1
|
Wang Y, Zou J, Zhao C, Jiang H, Song Y, Zhang L, Li X, Wang F, Fan L, Liu X, Wei M, Yang L. Building a Charge Transfer Bridge between g-C 3N 4 and Perovskite with Molecular Engineering to Achieve Efficient Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:13815-13827. [PMID: 38442230 DOI: 10.1021/acsami.3c19475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Effective defect passivation and efficient charge transfer within polycrystalline perovskite grains and corresponding boundaries are necessary to achieve highly efficient perovskite solar cells (PSCs). Herein, focusing on the boundary location of g-C3N4 during the crystallization modulation on perovskite, molecular engineering of 4-carboxyl-3-fluorophenylboronic acid (BF) on g-C3N4 was designed to obtain a novel additive named BFCN. With the help of the strong bonding ability of BF with both g-C3N4 and perovskite and favorable intramolecular charge transfer within BFCN, not only has the crystal quality of perovskite films been improved due to the effective defects passivation, but the charge transfer has also been greatly accelerated due to the formation of additional charge transfer channels on the grain boundaries. As a result, the champion BFCN-based PSCs achieve the highest photoelectric conversion efficiency (PCE) of 23.71% with good stability.
Collapse
Affiliation(s)
- Yingjie Wang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130013, China
- National Demonstration Center for Experimental Physics Education, Jilin Normal University, Siping 136000, China
| | - Jinhang Zou
- National Demonstration Center for Experimental Physics Education, Jilin Normal University, Siping 136000, China
| | - Congyu Zhao
- National Demonstration Center for Experimental Physics Education, Jilin Normal University, Siping 136000, China
| | - Haipeng Jiang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yuhuan Song
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130013, China
- National Demonstration Center for Experimental Physics Education, Jilin Normal University, Siping 136000, China
| | - Le Zhang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130013, China
- National Demonstration Center for Experimental Physics Education, Jilin Normal University, Siping 136000, China
| | - Xin Li
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130013, China
- National Demonstration Center for Experimental Physics Education, Jilin Normal University, Siping 136000, China
| | - Fengyou Wang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130013, China
- National Demonstration Center for Experimental Physics Education, Jilin Normal University, Siping 136000, China
| | - Lin Fan
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130013, China
- National Demonstration Center for Experimental Physics Education, Jilin Normal University, Siping 136000, China
| | - Xiaoyan Liu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130013, China
- National Demonstration Center for Experimental Physics Education, Jilin Normal University, Siping 136000, China
| | - Maobin Wei
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130013, China
- National Demonstration Center for Experimental Physics Education, Jilin Normal University, Siping 136000, China
| | - Lili Yang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130013, China
- National Demonstration Center for Experimental Physics Education, Jilin Normal University, Siping 136000, China
| |
Collapse
|
2
|
Guo Y, Zhao D, Yu M, Liu M, Zhang Y, Zheng Z. A simple strategy to obtain graphitic carbon nitride modified TiO 2layer for efficient perovskite solar cells. NANOTECHNOLOGY 2023; 35:075201. [PMID: 37972403 DOI: 10.1088/1361-6528/ad0d21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023]
Abstract
The power conversion efficiency (PCE) of perovskite solar cells (PSCs) can be improved through the concurrent strategies of enhancing charge transfer and passivating defects. Graphite carbon nitride (g-C3N4) has been demonstrated as a promising modifier for optimizing energy level alignment and reducing defect density in PSCs. However, its preparation process can be complicated. A simple one-step calcination approach was used in this study to prepare g-C3N4-modified TiO2via the incorporation of urea into the TiO2precursor. This modification simultaneously tunes the energy level alignment and passivates interface defects. The comprehensive research confirms that the addition of moderate amounts of g-C3N4to TiO2results in an ideal alignment of energy levels with perovskite, thereby enhancing the ability to separate and transfer charges. Additionally, the g-C3N4-modified perovskite films exhibit an increase in grain size and crystallinity, which reduces intrinsic defects density and extends charge recombination time. Therefore, the g-C3N4-modified PSC achieves a champion PCE of 20.00%, higher than that of the control PSC (17.15%). Our study provides a systematic comprehension of the interfacial engineering strategy and offers new insights into the development of high-performance PSCs.
Collapse
Affiliation(s)
- Yanru Guo
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, People's Republic of China
| | - Dandan Zhao
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, People's Republic of China
| | - Man Yu
- School of Materials Engineering, Xi'an Aeronautical University, Xi'an 710077, People's Republic of China
| | - Manying Liu
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, People's Republic of China
| | - Yange Zhang
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, People's Republic of China
| | - Zhi Zheng
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, People's Republic of China
| |
Collapse
|
3
|
Guan X, Li Z, Geng X, Lei Z, Karakoti A, Wu T, Kumar P, Yi J, Vinu A. Emerging Trends of Carbon-Based Quantum Dots: Nanoarchitectonics and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207181. [PMID: 36693792 DOI: 10.1002/smll.202207181] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Carbon-based quantum dots (QDs) have emerged as a fascinating class of advanced materials with a unique combination of optoelectronic, biocompatible, and catalytic characteristics, apt for a plethora of applications ranging from electronic to photoelectrochemical devices. Recent research works have established carbon-based QDs for those frontline applications through improvements in materials design, processing, and device stability. This review broadly presents the recent progress in the synthesis of carbon-based QDs, including carbon QDs, graphene QDs, graphitic carbon nitride QDs and their heterostructures, as well as their salient applications. The synthesis methods of carbon-based QDs are first introduced, followed by an extensive discussion of the dependence of the device performance on the intrinsic properties and nanostructures of carbon-based QDs, aiming to present the general strategies for device designing with optimal performance. Furthermore, diverse applications of carbon-based QDs are presented, with an emphasis on the relationship between band alignment, charge transfer, and performance improvement. Among the applications discussed in this review, much focus is given to photo and electrocatalytic, energy storage and conversion, and bioapplications, which pose a grand challenge for rational materials and device designs. Finally, a summary is presented, and existing challenges and future directions are elaborated.
Collapse
Affiliation(s)
- Xinwei Guan
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - Zhixuan Li
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Xun Geng
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Zhihao Lei
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Ajay Karakoti
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Tom Wu
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, 999077, P. R. China
| | - Prashant Kumar
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Jiabao Yi
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
4
|
Bahadur J, Ryu J, Pandey P, Cho S, Cho JS, Kang DW. In situ crystal reconstruction strategy-based highly efficient air-processed inorganic CsPbI 2Br perovskite photovoltaics for indoor, outdoor, and switching applications. NANOSCALE 2023; 15:3850-3863. [PMID: 36723205 DOI: 10.1039/d2nr06230e] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
All-inorganic CsPbI2Br (CPIB) perovskite has gained strong attention due to their favorable optoelectronic properties for photovoltaics. However, solution-processed CPIB films suffer from poor morphology due to the rapid crystallization process, which must be resolved for desirable photovoltaic performance. We introduced phenethylammonium iodide (PEAI) as an additive into a perovskite precursor that effectively controls the crystallization kinetics to construct the preferred quality α-CPIB film under ambient conditions. Various photophysical and structural characterization studies were performed to investigate the microstructural, morphological, and optoelectronic properties of the CPIB and PEAI-assisted perovskite films. We found that PEAI plays a vital role in decreasing pinholes, ensuring precise crystal growth, enhancing the crystallinity, improving the uniformity, and tailoring the film morphology by retarding the crystallization process, resulting in an improved device performance. The device based on the optimized PEAI additive (0.8 mg) achieved a respectably high power conversion efficiency (PCE) of 17.40% compared to the CPIB perovskite solar cell (PSC; 15.75%). Moreover, the CPIB + 0.8 mg PEAI PSC retained ∼87.25% of its original PCE, whereas the CPIB device retained ∼66.90% of the initial PCE after aging in a dry box at constant heating (85 °C) over 720 h, which revealed high thermal stability. Furthermore, the indoor photovoltaic performance under light-emitting diode (LED) lighting conditions (3200 K, 1000 lux) was investigated, and the CPIB + 0.8 mg PEAI PSC showed a promising PCE of 26.73% compared to the CPIB device (19.68%). In addition, we developed a switching function by employing the optimized PSC under LED lighting conditions, demonstrating the practical application of constructed indoor PSCs.
Collapse
Affiliation(s)
- Jitendra Bahadur
- Department of Energy Systems Engineering, Chung-Ang University, Seoul, 06974 Republic of Korea.
| | - Jun Ryu
- Department of Smart Cities, Chung-Ang University, Seoul, 06974 Republic of Korea
| | - Padmini Pandey
- Department of Energy Systems Engineering, Chung-Ang University, Seoul, 06974 Republic of Korea.
| | - SungWon Cho
- Department of Smart Cities, Chung-Ang University, Seoul, 06974 Republic of Korea
| | - Jung Sang Cho
- Department of Engineering Chemistry, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju-si, Chungbuk 361-763, Republic of Korea
| | - Dong-Won Kang
- Department of Energy Systems Engineering, Chung-Ang University, Seoul, 06974 Republic of Korea.
- Department of Smart Cities, Chung-Ang University, Seoul, 06974 Republic of Korea
| |
Collapse
|
5
|
Yang J, Ma Y, Yang J, Liu W, Li X. Recent Advances in g-C 3N 4 for the Application of Perovskite Solar Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3625. [PMID: 36296815 PMCID: PMC9610798 DOI: 10.3390/nano12203625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
In this study, graphitic carbon nitride (g-C3N4) was extensively utilized as an electron transport layer or interfacial buffer layer for simultaneously realizing photoelectric performance and stability improvement of perovskite solar cells (PSCs). This review covers the different g-C3N4 nanostructures used as additive and surface modifier layers applied to PSCs. In addition, the mechanism of reducing the defect state in PSCs, including improving the crystalline quality of perovskite, passivating the grain boundaries, and tuning the energy level alignment, were also highlighted in this review. Currently, the power conversion efficiency of PSCs based on modified g-C3N4 has been increased up to 22.13%, and its unique two-dimensional (2D) package structure has enhanced the stability of PSCs, which can remain stable in the dark for over 1500 h. Finally, the potential challenges and perspectives of g-C3N4 incorporated into perovskite-based optoelectronic devices are also included in this review.
Collapse
Affiliation(s)
- Jian Yang
- New Energy Technology Engineering Laboratory of Jiangsu Province, Institute of Advanced Materials, School of Science, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing 210023, China
- Department of Mathematics and Physics, Nanjing Institute of Technology, Nanjing 211167, China
| | - Yuhui Ma
- Department of Mathematics and Physics, Nanjing Institute of Technology, Nanjing 211167, China
| | - Jianping Yang
- New Energy Technology Engineering Laboratory of Jiangsu Province, Institute of Advanced Materials, School of Science, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing 210023, China
| | - Wei Liu
- New Energy Technology Engineering Laboratory of Jiangsu Province, Institute of Advanced Materials, School of Science, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing 210023, China
| | - Xing’ao Li
- New Energy Technology Engineering Laboratory of Jiangsu Province, Institute of Advanced Materials, School of Science, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing 210023, China
| |
Collapse
|
6
|
Recent progress of rare earth conversion material in perovskite solar cells: A mini review. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Bellani S, Bartolotta A, Agresti A, Calogero G, Grancini G, Di Carlo A, Kymakis E, Bonaccorso F. Solution-processed two-dimensional materials for next-generation photovoltaics. Chem Soc Rev 2021; 50:11870-11965. [PMID: 34494631 PMCID: PMC8559907 DOI: 10.1039/d1cs00106j] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Indexed: 12/12/2022]
Abstract
In the ever-increasing energy demand scenario, the development of novel photovoltaic (PV) technologies is considered to be one of the key solutions to fulfil the energy request. In this context, graphene and related two-dimensional (2D) materials (GRMs), including nonlayered 2D materials and 2D perovskites, as well as their hybrid systems, are emerging as promising candidates to drive innovation in PV technologies. The mechanical, thermal, and optoelectronic properties of GRMs can be exploited in different active components of solar cells to design next-generation devices. These components include front (transparent) and back conductive electrodes, charge transporting layers, and interconnecting/recombination layers, as well as photoactive layers. The production and processing of GRMs in the liquid phase, coupled with the ability to "on-demand" tune their optoelectronic properties exploiting wet-chemical functionalization, enable their effective integration in advanced PV devices through scalable, reliable, and inexpensive printing/coating processes. Herein, we review the progresses in the use of solution-processed 2D materials in organic solar cells, dye-sensitized solar cells, perovskite solar cells, quantum dot solar cells, and organic-inorganic hybrid solar cells, as well as in tandem systems. We first provide a brief introduction on the properties of 2D materials and their production methods by solution-processing routes. Then, we discuss the functionality of 2D materials for electrodes, photoactive layer components/additives, charge transporting layers, and interconnecting layers through figures of merit, which allow the performance of solar cells to be determined and compared with the state-of-the-art values. We finally outline the roadmap for the further exploitation of solution-processed 2D materials to boost the performance of PV devices.
Collapse
Affiliation(s)
- Sebastiano Bellani
- BeDimensional S.p.A., Via Lungotorrente Secca 30R, 16163 Genova, Italy.
- Istituto Italiano di Tecnologia, Graphene Labs, via Moreogo 30, 16163 Genova, Italy
| | - Antonino Bartolotta
- CNR-IPCF, Istituto per i Processi Chimico-Fisici, Via F. Stagno D'alcontres 37, 98158 Messina, Italy
| | - Antonio Agresti
- CHOSE - Centre for Hybrid and Organic Solar Energy, University of Rome "Tor Vergata", via del Politecnico 1, 00133 Roma, Italy
| | - Giuseppe Calogero
- CNR-IPCF, Istituto per i Processi Chimico-Fisici, Via F. Stagno D'alcontres 37, 98158 Messina, Italy
| | - Giulia Grancini
- University of Pavia and INSTM, Via Taramelli 16, 27100 Pavia, Italy
| | - Aldo Di Carlo
- CHOSE - Centre for Hybrid and Organic Solar Energy, University of Rome "Tor Vergata", via del Politecnico 1, 00133 Roma, Italy
- L.A.S.E. - Laboratory for Advanced Solar Energy, National University of Science and Technology "MISiS", 119049 Leninskiy Prosect 6, Moscow, Russia
| | - Emmanuel Kymakis
- Department of Electrical & Computer Engineering, Hellenic Mediterranean University, Estavromenos 71410 Heraklion, Crete, Greece
| | - Francesco Bonaccorso
- BeDimensional S.p.A., Via Lungotorrente Secca 30R, 16163 Genova, Italy.
- Istituto Italiano di Tecnologia, Graphene Labs, via Moreogo 30, 16163 Genova, Italy
| |
Collapse
|
8
|
Liang X, Ren X, Yang S, Liu L, Xiong W, Cheng L, Ma T, Liu A. Theoretical study of the influence of doped niobium on the electronic properties of CsPbBr 3. NANOSCALE ADVANCES 2021; 3:1910-1916. [PMID: 36133092 PMCID: PMC9419738 DOI: 10.1039/d0na01000f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 02/12/2021] [Indexed: 06/16/2023]
Abstract
In the family of inorganic perovskite solar cells (PSCs), CsPbBr3 has attracted widespread attention due to its excellent stability under high humidity and high temperature conditions. However, power conversion efficiency (PCE) improvement of CsPbBr3-based PSCs is markedly limited by the large optical absorption loss coming from the wide band gap and serious charge recombination at interfaces and/or within the perovskite film. In this work, using density functional theory calculations, we systemically studied the electronic properties of niobium (Nb)-doped CsPbBr3 with different concentration ratios. As a result, it is found that doped CsPbBr3 compounds are metallic at high Nb doping concentration but semiconducting at low Nb doping concentration. The calculated electronic density of states shows that the conduction band is predominantly constructed of doped Nb. These characteristics make them very suitable for solar cell and energy storage applications.
Collapse
Affiliation(s)
- Xingyou Liang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology China
| | - Xuefeng Ren
- School of Ocean Science and Technology, Dalian University of Technology Panjin 124221 China
| | - Shuzhang Yang
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology 2-4 Hibikino, Wakamatsu Kitakyushu Fukuoka 808-0196 Japan
| | - Lizhao Liu
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education Dalian 116024 China
| | - Wei Xiong
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Sciences and Technology, Dalian University of Technology Dalian 116024 China
| | - Li Cheng
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education Dalian 116024 China
| | - Tingli Ma
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology 2-4 Hibikino, Wakamatsu Kitakyushu Fukuoka 808-0196 Japan
- Department of Materials Science and Engineering, China Jiliang University Hangzhou 310018 China
| | - Anmin Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology China
| |
Collapse
|
9
|
Gkini K, Martinaiou I, Falaras P. A Review on Emerging Efficient and Stable Perovskite Solar Cells Based on g-C 3N 4 Nanostructures. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1679. [PMID: 33805485 PMCID: PMC8038080 DOI: 10.3390/ma14071679] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/22/2021] [Accepted: 03/27/2021] [Indexed: 11/16/2022]
Abstract
Perovskite solar cells (PSCs) have attracted great research interest in the scientific community due to their extraordinary optoelectronic properties and the fact that their power conversion efficiency (PCE) has increased rapidly in recent years, surpassing other 3rd generation photovoltaic (PV) technologies. Graphitic carbon nitride (g-C3N4) presents exceptional optical and electronic properties and its use was recently expanded in the field of PSCs. The addition of g-C3N4 in the perovskite absorber and/or the electron transport layer (ETL) resulted in PCEs exceeding 22%, mainly due to defects passivation, improved conductivity and crystallinity as well as low charge carriers' recombination rate within the device. Significant performance increase, including stability enhancement, was also achieved when g-C3N4 was applied at the PSC interfaces and the observed improvement was attributed to its wetting (hydrophobic/hydrophilic) nature and the fine tuning of the corresponding interface energetics. The current review summarizes the main innovations for the incorporation of graphitic carbon nitride in PSCs and highlights the significance and perspectives of the g-C3N4 approach for emerging highly efficient and robust PV devices.
Collapse
Affiliation(s)
- Konstantina Gkini
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos, Agia Paraskevi Attikis, 15341 Athens, Greece; (K.G.); (I.M.)
- Physics Department, School of Natural Sciences, University of Patras, 26504 Patras, Greece
| | - Ioanna Martinaiou
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos, Agia Paraskevi Attikis, 15341 Athens, Greece; (K.G.); (I.M.)
| | - Polycarpos Falaras
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos, Agia Paraskevi Attikis, 15341 Athens, Greece; (K.G.); (I.M.)
| |
Collapse
|