1
|
Shen X, Ke X, Li T, Sun C, Duan X. Generation, control, and application of stable bubbles in a hypersonic acoustic system. LAB ON A CHIP 2024; 24:4450-4460. [PMID: 39206785 DOI: 10.1039/d4lc00591k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Bubble-based microfluidics has been applied in many fields. However, there remains a need for a facile and flexible method for stable bubble generation and control in a microchannel. This paper reports a hypersonic acoustic system that can generate and release functional stable bubbles in a microchannel in an on-demand manner. It was found that the hypersonic frequency in this system played a vital role in the generation and control of bubbles. Specifically, a nanostructurally enhanced acoustic resonator was used to generate highly localized ultrahigh-frequency acoustic waves that ensured the feasibility and rapidity of bubble generation. Simultaneously, the acoustothermal effect of hypersound was harnessed to effectuate precise control over the bubble size. In addition, high-throughput droplet splitting was performed to confirm the stability of bubbles and their functionality in micromanipulation. The results showed that a mother droplet could be split controllably into a desired number of daughter droplets with specific volume ratios. In summary, the hypersonic acoustic system was demonstrated to be capable of on-demand-generation of stable bubbles in a microfluidic context and thus may extend the bubble-based applications.
Collapse
Affiliation(s)
- Xiaotian Shen
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Xianwu Ke
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Tiechuan Li
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Chongling Sun
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Xuexin Duan
- State Key Laboratory of Precision Measuring Technology and Instruments, School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
2
|
Zhang Y, Lin Y, Hong X, Di C, Xin Y, Wang X, Qi S, Liu BF, Zhang Z, Du W. Demand-driven active droplet generation and sorting based on positive pressure-controlled fluid wall. Anal Bioanal Chem 2023; 415:5311-5322. [PMID: 37392212 DOI: 10.1007/s00216-023-04806-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 07/03/2023]
Abstract
Droplet microfluidics is a rapidly advancing area of microfluidic technology, which offers numerous advantages for cell analysis, such as isolation and accumulation of signals, by confining cells within droplets. However, controlling cell numbers in droplets is challenging due to the uncertainty of random encapsulation which result in many empty droplets. Therefore, more precise control techniques are needed to achieve efficient encapsulation of cells within droplets. Here, an innovative microfluidic droplet manipulation platform had been developed, which employed positive pressure as a stable and controllable driving force for manipulating fluid within chips. The air cylinder, electro-pneumatics proportional valve, and the microfluidic chip were connected through a capillary, which enabled the formation of a fluid wall by creating a difference in hydrodynamic resistance between two fluid streams at the channel junction. Lowering the pressure of the driving oil phase eliminates hydrodynamic resistance and breaks the fluid wall. Regulating the duration of the fluid wall breakage controls the volume of the introduced fluid. Several important droplet microfluidic manipulations were demonstrated on this microfluidic platform, such as sorting of cells/droplets, sorting of droplets co-encapsulated cells and hydrogels, and active generation of droplets encapsulated with cells in a responsive manner. The simple, on-demand microfluidic platform was featured with high stability, good controllability, and compatibility with other droplet microfluidic technologies.
Collapse
Affiliation(s)
- Yiwei Zhang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yiwei Lin
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xianzhe Hong
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chao Di
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yuelai Xin
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xinru Wang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shuhong Qi
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhihong Zhang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wei Du
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
3
|
Trinh TND, Do HDK, Nam NN, Dan TT, Trinh KTL, Lee NY. Droplet-Based Microfluidics: Applications in Pharmaceuticals. Pharmaceuticals (Basel) 2023; 16:937. [PMID: 37513850 PMCID: PMC10385691 DOI: 10.3390/ph16070937] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/19/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
Droplet-based microfluidics offer great opportunities for applications in various fields, such as diagnostics, food sciences, and drug discovery. A droplet provides an isolated environment for performing a single reaction within a microscale-volume sample, allowing for a fast reaction with a high sensitivity, high throughput, and low risk of cross-contamination. Owing to several remarkable features, droplet-based microfluidic techniques have been intensively studied. In this review, we discuss the impact of droplet microfluidics, particularly focusing on drug screening and development. In addition, we surveyed various methods of device fabrication and droplet generation/manipulation. We further highlight some promising studies covering drug synthesis and delivery that were updated within the last 5 years. This review provides researchers with a quick guide that includes the most up-to-date and relevant information on the latest scientific findings on the development of droplet-based microfluidics in the pharmaceutical field.
Collapse
Affiliation(s)
- Thi Ngoc Diep Trinh
- Department of Materials Science, School of Applied Chemistry, Tra Vinh University, Tra Vinh City 87000, Vietnam
| | - Hoang Dang Khoa Do
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ward 13, District 04, Ho Chi Minh City 70000, Vietnam
| | - Nguyen Nhat Nam
- Biotechnology Center, School of Agriculture and Aquaculture, Tra Vinh University, Tra Vinh City 87000, Vietnam
| | - Thach Thi Dan
- Department of Materials Science, School of Applied Chemistry, Tra Vinh University, Tra Vinh City 87000, Vietnam
| | - Kieu The Loan Trinh
- BioNano Applications Research Center, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| |
Collapse
|
4
|
Liu J, Lyu X, Zhou Z, Yang L, Zeng J, Yang Y, Zhao Z, Chen R, Tong X, Li J, Liu H, Zou Y. Multifunctional Droplets Formed by Interfacially Self-Assembled Fluorinated Magnetic Nanoparticles for Biocompatible Single Cell Culture and Magnet-Driven Manipulation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17324-17334. [PMID: 36962257 DOI: 10.1021/acsami.2c23003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The ability to encapsulate and manipulate droplets with a picoliter volume of samples and reagents shows great potential for practical applications in chemistry, biology, and materials science. Magnetic control is a promising approach for droplet manipulation due to its ability for wireless control and its ease of implementation. However, it is challenged by the poor biocompatibility of magnetic materials in aqueous droplets. Moreover, current droplet technology is problematic because of the molecule leakage between droplets. In the paper, we propose multifunctional droplets with the surface coated by a layer of fluorinated magnetic nanoparticles for magnetically actuated droplet manipulation. Multifunctional droplets show excellent biocompatibility for cell culture, nonleakage of molecules, and high response to a magnetic field. We developed a strategy of coating the F-MNP@SiO2 on the outer surface of droplets instead of adding magnetic material into droplets to enable droplets with a highly magnetic response. The encapsulated bacteria and cells in droplets did not need to directly contact with the magnetic materials at the outer surface, showing high biocompatibility with living cells. These droplets can be precisely manipulated based on magnet distance, the time duration of the magnetic field, the droplet size, and the MNP composition, which well match with theoretical analysis. The precise magnetically actuated droplet manipulation shows great potential for accurate and sensitive droplet-based bioassays like single cell analysis.
Collapse
Affiliation(s)
- Jiahe Liu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xiaoyan Lyu
- Department of Dermatology, Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ziwei Zhou
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing 402160, China
| | - Lin Yang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Jie Zeng
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Yao Yang
- Department of Dermatology, Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhenghuan Zhao
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Rui Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xin Tong
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Jiaqi Li
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Hailan Liu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yuan Zou
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
5
|
Sun G, Qu L, Azi F, Liu Y, Li J, Lv X, Du G, Chen J, Chen CH, Liu L. Recent progress in high-throughput droplet screening and sorting for bioanalysis. Biosens Bioelectron 2023; 225:115107. [PMID: 36731396 DOI: 10.1016/j.bios.2023.115107] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/09/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023]
Abstract
Owing to its ability to isolate single cells and perform high-throughput sorting, droplet sorting has been widely applied in several research fields. Compared with flow cytometry, droplet allows the encapsulation of single cells for cell secretion or lysate analysis. With the rapid development of this technology in the past decade, various droplet sorting devices with high throughput and accuracy have been developed. A droplet sorter with the highest sorting throughput of 30,000 droplets per second was developed in 2015. Since then, increased attention has been paid to expanding the possibilities of droplet sorting technology and strengthening its advantages over flow cytometry. This review aimed to summarize the recent progress in droplet sorting technology from the perspectives of device design, detection signal, actuating force, and applications. Technical details for improving droplet sorting through various approaches are introduced and discussed. Finally, we discuss the current limitations of droplet sorting for single-cell studies along with the existing gap between the laboratory and industry and provide our insights for future development of droplet sorters.
Collapse
Affiliation(s)
- Guoyun Sun
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Lisha Qu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Fidelis Azi
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology GTIIT, Shantou, Guangdong, 515063, China
| | - Yanfeng Liu
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Xueqin Lv
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Chia-Hung Chen
- Department of Biomedical Engineering, College of Engineering, City University of Hong Kong, Hong Kong, China.
| | - Long Liu
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
6
|
Aubry G, Lee HJ, Lu H. Advances in Microfluidics: Technical Innovations and Applications in Diagnostics and Therapeutics. Anal Chem 2023; 95:444-467. [PMID: 36625114 DOI: 10.1021/acs.analchem.2c04562] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Guillaume Aubry
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Hyun Jee Lee
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Hang Lu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.,Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
7
|
Huang C, Jiang Y, Li Y, Zhang H. Droplet Detection and Sorting System in Microfluidics: A Review. MICROMACHINES 2022; 14:mi14010103. [PMID: 36677164 PMCID: PMC9867185 DOI: 10.3390/mi14010103] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 05/26/2023]
Abstract
Since being invented, droplet microfluidic technologies have been proven to be perfect tools for high-throughput chemical and biological functional screening applications, and they have been heavily studied and improved through the past two decades. Each droplet can be used as one single bioreactor to compartmentalize a big material or biological population, so millions of droplets can be individually screened based on demand, while the sorting function could extract the droplets of interest to a separate pool from the main droplet library. In this paper, we reviewed droplet detection and active sorting methods that are currently still being widely used for high-through screening applications in microfluidic systems, including the latest updates regarding each technology. We analyze and summarize the merits and drawbacks of each presented technology and conclude, with our perspectives, on future direction of development.
Collapse
Affiliation(s)
- Can Huang
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77842, USA
| | - Yuqian Jiang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yuwen Li
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77842, USA
| | - Han Zhang
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77842, USA
| |
Collapse
|
8
|
Self-Oscillating Liquid Gating Membranes with Periodic Gas Transport. MEMBRANES 2022; 12:membranes12070642. [PMID: 35877845 PMCID: PMC9316610 DOI: 10.3390/membranes12070642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022]
Abstract
Liquid gating membranes with molecular-level smooth liquid lining layers break through the limitations of traditional porous membrane materials in gas transport control. Owing to the stable, self-healing, and reconfigurable properties, liquid gating membranes have shown wide application prospects in microfluidics, intelligent valves, chemical reactions, and beyond. Here, we develop a periodic gas transport control system based on the self-oscillating liquid gating membrane. Under continuous gas injection, the gas–liquid interface is reversibly deformed, enabling self-oscillating behavior for discontinuous and periodic gas transport without the need for any complex external changes to the original system. Meanwhile, our experimental analysis reveals that the periodic time and periodic gas release in the system can be regulated. Based on the cycle stability of the system, we further demonstrate the controllability of the system for periodic droplet manipulation in microfluidics. Looking forward, it will offer new opportunities for various applications, such as pneumatic robots, gas-involved chemical reactions, droplet microfluidics, and beyond.
Collapse
|