1
|
Wei Z, Zhang J, Liu W, Dong X, Cheng Y, Yan S, Dong X, Wang S, Tian M. Preparation and application of a pseudo-templated multi-monomer aflatoxins imprinted polymer. Mikrochim Acta 2024; 191:607. [PMID: 39289224 DOI: 10.1007/s00604-024-06677-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/30/2024] [Indexed: 09/19/2024]
Abstract
A functional material was developed with specific recognition properties for aflatoxins for pre-processing enrichment and separation in the detection of aflatoxins in Chinese herbal medicines. In the experiment, ethyl coumarin-3-carboxylate, which has a highly similar structure to the oxonaphthalene o-ketone of aflatoxin, was selected as a pseudo-template, zinc acrylate, neutral red derivative, and methacrylic acid, which have complementary functions, were selected as co-monomers to prepare a pseudo-template multifunctional monomer molecularly imprinted polymer (MIP). The MIP obtained under the optimal preparation conditions has a maximum adsorption capacity of 0.036 mg/mg and an imprinting factor of 3.67. The physical property evaluation of the polymers by Fourier infrared spectrometer, scanning electron microscopy, pore size analyzer, thermogravimetric analyzer, and diffuse reflectance spectroscopy showed that the MIP were successfully prepared and porous spherical-like particles were obtained. The synthesized polymer was used as a solid-phase extraction agent for the separation of aflatoxins from the extract of spina date seed. The linear range of the developed method was 10-1000 ng/mL, the limit of detection was 0.36 ng/mL, the limit of quantification was 1.19 ng/mL, and the recoveries of the extracts at the concentration level of 0.2 μg/mL were in the range 88.0-93.4%, with relative standard deviations (RSDs) of 1.97% (n). The results showed that the preparation of MIPs using ethyl coumarin-3-carboxylate as a template was simple, economical, and convenient. It is expected to become a promising functional material for the enrichment and separation aflatoxins from complex matrices.
Collapse
Affiliation(s)
- Zehui Wei
- College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy , Jiangsu Ocean University, Lianyungang, 222005, China
| | - Jun Zhang
- College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Wenxin Liu
- College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xue Dong
- College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yu Cheng
- College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Shuangxian Yan
- College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xinyi Dong
- College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Suhong Wang
- Clinical Laboratory, Liaocheng Veterans Hospital, Shandong Province, Liaocheng, 252000, China
| | - Mei Tian
- College of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China.
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy , Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
2
|
Du M, Xu Z, Xue Y, Li F, Bi J, Liu J, Wang S, Guo X, Zhang P, Yuan J. Application Prospect of Ion-Imprinted Polymers in Harmless Treatment of Heavy Metal Wastewater. Molecules 2024; 29:3160. [PMID: 38999112 PMCID: PMC11243660 DOI: 10.3390/molecules29133160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
With the rapid development of industry, the discharge of heavy metal-containing wastewater poses a significant threat to aquatic and terrestrial environments as well as human health. This paper provides a brief introduction to the basic principles of ion-imprinted polymer preparation and focuses on the interaction between template ions and functional monomers. We summarized the current research status on typical heavy metal ions, such as Cu(II), Ni(II), Cd(II), Hg(II), Pb(II), and Cr(VI), as well as metalloid metal ions of the As and Sb classes. Furthermore, it discusses recent advances in multi-ion-imprinted polymers. Finally, the paper addresses the challenges faced by ion-imprinted technology and explores its prospects for application.
Collapse
Affiliation(s)
- Mengzhen Du
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
| | - Zihao Xu
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
| | - Yingru Xue
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
| | - Fei Li
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300401, China
| | - Jingtao Bi
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300401, China
| | - Jie Liu
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300401, China
| | - Shizhao Wang
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300401, China
| | - Xiaofu Guo
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300401, China
| | - Panpan Zhang
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300401, China
| | - Junsheng Yuan
- Engineering Research Center of Seawater Utilization Technology of Ministry of Education, School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China; (M.D.); (Z.X.); (Y.X.); (J.B.); (J.L.); (S.W.); (X.G.); (P.Z.); (J.Y.)
- Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300401, China
| |
Collapse
|
3
|
Jalili V, Ghiasvand A, Ebrahimzadeh H, Vahabi M, Zendehdel R. Comparative study of molecularly imprinted polymer surface modified magnetic silica aerogel, zeolite Y, and MIL-101(Cr) for dispersive solid phase extraction of fuel ether oxygenates in drinking water. Food Chem 2024; 442:138455. [PMID: 38271905 DOI: 10.1016/j.foodchem.2024.138455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/12/2024] [Accepted: 01/14/2024] [Indexed: 01/27/2024]
Abstract
The study was performed in two phases. First, the polymerization was carried out upon three magnetized surfaces of silica aerogel, zeolite Y, and MIL-101(Cr). Then, optimal molecularly imprinted polymer and optimal extraction conditions were determined by the central composite design-response surface method. Subsequently, the validation parameters of dispersive solid-phase extraction based optimal molecularly imprinted polymer were examined for the extraction of the fuel ether oxygenates. The optimal conditions include the type of adsorbent: Zeolite-magnetic molecularly imprinted polymer, the amount of adsorbent: 40 mg, pH: 7.7, and absorption time: 24.8 min which was selected with desirability equal to 0.996. The calibration graphs were linear between 1 and 100 μg L-1, with good correlation coefficients. The limits of detection were found to be 0.64, 0. 4, and 0.34 μg L-1 for methyl tert-butyl ether, ethyl tert-butyl ether, and tert butyl formate, respectively. The method proved reliable for analyzing fuel ether oxygenates in drinking water.
Collapse
Affiliation(s)
- Vahid Jalili
- Student Research Committee, Department of Occupational Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Ghiasvand
- Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia; Department of Analytical Chemistry, Faculty of Chemistry, Lorestan University, Khoramabad, Iran
| | - Homeira Ebrahimzadeh
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran
| | - Masoomeh Vahabi
- Department of Occupational Health Engineering, School of health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Rezvan Zendehdel
- Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Vahabi M, Ebrahimzadeh H, Zendehdel R, Jalilian N, Khodakarim S. Selective Determination of n-Hexane and Methyl Ethyl Ketone (MEK) in Urine by Magnetic-Silica Aerogel-Based Molecularly Imprinted Polymers (MIPs) with Gas Chromatography – Flame Ionization Detection (GC-FID). ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2128364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Masoomeh Vahabi
- Department of Occupational Health and Safety Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Homeira Ebrahimzadeh
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran
| | - Rezvan Zendehdel
- Department of Occupational Health and Safety Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloofar Jalilian
- Department of Analytical Chemistry and Pollutants, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran
| | - Soheila Khodakarim
- Department of Biostatistics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Davari SD, Rabbani M, Basti AA, Koohi MK. Determination of furfurals in baby food samples after extraction by a novel functionalized magnetic porous carbon. RSC Adv 2022; 12:21181-21190. [PMID: 35975073 PMCID: PMC9344589 DOI: 10.1039/d2ra02481k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/18/2022] [Indexed: 11/21/2022] Open
Abstract
Herein, a novel polypyrrole-polyaniline functionalized magnetic porous carbon (MPC@PPy-PANI) composite material was fabricated and utilized for the separation/extraction of furfurals from baby food and dry milk samples. In this way, magnetite@silica nanoparticles were first synthesized, and then a magnetic metal–organic framework (MMIL-101(Fe)) was prepared. After that, the MMIL-101(Fe) was pyrolyzed in a neutral atmosphere to obtain MPC. Ultimately, the MPC was functionalized with a co-polymer of aniline–pyrrole via oxidation polymerization. The synthesis of MPC@PPy-PANI was confirmed with FT-IR spectroscopy, SEM, TEM, VSM, and XRD techniques. Furfural and hydroxymethyl furfural were selected as the model analytes, which were separated/quantified on an HPLC-UV instrument. The LODs, LOQs, and linear dynamic ranges (LDRs) were in the range of 0.3–0.7 μg kg−1, 1.0–2.5 μg kg−1, and 1.0–600 μg kg−1, respectively. Repeatability of the method was studied as an RSD parameter, and was located in the range of 5.5–6.8% (within-day, n = 5) and 8.2–9.4% (between-day, n = 3 days). The applicability of the proposed method was established by analyzing several baby food and dry milk samples. The relative recovery (RR%) and repeatability were located in the range of 86–111% and 3.3–10.1%, respectively, showing excellent accuracy and precision of the method. Herein, a novel polypyrrole-polyaniline functionalized magnetic porous carbon (MPC@PPy- PANI) composite material was fabricated and utilized for the separation/extraction of furfurals from baby food and dry milk samples.![]()
Collapse
Affiliation(s)
- Seyedeh Dorsa Davari
- Department of Food Science and Technology, Islamic Azad University Tehran North Branch Tehran Iran
| | - Mohammad Rabbani
- Department of Marine Chemistry, Faculty of Marine Science and Technology, Islamic Azad University North Tehran Branch Tehran Iran +98 22173060
| | | | - Mohammad Kazem Koohi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran Tehran Iran
| |
Collapse
|
6
|
Abstract
The review describes the development of batch solid phase extraction procedures based on dispersive (micro)solid phase extraction with molecularly imprinted polymers (MIPs) and magnetic MIPs (MMIPs). Advantages and disadvantages of the various MIPs for dispersive solid phase extraction and dispersive (micro)solid phase extraction are discussed. In addition, an effort has also been made to condense the information regarding MMIPs since there are a great variety of supports (magnetite and magnetite composites with carbon nanotubes, graphene oxide, or organic metal framework) and magnetite surface functionalization mechanisms for enhancing MIP synthesis, including reversible addition-fragmentation chain-transfer (RAFT) polymerization. Finally, drawbacks and future prospects for improving molecularly imprinted (micro)solid phase extraction (MIMSPE) are also appraised.
Collapse
|