1
|
Nahon DM, Moerkens R, Aydogmus H, Lendemeijer B, Martínez-Silgado A, Stein JM, Dostanić M, Frimat JP, Gontan C, de Graaf MNS, Hu M, Kasi DG, Koch LS, Le KTT, Lim S, Middelkamp HHT, Mooiweer J, Motreuil-Ragot P, Niggl E, Pleguezuelos-Manzano C, Puschhof J, Revyn N, Rivera-Arbelaez JM, Slager J, Windt LM, Zakharova M, van Meer BJ, Orlova VV, de Vrij FMS, Withoff S, Mastrangeli M, van der Meer AD, Mummery CL. Standardizing designed and emergent quantitative features in microphysiological systems. Nat Biomed Eng 2024; 8:941-962. [PMID: 39187664 DOI: 10.1038/s41551-024-01236-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 04/06/2024] [Indexed: 08/28/2024]
Abstract
Microphysiological systems (MPSs) are cellular models that replicate aspects of organ and tissue functions in vitro. In contrast with conventional cell cultures, MPSs often provide physiological mechanical cues to cells, include fluid flow and can be interlinked (hence, they are often referred to as microfluidic tissue chips or organs-on-chips). Here, by means of examples of MPSs of the vascular system, intestine, brain and heart, we advocate for the development of standards that allow for comparisons of quantitative physiological features in MPSs and humans. Such standards should ensure that the in vivo relevance and predictive value of MPSs can be properly assessed as fit-for-purpose in specific applications, such as the assessment of drug toxicity, the identification of therapeutics or the understanding of human physiology or disease. Specifically, we distinguish designed features, which can be controlled via the design of the MPS, from emergent features, which describe cellular function, and propose methods for improving MPSs with readouts and sensors for the quantitative monitoring of complex physiology towards enabling wider end-user adoption and regulatory acceptance.
Collapse
Affiliation(s)
- Dennis M Nahon
- Leiden University Medical Center, Leiden, the Netherlands
| | - Renée Moerkens
- University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | | | - Bas Lendemeijer
- Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Adriana Martínez-Silgado
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, the Netherlands
| | - Jeroen M Stein
- Leiden University Medical Center, Leiden, the Netherlands
| | | | | | - Cristina Gontan
- Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Michel Hu
- Leiden University Medical Center, Leiden, the Netherlands
| | - Dhanesh G Kasi
- Leiden University Medical Center, Leiden, the Netherlands
| | - Lena S Koch
- University of Twente, Enschede, the Netherlands
| | - Kieu T T Le
- University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Sangho Lim
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, the Netherlands
| | | | - Joram Mooiweer
- University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | | | - Eva Niggl
- Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Jens Puschhof
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, the Netherlands
| | - Nele Revyn
- Delft University of Technology, Delft, the Netherlands
| | | | - Jelle Slager
- University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Laura M Windt
- Leiden University Medical Center, Leiden, the Netherlands
| | | | | | | | | | - Sebo Withoff
- University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | | | | | | |
Collapse
|
2
|
Ismayilzada N, Tarar C, Dabbagh SR, Tokyay BK, Dilmani SA, Sokullu E, Abaci HE, Tasoglu S. Skin-on-a-chip technologies towards clinical translation and commercialization. Biofabrication 2024; 16:042001. [PMID: 38964314 DOI: 10.1088/1758-5090/ad5f55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 07/04/2024] [Indexed: 07/06/2024]
Abstract
Skin is the largest organ of the human body which plays a critical role in thermoregulation, metabolism (e.g. synthesis of vitamin D), and protection of other organs from environmental threats, such as infections, microorganisms, ultraviolet radiation, and physical damage. Even though skin diseases are considered to be less fatal, the ubiquity of skin diseases and irritation caused by them highlights the importance of skin studies. Furthermore, skin is a promising means for transdermal drug delivery, which requires a thorough understanding of human skin structure. Current animal andin vitrotwo/three-dimensional skin models provide a platform for disease studies and drug testing, whereas they face challenges in the complete recapitulation of the dynamic and complex structure of actual skin tissue. One of the most effective methods for testing pharmaceuticals and modeling skin diseases are skin-on-a-chip (SoC) platforms. SoC technologies provide a non-invasive approach for examining 3D skin layers and artificially creating disease models in order to develop diagnostic or therapeutic methods. In addition, SoC models enable dynamic perfusion of culture medium with nutrients and facilitate the continuous removal of cellular waste to further mimic thein vivocondition. Here, the article reviews the most recent advances in the design and applications of SoC platforms for disease modeling as well as the analysis of drugs and cosmetics. By examining the contributions of different patents to the physiological relevance of skin models, the review underscores the significant shift towards more ethical and efficient alternatives to animal testing. Furthermore, it explores the market dynamics ofin vitroskin models and organ-on-a-chip platforms, discussing the impact of legislative changes and market demand on the development and adoption of these advanced research tools. This article also identifies the existing obstacles that hinder the advancement of SoC platforms, proposing directions for future improvements, particularly focusing on the journey towards clinical adoption.
Collapse
Affiliation(s)
- Nilufar Ismayilzada
- Department of Mechanical Engineering, Koç University, Istanbul 34450, Turkey
| | - Ceren Tarar
- Department of Mechanical Engineering, Koç University, Istanbul 34450, Turkey
| | | | - Begüm Kübra Tokyay
- Koç University Research Center for Translational Medicine, Koç University, Istanbul 34450, Turkey
| | - Sara Asghari Dilmani
- Koç University Research Center for Translational Medicine, Koç University, Istanbul 34450, Turkey
| | - Emel Sokullu
- School of Medicine, Koç University, Istanbul 34450, Turkey
| | - Hasan Erbil Abaci
- Department of Dermatology, Columbia University, New York City, NY, United States of America
| | - Savas Tasoglu
- Department of Mechanical Engineering, Koç University, Istanbul 34450, Turkey
- Boğaziçi Institute of Biomedical Engineering, Boğaziçi University, Istanbul 34684, Turkey
- Koç University Research Center for Translational Medicine, Koç University, Istanbul 34450, Turkey
- Koç University Arçelik Research Center for Creative Industries (KUAR), Koç University, Istanbul 34450, Turkey
| |
Collapse
|
3
|
Wang H, Li X, Shi P, You X, Zhao G. Establishment and evaluation of on-chip intestinal barrier biosystems based on microfluidic techniques. Mater Today Bio 2024; 26:101079. [PMID: 38774450 PMCID: PMC11107260 DOI: 10.1016/j.mtbio.2024.101079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/17/2024] [Accepted: 05/01/2024] [Indexed: 05/24/2024] Open
Abstract
As a booming engineering technology, the microfluidic chip has been widely applied for replicating the complexity of human intestinal micro-physiological ecosystems in vitro. Biosensors, 3D imaging, and multi-omics have been applied to engineer more sophisticated intestinal barrier-on-chip platforms, allowing the improved monitoring of physiological processes and enhancing chip performance. In this review, we report cutting-edge advances in the microfluidic techniques applied for the establishment and evaluation of intestinal barrier platforms. We discuss different design principles and microfabrication strategies for the establishment of microfluidic gut barrier models in vitro. Further, we comprehensively cover the complex cell types (e.g., epithelium, intestinal organoids, endothelium, microbes, and immune cells) and controllable extracellular microenvironment parameters (e.g., oxygen gradient, peristalsis, bioflow, and gut-organ axis) used to recapitulate the main structural and functional complexity of gut barriers. We also present the current multidisciplinary technologies and indicators used for evaluating the morphological structure and barrier integrity of established gut barrier models in vitro. Finally, we highlight the challenges and future perspectives for accelerating the broader applications of these platforms in disease simulation, drug development, and personalized medicine. Hence, this review provides a comprehensive guide for the development and evaluation of microfluidic-based gut barrier platforms.
Collapse
Affiliation(s)
- Hui Wang
- Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences (CAS), Tianjin, 300308, China
| | - Xiangyang Li
- Henan Engineering Research Center of Food Microbiology, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471023, China
- Haihe Laboratory of Synthetic Biology, Tianjin, 300308, China
| | - Pengcheng Shi
- Henan Engineering Research Center of Food Microbiology, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Xiaoyan You
- Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences (CAS), Tianjin, 300308, China
- Henan Engineering Research Center of Food Microbiology, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Guoping Zhao
- Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences (CAS), Tianjin, 300308, China
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- CAS-Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
4
|
Holzreuter MA, Segerink LI. Innovative electrode and chip designs for transendothelial electrical resistance measurements in organs-on-chips. LAB ON A CHIP 2024; 24:1121-1134. [PMID: 38165817 PMCID: PMC10898416 DOI: 10.1039/d3lc00901g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/05/2023] [Indexed: 01/04/2024]
Abstract
Many different epithelial and endothelial barriers in the human body ensure the proper functioning of our organs by controlling which substances can pass from one side to another. In recent years, organs-on-chips (OoC) have become a popular tool to study such barriers in vitro. To assess the proper functioning of these barriers, we can measure the transendothelial electrical resistance (TEER) which indicates how easily ions can cross the cell layer when a current is applied between electrodes on either side. TEER measurements are a convenient method to quantify the barrier properties since it is a non-invasive and label-free technique. Direct integration of electrodes for TEER measurements into OoC allows for continuous monitoring of the barrier, and fixed integration of the electrodes improves the reproducibility of the measurements. In this review, we will give an overview of different electrode and channel designs that have been used to measure the TEER in OoC. After giving some insight into why biological barriers are an important field of study, we will explain the theory and practice behind measuring the TEER in in vitro systems. Next, this review gives an overview of the state of the art in the field of integrated electrodes for TEER measurements in OoC, with a special focus on alternative chip and electrode designs. Finally, we outline some of the remaining challenges and provide some suggestions on how to overcome these challenges.
Collapse
Affiliation(s)
- Muriel A Holzreuter
- BIOS Lab on a Chip group, MESA+ Institute for Nanotechnology, University of Twente, The Netherlands.
| | - Loes I Segerink
- BIOS Lab on a Chip group, MESA+ Institute for Nanotechnology, University of Twente, The Netherlands.
| |
Collapse
|
5
|
Saglam-Metiner P, Yildirim E, Dincer C, Basak O, Yesil-Celiktas O. Humanized brain organoids-on-chip integrated with sensors for screening neuronal activity and neurotoxicity. Mikrochim Acta 2024; 191:71. [PMID: 38168828 DOI: 10.1007/s00604-023-06165-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
The complex structure and function of the human central nervous system that develops from the neural tube made in vitro modeling quite challenging until the discovery of brain organoids. Human-induced pluripotent stem cells-derived brain organoids offer recapitulation of the features of early human neurodevelopment in vitro, including the generation, proliferation, and differentiation into mature neurons and micro-macroglial cells, as well as the complex interactions among these diverse cell types of the developing brain. Recent advancements in brain organoids, microfluidic systems, real-time sensing technologies, and their cutting-edge integrated use provide excellent models and tools for emulation of fundamental neurodevelopmental processes, the pathology of neurological disorders, personalized transplantation therapy, and high-throughput neurotoxicity testing by bridging the gap between two-dimensional models and the complex three-dimensional environment in vivo. In this review, we summarize how bioengineering approaches are applied to mitigate the limitations of brain organoids for biomedical and clinical research. We further provide an extensive overview and future perspectives of the humanized brain organoids-on-chip platforms with integrated sensors toward brain organoid intelligence and biocomputing studies. Such approaches might pave the way for increasing approvable clinical applications by solving their current limitations.
Collapse
Affiliation(s)
- Pelin Saglam-Metiner
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey
- Department of Translational Neuroscience, Division of Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Ender Yildirim
- Department of Mechanical Engineering, Middle East Technical University, Ankara, Turkey
- ODTÜ MEMS Center, Ankara, Turkey
| | - Can Dincer
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg, Germany
- FIT Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg, Germany
| | - Onur Basak
- Department of Translational Neuroscience, Division of Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Ozlem Yesil-Celiktas
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey.
| |
Collapse
|
6
|
Utagawa Y, Ino K, Hiramoto K, Iwase K, Nashimoto Y, Honma I, Shiku H. Vasculature-on-a-Chip with a Porous Membrane Electrode for In Situ Electrochemical Detection of Nitric Oxide Released from Endothelial Cells. Anal Chem 2023; 95:18158-18165. [PMID: 38014683 DOI: 10.1021/acs.analchem.3c03684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Vasculature-on-a-chip is a microfluidic cell culture device used for modeling vascular functions by culturing endothelial cells. Porous membranes are widely used to create cell culture environments. However, in situ real-time measurements of cellular metabolites in microchannels are challenging. In this study, a novel microfluidic device with a porous membrane electrode was developed for the in situ monitoring of nitric oxide (NO) released by endothelial cells in real time. In this system, a porous Au membrane electrode was placed directly beneath the cells for in situ and real-time measurements of NO, a biomarker of endothelial cells. First, the device was electrochemically characterized to construct a calibration plot for NO. Next, NO released by human umbilical vein endothelial cells under l-arginine stimulation was successfully quantified. Furthermore, the changes in NO release with culture time (in days) using the same sample were successfully recorded by exploiting minimally invasive measurements. This is the first report on the combination of a microfluidic device and porous membrane electrode for the electrochemical analysis of endothelial cells. This device will contribute to the development of organ-on-a-chip technology for real-time in situ cell analyses.
Collapse
Affiliation(s)
- Yoshinobu Utagawa
- Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Kosuke Ino
- Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Kaoru Hiramoto
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-0845, Japan
| | - Kazuyuki Iwase
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Yuji Nashimoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo 101-0062, Japan
| | - Itaru Honma
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Hitoshi Shiku
- Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
- Graduate School of Environmental Studies, Tohoku University, Sendai 980-8759, Japan
| |
Collapse
|
7
|
Kawakita S, Li S, Nguyen HT, Maity S, Haghniaz R, Bahari J, Yu N, Mandal K, Bandaru P, Mou L, Ermis M, Khalil E, Khosravi S, Peirsman A, Nasiri R, Adachi A, Nakayama A, Bell R, Zhu Y, Jucaud V, Dokmeci MR, Khademhosseini A. Rapid integration of screen-printed electrodes into thermoplastic organ-on-a-chip devices for real-time monitoring of trans-endothelial electrical resistance. Biomed Microdevices 2023; 25:37. [PMID: 37740819 DOI: 10.1007/s10544-023-00669-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2023] [Indexed: 09/25/2023]
Abstract
Trans-endothelial electrical resistance (TEER) is one of the most widely used indicators to quantify the barrier integrity of endothelial layers. Over the last decade, the integration of TEER sensors into organ-on-a-chip (OOC) platforms has gained increasing interest for its efficient and effective measurement of TEER in OOCs. To date, microfabricated electrodes or direct insertion of wires has been used to integrate TEER sensors into OOCs, with each method having advantages and disadvantages. In this study, we developed a TEER-SPE chip consisting of carbon-based screen-printed electrodes (SPEs) embedded in a poly(methyl methacrylate) (PMMA)-based multi-layered microfluidic device with a porous poly(ethylene terephthalate) membrane in-between. As proof of concept, we demonstrated the successful cultures of hCMEC/D3 cells and the formation of confluent monolayers in the TEER-SPE chip and obtained TEER measurements for 4 days. Additionally, the TEER-SPE chip could detect changes in the barrier integrity due to shear stress or an inflammatory cytokine (i.e., tumor necrosis factor-α). The novel approach enables a low-cost and facile fabrication of carbon-based SPEs on PMMA substrates and the subsequent assembly of PMMA layers for rapid prototyping. Being cost-effective and cleanroom-free, our method lowers the existing logistical and technical barriers presenting itself as another step forward to the broader adoption of OOCs with TEER measurement capability.
Collapse
Affiliation(s)
- Satoru Kawakita
- Terasaki Institute for Biomedical Innovation, Los Angeles, California, 90064, USA
| | - Shaopei Li
- Terasaki Institute for Biomedical Innovation, Los Angeles, California, 90064, USA
| | - Huu Tuan Nguyen
- Terasaki Institute for Biomedical Innovation, Los Angeles, California, 90064, USA
| | - Surjendu Maity
- Terasaki Institute for Biomedical Innovation, Los Angeles, California, 90064, USA
| | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation, Los Angeles, California, 90064, USA
| | - Jamal Bahari
- Terasaki Institute for Biomedical Innovation, Los Angeles, California, 90064, USA
| | - Ning Yu
- Department of Chemical and Environmental Engineering, University of California-Riverside, Riverside, California, 92521, USA
| | - Kalpana Mandal
- Terasaki Institute for Biomedical Innovation, Los Angeles, California, 90064, USA
| | - Praveen Bandaru
- Terasaki Institute for Biomedical Innovation, Los Angeles, California, 90064, USA
| | - Lei Mou
- Terasaki Institute for Biomedical Innovation, Los Angeles, California, 90064, USA
| | - Menekse Ermis
- Terasaki Institute for Biomedical Innovation, Los Angeles, California, 90064, USA
| | - Enam Khalil
- Terasaki Institute for Biomedical Innovation, Los Angeles, California, 90064, USA
- School of Pharmacy, The University of Jordan, Amman, 11942, Jordan
| | - Safoora Khosravi
- Terasaki Institute for Biomedical Innovation, Los Angeles, California, 90064, USA
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, V6T1Z4, Canada
| | - Arne Peirsman
- Terasaki Institute for Biomedical Innovation, Los Angeles, California, 90064, USA
- Department of Plastic, Aesthetic & Reconstructive Surgery and Laboratory of Experimental Cancer Research, Ghent University, 9000, Ghent, Belgium
| | - Rohollah Nasiri
- Terasaki Institute for Biomedical Innovation, Los Angeles, California, 90064, USA
- Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, KTH Royal Institute of Technology, 17165, Solna, Sweden
| | - Annie Adachi
- Terasaki Institute for Biomedical Innovation, Los Angeles, California, 90064, USA
- Cardiovascular Research Institute, University of California, San Francisco, California, 94158, USA
| | - Aya Nakayama
- Terasaki Institute for Biomedical Innovation, Los Angeles, California, 90064, USA
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125, USA
| | - Remy Bell
- Terasaki Institute for Biomedical Innovation, Los Angeles, California, 90064, USA
- Department of Biomedical Engineering, College of Engineering and Computing, University of South Carolina, Columbia, SC, 29208, USA
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, California, 90064, USA
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation, Los Angeles, California, 90064, USA.
| | - Mehmet Remzi Dokmeci
- Terasaki Institute for Biomedical Innovation, Los Angeles, California, 90064, USA.
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, California, 90064, USA.
| |
Collapse
|
8
|
Jang Y, Jung J, Oh J. Bio-Microfabrication of 2D and 3D Biomimetic Gut-on-a-Chip. MICROMACHINES 2023; 14:1736. [PMID: 37763899 PMCID: PMC10537549 DOI: 10.3390/mi14091736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/14/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023]
Abstract
Traditional goal of microfabrication was to limitedly construct nano- and micro-geometries on silicon or quartz wafers using various semiconductor manufacturing technologies, such as photolithography, soft lithography, etching, deposition, and so on. However, recent integration with biotechnologies has led to a wide expansion of microfabrication. In particular, many researchers studying pharmacology and pathology are very interested in producing in vitro models that mimic the actual intestine to study the effectiveness of new drug testing and interactions between organs. Various bio-microfabrication techniques have been developed while solving inherent problems when developing in vitro micromodels that mimic the real large intestine. This intensive review introduces various bio-microfabrication techniques that have been used, until recently, to realize two-dimensional and three-dimensional biomimetic experimental models. Regarding the topic of gut chips, two major review subtopics and two-dimensional and three-dimensional gut chips were employed, focusing on the membrane-based manufacturing process for two-dimensional gut chips and the scaffold-based manufacturing process for three-dimensional gut chips, respectively.
Collapse
Affiliation(s)
- Yeongseok Jang
- Department of Mechanical Design Engineering, Jeonbuk National University, Jeonju-si 54896, Jeollabuk-do, Republic of Korea;
| | - Jinmu Jung
- Department of Nano-Bio Mechanical System Engineering, Jeonbuk National University, Jeonju-si 54896, Jeollabuk-do, Republic of Korea
| | - Jonghyun Oh
- Department of Nano-Bio Mechanical System Engineering, Jeonbuk National University, Jeonju-si 54896, Jeollabuk-do, Republic of Korea
| |
Collapse
|
9
|
Zhao C, Wang Z, Tang X, Qin J, Jiang Z. Recent advances in sensor-integrated brain-on-a-chip devices for real-time brain monitoring. Colloids Surf B Biointerfaces 2023; 229:113431. [PMID: 37473652 DOI: 10.1016/j.colsurfb.2023.113431] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/18/2023] [Accepted: 06/26/2023] [Indexed: 07/22/2023]
Abstract
Brain science has remained in the global spotlight as an important field of scientific and technological discovery. Numerous in vitro and in vivo animal studies have been performed to understand the pathological processes involved in brain diseases and develop strategies for their diagnosis and treatment. However, owing to species differences between animals and humans, several drugs have shown high rates of treatment failure in clinical settings, hindering the development of diagnostic and treatment modalities for brain diseases. In this scenario, microfluidic brain-on-a-chip (BOC) devices, which allow the direct use of human tissues for experiments, have emerged as novel tools for effectively avoiding species differences and performing screening for new drugs. Although microfluidic BOC technology has achieved significant progress in recent years, monitoring slight changes in neurochemicals, neurotransmitters, and environmental states in the brain has remained challenging owing to the brain's complex environment. Hence, the integration of BOC with new sensors that have high sensitivity and high selectivity is urgently required for the real-time dynamic monitoring of BOC parameters. As sensor-based technologies for BOC have not been summarized, here, we review the principle, fabrication process, and application-based classification of sensor-integrated BOC, and then summarize the opportunities and challenges for their development. Generally, sensor-integrated BOC enables real-time monitoring and dynamic analysis, accurately measuring minute changes in the brain and thus enabling the realization of in vivo brain analysis and drug development.
Collapse
Affiliation(s)
- Chen Zhao
- School of Medical Technology, School of Life Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zihao Wang
- School of Medical Technology, School of Life Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoying Tang
- School of Medical Technology, School of Life Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Jieling Qin
- School of Medical Technology, School of Life Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China; Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Zhenqi Jiang
- School of Medical Technology, School of Life Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
10
|
Donkers JM, van der Vaart JI, van de Steeg E. Gut-on-a-Chip Research for Drug Development: Implications of Chip Design on Preclinical Oral Bioavailability or Intestinal Disease Studies. Biomimetics (Basel) 2023; 8:226. [PMID: 37366821 PMCID: PMC10296225 DOI: 10.3390/biomimetics8020226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
The gut plays a key role in drug absorption and metabolism of orally ingested drugs. Additionally, the characterization of intestinal disease processes is increasingly gaining more attention, as gut health is an important contributor to our overall health. The most recent innovation to study intestinal processes in vitro is the development of gut-on-a-chip (GOC) systems. Compared to conventional in vitro models, they offer more translational value, and many different GOC models have been presented over the past years. Herein, we reflect on the almost unlimited choices in designing and selecting a GOC for preclinical drug (or food) development research. Four components that largely influence the GOC design are highlighted, namely (1) the biological research questions, (2) chip fabrication and materials, (3) tissue engineering, and (4) the environmental and biochemical cues to add or measure in the GOC. Examples of GOC studies in the two major areas of preclinical intestinal research are presented: (1) intestinal absorption and metabolism to study the oral bioavailability of compounds, and (2) treatment-orientated research for intestinal diseases. The last section of this review presents an outlook on the limitations to overcome in order to accelerate preclinical GOC research.
Collapse
Affiliation(s)
- Joanne M. Donkers
- Department of Metabolic Health Research, TNO, Sylviusweg 71, 2333 BE Leiden, The Netherlands; (J.I.v.d.V.); (E.v.d.S.)
| | - Jamie I. van der Vaart
- Department of Metabolic Health Research, TNO, Sylviusweg 71, 2333 BE Leiden, The Netherlands; (J.I.v.d.V.); (E.v.d.S.)
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Evita van de Steeg
- Department of Metabolic Health Research, TNO, Sylviusweg 71, 2333 BE Leiden, The Netherlands; (J.I.v.d.V.); (E.v.d.S.)
| |
Collapse
|
11
|
von Schledorn L, Puertollano Martín D, Cleve N, Zöllner J, Roth D, Staar BO, Hegermann J, Ringshausen FC, Nawroth J, Martin U, Olmer R. Primary Ciliary Dyskinesia Patient-Specific hiPSC-Derived Airway Epithelium in Air-Liquid Interface Culture Recapitulates Disease Specific Phenotypes In Vitro. Cells 2023; 12:1467. [PMID: 37296588 PMCID: PMC10252476 DOI: 10.3390/cells12111467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Primary ciliary dyskinesia (PCD) is a rare heterogenic genetic disorder associated with perturbed biogenesis or function of motile cilia. Motile cilia dysfunction results in diminished mucociliary clearance (MCC) of pathogens in the respiratory tract and chronic airway inflammation and infections successively causing progressive lung damage. Current approaches to treat PCD are symptomatic, only, indicating an urgent need for curative therapeutic options. Here, we developed an in vitro model for PCD based on human induced pluripotent stem cell (hiPSC)-derived airway epithelium in Air-Liquid-Interface cultures. Applying transmission electron microscopy, immunofluorescence staining, ciliary beat frequency, and mucociliary transport measurements, we could demonstrate that ciliated respiratory epithelia cells derived from two PCD patient-specific hiPSC lines carrying mutations in DNAH5 and NME5, respectively, recapitulate the respective diseased phenotype on a molecular, structural and functional level.
Collapse
Affiliation(s)
- Laura von Schledorn
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, 30625 Hannover, Germany (U.M.)
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, 30625 Hannover, Germany
- REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - David Puertollano Martín
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, 30625 Hannover, Germany (U.M.)
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, 30625 Hannover, Germany
- REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Nicole Cleve
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, 30625 Hannover, Germany (U.M.)
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, 30625 Hannover, Germany
- REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Janina Zöllner
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, 30625 Hannover, Germany (U.M.)
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, 30625 Hannover, Germany
- REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Doris Roth
- Helmholtz Pioneer Campus and Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Ben Ole Staar
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, 30625 Hannover, Germany
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, 30625 Hannover, Germany
| | - Jan Hegermann
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, 30625 Hannover, Germany
- Research Core Unit Electron Microscopy, Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany
| | - Felix C. Ringshausen
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, 30625 Hannover, Germany
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, 30625 Hannover, Germany
- European Reference Network on Rare and Complex Respiratory Diseases (ERN-LUNG), 60590 Frankfurt, Germany
| | - Janna Nawroth
- Helmholtz Pioneer Campus and Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, 30625 Hannover, Germany (U.M.)
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, 30625 Hannover, Germany
- REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Ruth Olmer
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School, 30625 Hannover, Germany (U.M.)
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, 30625 Hannover, Germany
- REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
12
|
Nazari H, Shrestha J, Naei VY, Bazaz SR, Sabbagh M, Thiery JP, Warkiani ME. Advances in TEER measurements of biological barriers in microphysiological systems. Biosens Bioelectron 2023; 234:115355. [PMID: 37159988 DOI: 10.1016/j.bios.2023.115355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 03/10/2023] [Accepted: 04/25/2023] [Indexed: 05/11/2023]
Abstract
Biological barriers are multicellular structures that precisely regulate the transport of ions, biomolecules, drugs, cells, and other organisms. Transendothelial/epithelial electrical resistance (TEER) is a label-free method for predicting the properties of biological barriers. Understanding the mechanisms that control TEER significantly enhances our knowledge of the physiopathology of different diseases and aids in the development of new drugs. Measuring TEER values within microphysiological systems called organ-on-a-chip devices that simulate the microenvironment, architecture, and physiology of biological barriers in the body provides valuable insight into the behavior of barriers in response to different drugs and pathogens. These integrated systems should increase the accuracy, reproducibility, sensitivity, resolution, high throughput, speed, cost-effectiveness, and reliable predictability of TEER measurements. Implementing advanced micro and nanoscale manufacturing techniques, surface modification methods, biomaterials, biosensors, electronics, and stem cell biology is necessary for integrating TEER measuring systems with organ-on-chip technology. This review focuses on the applications, advantages, and future perspectives of integrating organ-on-a-chip technology with TEER measurement methods for studying biological barriers. After briefly reviewing the role of TEER in the physiology and pathology of barriers, standard techniques for measuring TEER, including Ohm's law and impedance spectroscopy, and commercially available devices are described. Furthermore, advances in TEER measurement are discussed in multiple barrier-on-a-chip system models representing different organs. Finally, we outline future trends in implementing advanced technologies to design and fabricate nanostructured electrodes, complicated microfluidic chips, and membranes for more advanced and accurate TEER measurements.
Collapse
Affiliation(s)
- Hojjatollah Nazari
- School of Biomedical Engineering, University of Technology Sydney, Sydney, 2007, New South Wales, Australia
| | - Jesus Shrestha
- School of Biomedical Engineering, University of Technology Sydney, Sydney, 2007, New South Wales, Australia
| | - Vahid Yaghoubi Naei
- School of Biomedical Engineering, University of Technology Sydney, Sydney, 2007, New South Wales, Australia
| | - Sajad Razavi Bazaz
- School of Biomedical Engineering, University of Technology Sydney, Sydney, 2007, New South Wales, Australia
| | - Milad Sabbagh
- School of Biomedical Engineering, University of Technology Sydney, Sydney, 2007, New South Wales, Australia
| | | | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, 2007, New South Wales, Australia; Institute of Molecular Medicine, Sechenov University, 119991, Moscow, Russia.
| |
Collapse
|
13
|
Mu X, Gerhard-Herman MD, Zhang YS. Building Blood Vessel Chips with Enhanced Physiological Relevance. ADVANCED MATERIALS TECHNOLOGIES 2023; 8:2201778. [PMID: 37693798 PMCID: PMC10489284 DOI: 10.1002/admt.202201778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Indexed: 09/12/2023]
Abstract
Blood vessel chips are bioengineered microdevices, consisting of biomaterials, human cells, and microstructures, which recapitulate essential vascular structure and physiology and allow a well-controlled microenvironment and spatial-temporal readouts. Blood vessel chips afford promising opportunities to understand molecular and cellular mechanisms underlying a range of vascular diseases. The physiological relevance is key to these blood vessel chips that rely on bioinspired strategies and bioengineering approaches to translate vascular physiology into artificial units. Here, we discuss several critical aspects of vascular physiology, including morphology, material composition, mechanical properties, flow dynamics, and mass transport, which provide essential guidelines and a valuable source of bioinspiration for the rational design of blood vessel chips. We also review state-of-art blood vessel chips that exhibit important physiological features of the vessel and reveal crucial insights into the biological processes and disease pathogenesis, including rare diseases, with notable implications for drug screening and clinical trials. We envision that the advances in biomaterials, biofabrication, and stem cells improve the physiological relevance of blood vessel chips, which, along with the close collaborations between clinicians and bioengineers, enable their widespread utility.
Collapse
Affiliation(s)
- Xuan Mu
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA 52242, USA
| | - Marie Denise Gerhard-Herman
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| |
Collapse
|
14
|
Sabaté Del Río J, Ro J, Yoon H, Park TE, Cho YK. Integrated technologies for continuous monitoring of organs-on-chips: Current challenges and potential solutions. Biosens Bioelectron 2023; 224:115057. [PMID: 36640548 DOI: 10.1016/j.bios.2022.115057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023]
Abstract
Organs-on-chips (OoCs) are biomimetic in vitro systems based on microfluidic cell cultures that recapitulate the in vivo physicochemical microenvironments and the physiologies and key functional units of specific human organs. These systems are versatile and can be customized to investigate organ-specific physiology, pathology, or pharmacology. They are more physiologically relevant than traditional two-dimensional cultures, can potentially replace the animal models or reduce the use of these models, and represent a unique opportunity for the development of personalized medicine when combined with human induced pluripotent stem cells. Continuous monitoring of important quality parameters of OoCs via a label-free, non-destructive, reliable, high-throughput, and multiplex method is critical for assessing the conditions of these systems and generating relevant analytical data; moreover, elaboration of quality predictive models is required for clinical trials of OoCs. Presently, these analytical data are obtained by manual or automatic sampling and analyzed using single-point, off-chip traditional methods. In this review, we describe recent efforts to integrate biosensing technologies into OoCs for monitoring the physiologies, functions, and physicochemical microenvironments of OoCs. Furthermore, we present potential alternative solutions to current challenges and future directions for the application of artificial intelligence in the development of OoCs and cyber-physical systems. These "smart" OoCs can learn and make autonomous decisions for process optimization, self-regulation, and data analysis.
Collapse
Affiliation(s)
- Jonathan Sabaté Del Río
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Jooyoung Ro
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea; Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Heejeong Yoon
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Tae-Eun Park
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| | - Yoon-Kyoung Cho
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea; Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| |
Collapse
|
15
|
Kincses A, Vigh JP, Petrovszki D, Valkai S, Kocsis AE, Walter FR, Lin HY, Jan JS, Deli MA, Dér A. The Use of Sensors in Blood-Brain Barrier-on-a-Chip Devices: Current Practice and Future Directions. BIOSENSORS 2023; 13:bios13030357. [PMID: 36979569 PMCID: PMC10046513 DOI: 10.3390/bios13030357] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 06/01/2023]
Abstract
The application of lab-on-a-chip technologies in in vitro cell culturing swiftly resulted in improved models of human organs compared to static culture insert-based ones. These chip devices provide controlled cell culture environments to mimic physiological functions and properties. Models of the blood-brain barrier (BBB) especially profited from this advanced technological approach. The BBB represents the tightest endothelial barrier within the vasculature with high electric resistance and low passive permeability, providing a controlled interface between the circulation and the brain. The multi-cell type dynamic BBB-on-chip models are in demand in several fields as alternatives to expensive animal studies or static culture inserts methods. Their combination with integrated biosensors provides real-time and noninvasive monitoring of the integrity of the BBB and of the presence and concentration of agents contributing to the physiological and metabolic functions and pathologies. In this review, we describe built-in sensors to characterize BBB models via quasi-direct current and electrical impedance measurements, as well as the different types of biosensors for the detection of metabolites, drugs, or toxic agents. We also give an outlook on the future of the field, with potential combinations of existing methods and possible improvements of current techniques.
Collapse
Affiliation(s)
- András Kincses
- Institute of Biophysics, Biological Research Centre, H-6726 Szeged, Hungary; (A.K.); (J.P.V.); (D.P.); (S.V.); (A.E.K.); (F.R.W.)
| | - Judit P. Vigh
- Institute of Biophysics, Biological Research Centre, H-6726 Szeged, Hungary; (A.K.); (J.P.V.); (D.P.); (S.V.); (A.E.K.); (F.R.W.)
- Doctoral School of Biology, University of Szeged, H-6720 Szeged, Hungary
| | - Dániel Petrovszki
- Institute of Biophysics, Biological Research Centre, H-6726 Szeged, Hungary; (A.K.); (J.P.V.); (D.P.); (S.V.); (A.E.K.); (F.R.W.)
- Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, H-6720 Szeged, Hungary
| | - Sándor Valkai
- Institute of Biophysics, Biological Research Centre, H-6726 Szeged, Hungary; (A.K.); (J.P.V.); (D.P.); (S.V.); (A.E.K.); (F.R.W.)
| | - Anna E. Kocsis
- Institute of Biophysics, Biological Research Centre, H-6726 Szeged, Hungary; (A.K.); (J.P.V.); (D.P.); (S.V.); (A.E.K.); (F.R.W.)
| | - Fruzsina R. Walter
- Institute of Biophysics, Biological Research Centre, H-6726 Szeged, Hungary; (A.K.); (J.P.V.); (D.P.); (S.V.); (A.E.K.); (F.R.W.)
| | - Hung-Yin Lin
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 81148, Taiwan;
| | - Jeng-Shiung Jan
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan;
| | - Mária A. Deli
- Institute of Biophysics, Biological Research Centre, H-6726 Szeged, Hungary; (A.K.); (J.P.V.); (D.P.); (S.V.); (A.E.K.); (F.R.W.)
| | - András Dér
- Institute of Biophysics, Biological Research Centre, H-6726 Szeged, Hungary; (A.K.); (J.P.V.); (D.P.); (S.V.); (A.E.K.); (F.R.W.)
| |
Collapse
|
16
|
Xiang X, Wang X, Shang Y, Ding Y. Microfluidic intestine-on-a-chip: Current progress and further perspectives of probiotic-foodborne pathogen interactions. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
17
|
Valiei A, Aminian-Dehkordi J, Mofrad MRK. Gut-on-a-chip models for dissecting the gut microbiology and physiology. APL Bioeng 2023; 7:011502. [PMID: 36875738 PMCID: PMC9977465 DOI: 10.1063/5.0126541] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/23/2023] [Indexed: 03/04/2023] Open
Abstract
Microfluidic technologies have been extensively investigated in recent years for developing organ-on-a-chip-devices as robust in vitro models aiming to recapitulate organ 3D topography and its physicochemical cues. Among these attempts, an important research front has focused on simulating the physiology of the gut, an organ with a distinct cellular composition featuring a plethora of microbial and human cells that mutually mediate critical body functions. This research has led to innovative approaches to model fluid flow, mechanical forces, and oxygen gradients, which are all important developmental cues of the gut physiological system. A myriad of studies has demonstrated that gut-on-a-chip models reinforce a prolonged coculture of microbiota and human cells with genotypic and phenotypic responses that closely mimic the in vivo data. Accordingly, the excellent organ mimicry offered by gut-on-a-chips has fueled numerous investigations on the clinical and industrial applications of these devices in recent years. In this review, we outline various gut-on-a-chip designs, particularly focusing on different configurations used to coculture the microbiome and various human intestinal cells. We then elaborate on different approaches that have been adopted to model key physiochemical stimuli and explore how these models have been beneficial to understanding gut pathophysiology and testing therapeutic interventions.
Collapse
Affiliation(s)
- Amin Valiei
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, California 94720, USA
| | - Javad Aminian-Dehkordi
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California, Berkeley, California 94720, USA
| | | |
Collapse
|
18
|
Morales IA, Boghdady CM, Campbell BE, Moraes C. Integrating mechanical sensor readouts into organ-on-a-chip platforms. Front Bioeng Biotechnol 2022; 10:1060895. [PMID: 36588933 PMCID: PMC9800895 DOI: 10.3389/fbioe.2022.1060895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Organs-on-a-chip have emerged as next-generation tissue engineered models to accurately capture realistic human tissue behaviour, thereby addressing many of the challenges associated with using animal models in research. Mechanical features of the culture environment have emerged as being critically important in designing organs-on-a-chip, as they play important roles in both stimulating realistic tissue formation and function, as well as capturing integrative elements of homeostasis, tissue function, and tissue degeneration in response to external insult and injury. Despite the demonstrated impact of incorporating mechanical cues in these models, strategies to measure these mechanical tissue features in microfluidically-compatible formats directly on-chip are relatively limited. In this review, we first describe general microfluidically-compatible Organs-on-a-chip sensing strategies, and categorize these advances based on the specific advantages of incorporating them on-chip. We then consider foundational and recent advances in mechanical analysis techniques spanning cellular to tissue length scales; and discuss their integration into Organs-on-a-chips for more effective drug screening, disease modeling, and characterization of biological dynamics.
Collapse
Affiliation(s)
| | | | | | - Christopher Moraes
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada,Department of Chemical Engineering, McGill University, Montreal, QC, Canada,Department of Biomedical Engineering, McGill University, Montreal, QC, Canada,*Correspondence: Christopher Moraes,
| |
Collapse
|
19
|
Kawakita S, Mandal K, Mou L, Mecwan MM, Zhu Y, Li S, Sharma S, Hernandez AL, Nguyen HT, Maity S, de Barros NR, Nakayama A, Bandaru P, Ahadian S, Kim HJ, Herculano RD, Holler E, Jucaud V, Dokmeci MR, Khademhosseini A. Organ-On-A-Chip Models of the Blood-Brain Barrier: Recent Advances and Future Prospects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201401. [PMID: 35978444 PMCID: PMC9529899 DOI: 10.1002/smll.202201401] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/22/2022] [Indexed: 05/09/2023]
Abstract
The human brain and central nervous system (CNS) present unique challenges in drug development for neurological diseases. One major obstacle is the blood-brain barrier (BBB), which hampers the effective delivery of therapeutic molecules into the brain while protecting it from blood-born neurotoxic substances and maintaining CNS homeostasis. For BBB research, traditional in vitro models rely upon Petri dishes or Transwell systems. However, these static models lack essential microenvironmental factors such as shear stress and proper cell-cell interactions. To this end, organ-on-a-chip (OoC) technology has emerged as a new in vitro modeling approach to better recapitulate the highly dynamic in vivo human brain microenvironment so-called the neural vascular unit (NVU). Such BBB-on-a-chip models have made substantial progress over the last decade, and concurrently there has been increasing interest in modeling various neurological diseases such as Alzheimer's disease and Parkinson's disease using OoC technology. In addition, with recent advances in other scientific technologies, several new opportunities to improve the BBB-on-a-chip platform via multidisciplinary approaches are available. In this review, an overview of the NVU and OoC technology is provided, recent progress and applications of BBB-on-a-chip for personalized medicine and drug discovery are discussed, and current challenges and future directions are delineated.
Collapse
Affiliation(s)
- Satoru Kawakita
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Kalpana Mandal
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Lei Mou
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
- Department of Clinical Laboratory, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, No. 63 Duobao Road, Liwan District, Guangzhou, Guangdong, 510150, P. R. China
| | | | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Shaopei Li
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Saurabh Sharma
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | | | - Huu Tuan Nguyen
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Surjendu Maity
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | | | - Aya Nakayama
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Praveen Bandaru
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Han-Jun Kim
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Rondinelli Donizetti Herculano
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
- Department of Bioprocess and Biotechnology Engineering, School of Pharmaceutical Sciences, São Paulo State University (Unesp), Araraquara, SP, 14801-902, Brazil
| | - Eggehard Holler
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | | | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| |
Collapse
|
20
|
Giampetruzzi L, Blasi L, Barca A, Sciurti E, Verri T, Casino F, Siciliano P, Francioso L. Advances in Trans-Epithelial Electrical Resistance (TEER) monitoring integration in an Intestinal Barrier-on-Chip (IBoC) platform with microbubbles-tolerant analytical method. SENSING AND BIO-SENSING RESEARCH 2022. [DOI: 10.1016/j.sbsr.2022.100512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
21
|
Jeon MS, Choi YY, Mo SJ, Ha JH, Lee YS, Lee HU, Park SD, Shim JJ, Lee JL, Chung BG. Contributions of the microbiome to intestinal inflammation in a gut-on-a-chip. NANO CONVERGENCE 2022; 9:8. [PMID: 35133522 PMCID: PMC8825925 DOI: 10.1186/s40580-022-00299-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 01/18/2022] [Indexed: 05/07/2023]
Abstract
The intestinal microbiome affects a number of biological functions of the organism. Although the animal model is a powerful tool to study the relationship between the host and microbe, a physiologically relevant in vitro human intestinal system has still unmet needs. Thus, the establishment of an in vitro living cell-based system of the intestine that can mimic the mechanical, structural, absorptive, transport and pathophysiological properties of the human intestinal environment along with its commensal bacterial strains can promote pharmaceutical development and potentially replace animal testing. In this paper, we present a microfluidic-based gut model which allows co-culture of human and microbial cells to mimic the gastrointestinal structure. The gut microenvironment is recreated by flowing fluid at a low rate (21 μL/h) over the microchannels. Under these conditions, we demonstrated the capability of gut-on-a-chip to recapitulate in vivo relevance epithelial cell differentiation including highly polarized epithelium, mucus secretion, and tight membrane integrity. Additionally, we observed that the co-culture of damaged epithelial layer with the probiotics resulted in a substantial responded recovery of barrier function without bacterial overgrowth in a gut-on-a-chip. Therefore, this gut-on-a-chip could promote explorations interaction with host between microbe and provide the insights into questions of fundamental research linking the intestinal microbiome to human health and disease.
Collapse
Affiliation(s)
- Min Seo Jeon
- Department of Biomedical Engineering, Sogang University, Seoul, Korea
| | - Yoon Young Choi
- Institute of Integrated Biotechnology, Sogang University, Seoul, Korea
| | | | - Jang Ho Ha
- Department of Mechanical Engineering, Sogang University, Seoul, Korea
| | - Young Seo Lee
- Department of Mechanical Engineering, Sogang University, Seoul, Korea
| | - Hee Uk Lee
- Department of Mechanical Engineering, Sogang University, Seoul, Korea
| | | | | | | | - Bong Geun Chung
- Department of Mechanical Engineering, Sogang University, Seoul, Korea.
| |
Collapse
|