chen
- Institute of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu 610031, China
| |
Collapse
|
13
|
Li Z, Wang Y, Xu Q, Ma J, Li X, Tian Y, Wen Y, Chen T. Ginseng and health outcomes: an umbrella review. Front Pharmacol 2023; 14:1069268. [PMID: 37465522 PMCID: PMC10351045 DOI: 10.3389/fphar.2023.1069268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 06/09/2023] [Indexed: 07/20/2023] Open
Abstract
Background: Ginseng consumption has been associated with various health outcomes. However, there are no review articles summarizing these reports. Methods: PubMed, Embase, the Cochrane Library of Systematic Reviews, Scopus, CNKI and Wanfang databases were searched from inception to 31 July 2022. The Assessment of Multiple Systematic Reviews-2 (AMSTAR-2) and Grading of Recommendations Assessment, Development and Evaluation (GRADE) systems were used to assess the methodological quality and quality of evidence in each meta-analysis, and the results were summarized in a narrative form. Results: Nineteen meta-analyses that met the eligibility criteria were identified from among 1,233 papers. The overall methodological quality was relatively poor, with only five studies being low-quality, and 14 critically low-quality. When compared with control treatments (mainly placebo), ginseng was beneficial for improving fatigue and physical function, sexual function, menopausal symptoms, metabolic indicators, inflammatory markers, unstable angina and respiratory diseases. Adverse events included gastrointestinal symptoms and potential bleeding; however, no serious adverse events were reported. Conclusion: This umbrella review suggests that ginseng intake has beneficial therapeutic effects for diverse diseases. However, the methodological quality of studies needs to be improved considerably. In addition, it is imperative to establish the clinical efficacy of ginseng through high-quality randomized controlled trials.
Collapse
Affiliation(s)
- Zhongyu Li
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yang Wang
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qing Xu
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jinxin Ma
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuan Li
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yibing Tian
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yandong Wen
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Chinese Medicine, Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ting Chen
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
14
|
Effects of Ginseng on Cancer-Related Fatigue: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Cancer Nurs 2023; 46:120-127. [PMID: 35184068 DOI: 10.1097/ncc.0000000000001068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Cancer-related fatigue (CRF) is a common yet troublesome adverse effect that compromises patient quality of life (QoL). Ginseng is often used to boost energy. OBJECTIVES The aim of this study was to systematically appraise evidence whether ginseng could alleviate CRF and improve QoL. METHODS We conducted a systematic review and meta-analysis of randomized controlled trials on the effectiveness of ginseng for relieving CRF. The primary outcome was fatigue. The secondary outcomes included QoL, anxiety, adverse events, depression, and laboratory markers. RESULTS The final sample comprised seven trials. The pooled results showed that ginseng consumption led to significant reductions in CRF levels (standard mean difference [SMD], -0.21; 95% confidence interval [CI], -0.42 to 0.00). Furthermore, improvements in physical well-being (SMD, 0.25; 95% CI, 0.09-0.41) and emotional well-being (SMD, 0.20; 95% CI, 0.01-0.40) were observed, as were nonsignificant trends toward improvement in vigor (SMD, 0.18; 95% CI, -0.02 to 0.38), mitigated nausea (SMD, 0.38; 95% CI, -0.09 to 0.85), dyspnea (SMD, 0.27; 95% CI, -0.04 to 0.59), and anxiety (mean difference, -0.97; 95% CI, -2.12 to 0.18). CONCLUSIONS Ginseng consumption alleviates CRF and may have certain benefits in improving QoL especially physical well-being. IMPLICATIONS FOR PRACTICE Ginseng may be used as an energy or nutrient supplement to alleviate CRF. However, the concentration of ginseng's functional components is affected by the production methods and thus probably its effects. Oncology nurses are encouraged to have a better understanding of the benefits and functional limitations of ginseng as an energy or nutrient supplement for CRF.
Collapse
|
15
|
Huo R, Wang M, Wei X, Qiu Y. Research Progress on Anti-Inflammatory Mechanisms of Black Ginseng. Chem Biodivers 2023; 20:e202200846. [PMID: 36789670 DOI: 10.1002/cbdv.202200846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 02/16/2023]
Abstract
In recent years, black ginseng, a new type of processed ginseng product, has attracted the attention of scholars globally. Ginsenoside and ginseng polysaccharide, the main active substances of black ginseng, have been shown to carry curative effects for many diseases. This article focuses on the mechanism of their action in anti-inflammatory response, which is mainly divided into three aspects: activation of immune cells to exert immune regulatory response; participation in inflammatory response-related pathways and regulation of the expression level of inflammatory factors; effect on the metabolic activity of intestinal flora. This study identifies active anti-inflammatory components and an action mechanism of black ginseng showing multi-component, multi-target, and multi-channel characteristics, providing ideas and a basis for a follow-up in-depth study of its specific mechanism.
Collapse
Affiliation(s)
- Ran Huo
- Pharmacy College of, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Mengyuan Wang
- Pharmacy College of, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xu Wei
- Pharmacy College of, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Ye Qiu
- Pharmacy College of, Changchun University of Chinese Medicine, Changchun, 130117, China
| |
Collapse
|
16
|
Hu J, Cheng M, Li Y, Shi B, He S, Yao Z, Jiang J, Yu H, He Z, Zhao Y, Zheng H, Hua B, Liu R. Ginseng-containing traditional medicine preparations in combination with fluoropyrimidine-based chemotherapy for advanced gastric cancer: A systematic review and meta-analysis. PLoS One 2023; 18:e0284398. [PMID: 37068063 PMCID: PMC10109524 DOI: 10.1371/journal.pone.0284398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 03/30/2023] [Indexed: 04/18/2023] Open
Abstract
BACKGROUND Ginseng-containing traditional medicine preparations (G-TMPs) in combination with fluoropyrimidine-based chemotherapy (FBC) are well-known treatments for advanced gastric cancer (AGC), with a superior efficacy to FBC alone. However, evidence regarding their efficacy remains limited. The purpose of this meta-analysis is to evaluate the efficacy and safety of G-TMPs in combination with FBC for the treatment of AGC. METHODS Eight electronic databases were searched for randomized controlled trials (RCTs) using G-TMPs with FBC for the treatment of AGC. The primary outcome included the tumor response, while the secondary outcomes included the quality of life (QoL), proportions of peripheral blood lymphocytes, adverse drug reactions (ADRs), and levels of cancer biomarkers. The quality of evidence for each outcome was assessed using GRADE profilers. RESULTS A total of 1,960 participants were involved in the 26 RCTs included. Patients treated with FBC plus G-TMPs had better objective response (risk ratio [RR] = 1.23, 95% confidence interval [CI]: 1.13 to 1.35, p < 0.00001) and disease control (RR = 1.13, 95% CI: 1.08 to 1.19, p < 0.00001) rates than those treated with FBC alone. Additionally, the combination group had a better QoL, higher proportions of CD3+ T cells, CD4+ T cells, and natural killer cells, as well as a higher CD4+/CD8+ T-cell ratio. Furthermore, lower levels of CA19-9, CA72-4, and CEA were confirmed in the combination treatment group. In addition, G-TMPs reduced the incidence of ADRs during chemotherapy. CONCLUSION In combination with FBC, G-TMPs can potentially enhance efficacy, reduce ADRs, and improve prognosis for patients with AGC. However, high-quality randomized studies remain warranted. SYSTEMATIC REVIEW REGISTRATION PROSPERO Number: CRD42021264938.
Collapse
Affiliation(s)
- Jiaqi Hu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Mengqi Cheng
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Yue Li
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Bolun Shi
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shulin He
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Ziang Yao
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Juling Jiang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huibo Yu
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Zhongning He
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuwei Zhao
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Honggang Zheng
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baojin Hua
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Rui Liu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
17
|
Wang Z, Hou X, Li M, Ji R, Li Z, Wang Y, Guo Y, Liu D, Huang B, Du H. Active fractions of golden-flowered tea ( Camellia nitidissima Chi) inhibit epidermal growth factor receptor mutated non-small cell lung cancer via multiple pathways and targets in vitro and in vivo. Front Nutr 2022; 9:1014414. [PMID: 36386893 PMCID: PMC9649924 DOI: 10.3389/fnut.2022.1014414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/29/2022] [Indexed: 08/13/2023] Open
Abstract
As a medicine-food homology (MFH) plant, golden-flowered tea (Camellia nitidissima Chi, CNC) has many different pharmacologic activities and is known as "the queen of the tea family" and "the Panda of the Plant world". Several studies have revealed the pharmacologic effects of CNC crude extract, including anti-tumor, anti-oxidative and hepatoprotective activity. However, there are few studies on the anti-tumor active fractions and components of CNC, yet the underlying mechanism has not been investigated. Thus, we sought to verify the anti-non-small cell lung cancer (NSCLC) effects of four active fractions of CNC. Firstly, we determined the pharmacodynamic material basis of the four active fractions of CNC (Camellia. leave. saponins, Camellia. leave. polyphenols, Camellia. flower. saponins, Camellia. flower. polyphenols) by UPLC-Q-TOF-MS/MS and confirmed the differences in their specific compound contents. Then, MTT, colony formation assay and EdU incorporation assay confirmed that all fractions of CNC exhibit significant inhibitory on NSCLC, especially the Camellia. leave. saponins (CLS) fraction on EGFR mutated NSCLC cell lines. Moreover, transcriptome analysis revealed that the inhibition of NSCLC cell growth by CLS may be via three pathways, including "Cytokine-cytokine receptor interaction," "PI3K-Akt signaling pathway" and "MAPK signaling pathway." Subsequently, quantitative real-time PCR (RT-qPCR) and Western blot (WB) revealed TGFB2, INHBB, PIK3R3, ITGB8, TrkB and CACNA1D as the critical targets for the anti-tumor effects of CLS in vitro. Finally, the xenograft models confirmed that CLS treatment effectively suppressed tumor growth, and the key targets were also verified in vivo. These observations suggest that golden-flowered tea could be developed as a functional tea drink with anti-cancer ability, providing an essential molecular mechanism foundation for MFH medicine treating NSCLC.
Collapse
Affiliation(s)
- Ziling Wang
- Key Laboratory of Traditional Chinese Medicine Resources and Chemistry of Hubei Province, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Xiaoying Hou
- School of Medicine, Wuhan Institutes of Biomedical Sciences, Jianghan University, Wuhan, China
| | - Min Li
- Shenzhen Luohu Hospital Group Luohu People’s Hospital, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Rongsheng Ji
- Key Laboratory of Traditional Chinese Medicine Resources and Chemistry of Hubei Province, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Zhouyuan Li
- Key Laboratory of Traditional Chinese Medicine Resources and Chemistry of Hubei Province, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Yuqiao Wang
- Key Laboratory of Traditional Chinese Medicine Resources and Chemistry of Hubei Province, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Yujie Guo
- Key Laboratory of Traditional Chinese Medicine Resources and Chemistry of Hubei Province, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Dahui Liu
- Key Laboratory of Traditional Chinese Medicine Resources and Chemistry of Hubei Province, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Bisheng Huang
- Key Laboratory of Traditional Chinese Medicine Resources and Chemistry of Hubei Province, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Hongzhi Du
- Key Laboratory of Traditional Chinese Medicine Resources and Chemistry of Hubei Province, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
18
|
Ni B, Song X, Shi B, Wang J, Sun Q, Wang X, Xu M, Cao L, Zhu G, Li J. Research progress of ginseng in the treatment of gastrointestinal cancers. Front Pharmacol 2022; 13:1036498. [PMID: 36313365 PMCID: PMC9603756 DOI: 10.3389/fphar.2022.1036498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/03/2022] [Indexed: 11/24/2022] Open
Abstract
Cancer has become one of the major causes of human death. Several anticancer drugs are available; howeve their use and efficacy are limited by the toxic side effects and drug resistance caused by their continuous application. Many natural products have antitumor effects with low toxicity and fewer adverse effects. Moreover, they play an important role in enhancing the cytotoxicity of chemotherapeutic agents, reducing toxic side effects, and reversing chemoresistance. Consequently, natural drugs are being applied as potential therapeutic options in the field of antitumor treatment. As natural medicinal plants, some components of ginseng have been shown to have excellent efficacy and a good safety profile for cancer treatment. The pharmacological activities and possible mechanisms of action of ginseng have been identified. Its broad range of pharmacological activities includes antitumor, antibacterial, anti-inflammatory, antioxidant, anti-stress, anti-fibrotic, central nervous system modulating, cardioprotective, and immune-enhancing effects. Numerous studies have also shown that throuth multiple pathways, ginseng and its active ingredients exert antitumor effects on gastrointestinal (GI) tract tumors, such as esophageal, gastric, colorectal, liver, and pancreatic cancers. Herein, we introduced the main components of ginseng, including ginsenosides, polysaccharides, and sterols, etc., and reviewed the mechanism of action and research progress of ginseng in the treatment of various GI tumors. Futhermore, the pathways of action of the main components of ginseng are discussed in depth to promote the clinical development and application of ginseng in the field of anti-GI tumors.
Collapse
Affiliation(s)
- Baoyi Ni
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaotong Song
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bolun Shi
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jia Wang
- Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, China
| | - Qianhui Sun
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinmiao Wang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Manman Xu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luchang Cao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | | | - Jie Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Jie Li,
| |
Collapse
|
19
|
Zhu H, Liu H, Zhu JH, Wang SY, Zhou SS, Kong M, Mao Q, Long F, Fang ZJ, Li SL. Reply to "Comment on 'Efficacy of ginseng and its ingredients as adjuvants to chemotherapy in non-small cell lung cancer'" by H. W. Lee, L. Ang and M. S. Lee, Food Funct., 2022, 13, DOI: 10.1039/d1fo01914g. Food Funct 2022; 13:8332-8333. [PMID: 35834291 DOI: 10.1039/d2fo00744d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- He Zhu
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China. .,Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Hui Liu
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China.
| | - Jin-Hao Zhu
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China.
| | - Si-Yu Wang
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China.
| | - Shan-Shan Zhou
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Ming Kong
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Qian Mao
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Fang Long
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Zhi-Jun Fang
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China.
| | - Song-Lin Li
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China. .,Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| |
Collapse
|
20
|
Liu H, Wang SY, Zhu JH, Kong M, Zhou SS, Li SL, Zhu H. Effects and contributory factors of sulfur-fumigation on the efficacy and safety of medicinal herbs evaluated by meta-analysis. JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115250. [PMID: 35367331 DOI: 10.1016/j.jep.2022.115250] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/17/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sulfur-fumigation undoubtedly alters the chemical and metabolic profiles, but controversially affects the efficacy and safety of medicinal herbs. AIM OF THE STUDY To comprehensively evaluate the effects of sulfur-fumigation on the efficacy and safety of medicinal herbs using a meta-analysis approach and further investigate the potential contributory factors. MATERIALS AND METHODS Literatures were retrieved on PubMed, Web of Science, Embase, China National Knowledge Infrastructure, Chinese VIP Information and Wanfang, and the outcomes involved activities and toxicities were extracted using standard data extraction forms. The effects of sulfur-fumigation on the efficacy and safety of medicinal herbs were evaluated by meta-analysis approaches. RESULTS A total of sixteen studies were included in this study. Sulfur-fumigation reduced the efficacies of medicinal herbs with immune activity [thymus index (SMD = -1.81; P < 0.00001); spleen index (SMD = -1.11; P < 0.0001)], anti-oxidative activity [MDA (SMD = 2.60; P = 0.04); SOD (SMD = -2.21; P < 0.00001)], analgesic activity [heat tolerate time (SMD = -2.51; P = 0.001); writhing time (SMD = 0.36; P = 0.006)], anti-platelet aggregation activity (SMD = -1.84; P = 0.001), and anti-inflammatory activity [ear swelling degree (SMD = 0.47; P = 0.006)]. The reductions might be ascribed to sulfur-fumigation significantly reduced the contents of active ingredients in medicinal herbs, leading to dramatic decrease in the absorption of these ingredients and their metabolites in vivo. Furthermore, sulfur-fumigation induced the toxicities of medicinal herbs, mainly on hepatotoxicity, which might due to fumigation-induced residues of sulfur dioxide and heavy metal, and generations of sulfur-containing derivatives and toxic metabolites. Besides, administrated with sulfur-fumigated medicinal herbs with high sulfur ratio and/or higher dosage showed more significant toxicity. CONCLUSION Sulfur-fumigation reduced the efficacy and safety of medicinal herbs, indicating sulfur-fumigation might not a feasible approach to process medicinal herbs. However, with obvious limitations, much more rigorous designed-trials are still needed to confirm the conclusion.
Collapse
Affiliation(s)
- Hui Liu
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Si-Yu Wang
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Jin-Hao Zhu
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Ming Kong
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Shan-Shan Zhou
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China
| | - Song-Lin Li
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China.
| | - He Zhu
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, 210028, China.
| |
Collapse
|
21
|
Liu H, Wang SY, Zhu JH, Xu JD, Zhou SS, Kong M, Mao Q, Li SL, Zhu H. Effects of sulfur-fumigated ginseng on the global quality of Si-Jun-Zi decoction, a traditional ginseng-containing multi-herb prescription, evaluated by metabolomics and glycomics strategies. J Pharm Biomed Anal 2022; 219:114927. [PMID: 35816772 DOI: 10.1016/j.jpba.2022.114927] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/01/2022] [Accepted: 07/02/2022] [Indexed: 01/26/2023]
Abstract
Si-Jun-Zi decoction (SJZD) with ginseng as the principal medicinal herb is a traditional Chinese Medicine multi-herb prescription that commonly employed to treat colorectal cancer etc. Previous studies showed that nearly half of the commercial ginseng was sulfur-fumigated, one of the postharvest processing methods that commonly causes sulfur-dioxide (SO2) residue and chemical composition transformation in medical herbs. In this study, the effect of sulfur-fumigated ginseng on global quality of SJZD was evaluated by UPLC-QTOF-MS/MS based metabolomics and multiple chromatographic techniques based glycomics strategies. For non-saccharides components, sulfur-fumigated ginseng led to the emergence of sulfur-containing derivatives and alteration of saponins and flavonoids in SJZD. For saccharide components, sulfur-fumigated ginseng decreased the total contents and molecular weights of polysaccharides, changed the monosaccharide composition of polysaccharides, and increased the contents of oligosaccharides and free monosaccharides of SJZD. The alterations of SJZD were aggravated with the sulfur-fumigated content of ginseng. Those phenomena might be attributed to 1) sulfur-fumigation caused the generation of sulfur-containing derivatives in ginseng, which further transferred to SJZD, and 2) sulfur-fumigation caused the residue of SO2 in ginseng, which reduced the pH value and further changed the dissolution of saponins and flavonoids and accelerated the degradation of the polysaccharides to oligosaccharides and/or monosaccharides in SJZD. Furthermore, although storage reduced the SO2 residue in sulfur-fumigated ginseng, it couldn't recover the alterations of chemical profiles in SJZD. In conclusion, sulfur-fumigated ginseng altered the global quality of SJZD, which promoted that extra attention must be paid during the application of herbal formulas that containing sulfur-fumigated herbs.
Collapse
Affiliation(s)
- Hui Liu
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Si-Yu Wang
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Jin-Hao Zhu
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Jin-Di Xu
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Shan-Shan Zhou
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Ming Kong
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Qian Mao
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Song-Lin Li
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China.
| | - He Zhu
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China.
| |
Collapse
|
22
|
Lee HW, Ang L, Lee MS. Comment on “Efficacy of ginseng and its ingredients as adjuvants to chemotherapy in non-small cell lung cancer” by H. Zhu, H. Liu, J. H. Zhu, S. Y. Wang, S. S. Zhou, M. Kong, Q. Mao, F. Long, Z. J. Fang and S.-L. Li, Food Funct., 2021, 12, 2225. Food Funct 2022; 13:8329-8331. [DOI: 10.1039/d1fo01914g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This comment raises concerns about the article “Efficacy of ginseng and its ingredients as adjuvants to chemotherapy in non-small cell lung cancer”.
Collapse
Affiliation(s)
- Hye Won Lee
- Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon, Korea
| | - Lin Ang
- Korean Medicine Science Research Division, Korea Institute of Oriental Medicine, Daejeon, Korea
| | - Myeong Soo Lee
- Korean Medicine Science Research Division, Korea Institute of Oriental Medicine, Daejeon, Korea
- Korean Convergence Medicine, University of Science and Technology, Daejeon, Korea
| |
Collapse
|
23
|
Zhu H, Wang SY, Zhu JH, Liu H, Kong M, Mao Q, Zhang W, Li SL. Efficacy and safety of transcatheter arterial chemoembolization combined with ginsenosides in hepatocellular carcinoma treatment. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 91:153700. [PMID: 34425474 DOI: 10.1016/j.phymed.2021.153700] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/30/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Transcatheter arterial chemoembolization (TACE) is a standard therapy to treat hepatocellular carcinoma (HCC), but often limited for its complications. Ginsenosides, including total ginsenosides (GS), Rg3, Rh2 and CK, have been clinically used as adjuvants of TACE in HCC therapy. However, partial clinical observations concerning the efficacy and safety of the combinational treatment were contradictory. PURPOSE To investigate the efficacy and safety of TACE and ginsenosides combination for HCC therapy. METHODS Randomized controlled trials (RCTs) regarding TACE and ginsenosides for HCC up to May 2021 were screened from six databases (PubMed, Embase, Cochrane Library, China National Knowledge Infrastructure, Chinese VIP Information and Web of Science). The outcomes of tumor response, adverse reactions (ADRs), quality of life (QOL), survival rates (OS) and liver function were extracted and evaluated by meta-analysis, respectively. RESULTS A total of 18 RCTs with 1308 HCC patients were enrolled, and most of the eligible studies had unclear bias risk. Compared with TACE, combining ginsenosides improved objective response rate [ORR, risk ratio (RR) 1.39, 95% confidence intervals (CI) 1.20∼1.61], disease control rate (DCR, RR 1.21, 95% CI 1.12∼1.30), QOL (RR 1.54, 95% CI 1.25∼1.90), one- (RR 1.37, 95% CI 1.16∼1.62) and two- (RR 1.43, 95% CI 1.06∼1.95) year OS, and A level of Child-pugh, as well as reduced the risks of nausea and vomiting, pyrexia, ache, hyperbilirubinemia, anorexia, fatigue, leukopenia, thrombocytopenia and myelosuppression. Subgroup analyses showed that both short- and long- treatment durations of ginsenosides enhanced the A level of Child-pugh, and reduced nausea and vomiting, ache and hyperbilirubinemia. Besides, combining Rg3 benefited DCR, ORR and QOL, and alleviated nausea and vomiting, hyperbilirubinemia, leukopenia, myelosuppression, thrombocytopenia and α-fetoprotein, while combining GS alleviated nausea and vomiting, ache and hyperbilirubinemia, combining Rh2 alleviated thrombocytopenia, and combining CK alleviated nausea and vomiting, pyrexia, ache and leukopenia, respectively. CONCLUSION The results suggested that combining ginsenosides could continuously benefit the efficacy and safety of TACE in HCC treatment, and Rg3 is the prior selection during the combination.
Collapse
Affiliation(s)
- He Zhu
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China.
| | - Si-Yu Wang
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Jin-Hao Zhu
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Hui Liu
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Ming Kong
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Qian Mao
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Wei Zhang
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Song-Lin Li
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China.
| |
Collapse
|
24
|
Wan D, Sun T, Qi L, Huang D. WITHDRAWN: Precise engineering of Iguratimod and Rapamycin drugs loaded polymeric nanomaterials for the treatment of glioma cancer cells. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Lev-Ari S, Starr AN, Vexler A, Kalich-Philosoph L, Yoo HS, Kwon KR, Yadgar M, Bondar E, Bar-Shai A, Volovitz I, Schwarz Y. Rh2-enriched Korean ginseng (Ginseng Rh2+) inhibits tumor growth and development of metastasis of non-small cell lung cancer. Food Funct 2021; 12:8068-8077. [PMID: 34286798 DOI: 10.1039/d1fo00643f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BACKGROUND AND OBJECTIVE While there are multiple studies on the anti-tumoral effects of Panax ginseng as active ingredients (one or more ginsenosides derived from the extract) or as a whole plant extract, there is a lack of studies to assess the effects Panax ginseng's of active ingredients combined with the whole plant extract. Our aim was to study the effect of whole ginseng, enriched in the anti-tumoral Rh2 component and other ginsenosides (Ginseng Rh2+), on the metastatic capacity of non-small cell lung cancer (NSCLC). METHODS We evaluated the effects of Ginseng Rh2+ on survival, migration and motility, induction of apoptosis, and expression of its apoptosis-related proteins in non-small cell lung cancer (NSCLC) cells in vitro and on primary tumor growth and metastatic capacity in a syngeneic mouse lung cancer model in vivo. The effects of Ginseng Rh2+ on NSCLC cells were studied in vitro using: a colorimetric tetrazolium salt (XTT) assay, annexin V-FITC/PI, western blotting, wound healing motility assay, Transwell migration and cell adhesion assays. In vivo, mice were inoculated with Lewis mouse lung carcinoma cells subcutaneously to evaluate local tumor growth, or intravenously to evaluate the effects of Ginseng Rh2+ on development of experimental metastases. Mice were treated by intraperitoneal administration of Ginseng Rh2+ (0.005-0.5 g kg-1) on days 6, 10, and 14 after tumor injection. RESULTS We found that Ginseng Rh2+ increased the apoptosis of NSCLC cells in vitro, demonstrating dose dependent down-regulation of the Bcl-2 anti-apoptotic gene and concurrent up-regulation of the Bax pro-apoptotic gene. Ginseng Rh2+ inhibited the tumor cells' capacity to attach to the ECM-related matrix and reduced cell migration. In vivo, Ginseng Rh2+ inhibited local tumor growth and reduced the development of experimental lung metastases. CONCLUSION Our study suggests that Ginseng Rh2+ may potentially be used as a therapeutic agent for treatment of NSCLC.
Collapse
Affiliation(s)
- Shahar Lev-Ari
- Laboratory of Herbal Medicine and Cancer Research, Institute of Oncology, Tel-Aviv Sourasky Medical Center, affiliated to Tel-Aviv University, Israel.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|