1
|
Shahsavari S, Rad MB, Hajiaghajani A, Rostami M, Hakimian F, Jafarzadeh S, Hasany M, Collingwood JF, Aliakbari F, Fouladiha H, Bardania H, Otzen DE, Morshedi D. Magnetoresponsive liposomes applications in nanomedicine: A comprehensive review. Biomed Pharmacother 2024; 181:117665. [PMID: 39541790 DOI: 10.1016/j.biopha.2024.117665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/03/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
Safe and effective cancer therapy requires a suitable nanocarrier that can target particular sites, such as cancer cells, in a selective manner. With the tremendous growth in nanotechnology, liposomes, among various competing nanocarriers, have shown promising advances in cancer therapy. Magnetic nanoparticles and metal ions are wide-reaching candidates for conferring magnetic properties and for incorporation into liposomes. Combining liposomes with magnetic structures enables construction of magnetoresponsive liposomes, allowing stimuli-responsiveness to an alternating magnetic field, magnetic targeting, and tracking by magnetic resonance imaging, which could all occur in parallel. This review presents a comprehensive analysis of the practical advances and novel aspects of design, synthesis and engineering magnetoresponsive liposomes, emphasizing their diverse properties for various applications. Our work explores the innovative uses of these structures, extending beyond drug delivery to include smart contrast agents, cell labeling, biosensing, separation, and filtering. By comparing new findings with earlier studies, we showcase significant improvements in efficiency and uncover new potentials, setting a new benchmark for future research in the field of magnetoresponsive liposomes.
Collapse
Affiliation(s)
- Shayan Shahsavari
- Iran Nanotechnology Innovation Council, Nanoclub Elites Association, Tehran, Iran
| | - Mohammad Behnam Rad
- Department of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, P.O. Box 13145-1384, Tehran, Iran
| | - Amirhossein Hajiaghajani
- School of Electrical Engineering, Iran University of Science and Technology, Tehran 1684613114, Iran
| | | | - Fatemeh Hakimian
- Department of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, P.O. Box 13145-1384, Tehran, Iran
| | - Sina Jafarzadeh
- Department of Energy Conversion and Storage, Technical University of Denmark, Anker Engelunds Vej, Lyngby 2800 Kgs, Denmark
| | - Masoud Hasany
- Department of Civil and Mechanical Engineering, Technical University of Denmark, Lyngby 2800 Kgs, Denmark
| | | | - Farhang Aliakbari
- National Institute of Genetic Engineering and Biotechnology, Shahrak-e Pajoohesh, km 15 Tehran - Karaj Highway, P.O.Box:14965/161, Tehran, Iran; Molecular Medicine Research Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Hamideh Fouladiha
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Hassan Bardania
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Daniel E Otzen
- Interdisciplinary Nanoscience Centre (iNANO) and Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 14, Aarhus C DK-8000, Denmark.
| | - Dina Morshedi
- National Institute of Genetic Engineering and Biotechnology, Shahrak-e Pajoohesh, km 15 Tehran - Karaj Highway, P.O.Box:14965/161, Tehran, Iran.
| |
Collapse
|
2
|
Shafiei FS, Abroun S. Recent advancements in nanomedicine as a revolutionary approach to treating multiple myeloma. Life Sci 2024; 356:122989. [PMID: 39197575 DOI: 10.1016/j.lfs.2024.122989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024]
Abstract
Multiple myeloma, the second most common hematological malignancy, remains incurable with a 5-year survival rate of approximately 50 % and recurrence rates near 100 %, despite significant attempts to develop effective medicines. Therefore, there is a pressing demand in the medical field for innovative and more efficient treatments for MM. Currently, the standard approach for treating MM involves administering high-dose chemotherapy, which frequently correlates with improved results; however, one major limiting factor is the significant side effects of these medications. Furthermore, the strategies used to deliver medications to tumors limit their efficacy, whether by rapid clearance from circulation or an insufficient concentration in cancer cells. Cancer treatment has shifted from cytotoxic, nonspecific chemotherapy regimens to molecularly targeted, rationally developed drugs with improved efficacy and fewer side effects. Nanomedicines may provide an effective alternative way to avoid these limits by delivering drugs into the complicated bone marrow microenvironment and efficiently reaching myeloma cells. Putting drugs into nanoparticles can make their pharmacokinetic and pharmacodynamic profiles much better. This can increase the drug's effectiveness in tumors, extend its time in circulation in the blood, and lower its off-target toxicity. In this review, we introduce several criteria for the rational design of nanomedicine to achieve the best anti-tumoral therapeutic results. Next, we discuss recent advances in nanomedicine for MM therapy.
Collapse
Affiliation(s)
- Fatemeh Sadat Shafiei
- Department Medical Laboratory Sciences, School of Paramedical Sciences, Zanjan University of Medical Sciences, Zanjan, Iran; Department of Biotechnology, Iranian Research Organization for Science & Technology (IROST), Tehran, Iran
| | - Saeid Abroun
- Department of Hematology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
3
|
Wu X, Li Y, Wen M, Xie Y, Zeng K, Liu YN, Chen W, Zhao Y. Nanocatalysts for modulating antitumor immunity: fabrication, mechanisms and applications. Chem Soc Rev 2024; 53:2643-2692. [PMID: 38314836 DOI: 10.1039/d3cs00673e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Immunotherapy harnesses the inherent immune system in the body to generate systemic antitumor immunity, offering a promising modality for defending against cancer. However, tumor immunosuppression and evasion seriously restrict the immune response rates in clinical settings. Catalytic nanomedicines can transform tumoral substances/metabolites into therapeutic products in situ, offering unique advantages in antitumor immunotherapy. Through catalytic reactions, both tumor eradication and immune regulation can be simultaneously achieved, favoring the development of systemic antitumor immunity. In recent years, with advancements in catalytic chemistry and nanotechnology, catalytic nanomedicines based on nanozymes, photocatalysts, sonocatalysts, Fenton catalysts, electrocatalysts, piezocatalysts, thermocatalysts and radiocatalysts have been rapidly developed with vast applications in cancer immunotherapy. This review provides an introduction to the fabrication of catalytic nanomedicines with an emphasis on their structures and engineering strategies. Furthermore, the catalytic substrates and state-of-the-art applications of nanocatalysts in cancer immunotherapy have also been outlined and discussed. The relationships between nanostructures and immune regulating performance of catalytic nanomedicines are highlighted to provide a deep understanding of their working mechanisms in the tumor microenvironment. Finally, the challenges and development trends are revealed, aiming to provide new insights for the future development of nanocatalysts in catalytic immunotherapy.
Collapse
Affiliation(s)
- Xianbo Wu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Yuqing Li
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Mei Wen
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Yongting Xie
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Ke Zeng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - You-Nian Liu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Wansong Chen
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
| |
Collapse
|
4
|
Nunes AMA, de Oliveira Alves Júnior J, Haydée VS, Júnior JAO. Intelligent Systems based on Cyclodextrins for the Treatment of Breast Cancer. Curr Pharm Des 2024; 30:2345-2363. [PMID: 38967070 DOI: 10.2174/0113816128291108240613094515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/15/2024] [Accepted: 05/03/2024] [Indexed: 07/06/2024]
Abstract
The incidence of breast cancer has been increasing over the last four decades, although the mortality rate has decreased. Endocrine therapy and chemotherapy are the most used options for cancer treatment but several obstacles are still attributed to these therapies. Smart materials, such as nanocarriers for targeting, delivery and release of active ingredients, sensitive to intrinsic-stimuli (pH-responsive, redox-responsive, enzyme- responsive, and thermo-responsive) and extrinsic-stimuli (ultrasound-responsive, magnetic-responsive, light-responsive) have been studied as a novel strategy in breast cancer therapy. Cyclodextrins (CDs) are used in the design of these stimuli-responsive drug carrier and delivery systems, either through inclusion complexes with hydrophobic molecules or covalent bonds with large structures to generate new materials. The present work aims to gather and integrate recent data from in vitro and in vivo preclinical studies of CD-based stimuli- responsive systems to contribute to the research in treating breast cancer. All drug carriers showed high in vitro release rates in the presence of a stimulus. The stimuli-responsive nanoplatforms presented biocompatibility and satisfactory results of IC50, inhibition of cell viability and antitumor activity against several breast cancer cell lines. Additionally, these systems led to a significant reduction in drug dosages, which encouraged possible clinical studies for better alternatives to traditional antitumor therapies.
Collapse
Affiliation(s)
- Adenia Mirela Alves Nunes
- Center for Biological and Health Sciences, State University of Paraíba, R. Baraúnas, 351 - Universitário, Campina Grande - PB, 58429-500, Paraíba, Brazil
| | - José de Oliveira Alves Júnior
- Center for Biological and Health Sciences, State University of Paraíba, R. Baraúnas, 351 - Universitário, Campina Grande - PB, 58429-500, Paraíba, Brazil
| | - Valéria Springer Haydée
- Department of Chemistry, National University of the South, INQUISUR (UNS-CONICET), Av. Alem 1253, Bahía Blanca, Argentina
| | - João Augusto Oshiro Júnior
- Center for Biological and Health Sciences, State University of Paraíba, R. Baraúnas, 351 - Universitário, Campina Grande - PB, 58429-500, Paraíba, Brazil
| |
Collapse
|
5
|
Xie R, Wang Y, Tong F, Yang W, Lei T, Du Y, Wang X, Yang Z, Gong T, Shevtsov M, Gao H. Hsp70-Targeting and Size-Tunable Nanoparticles Combine with PD-1 Checkpoint Blockade to Treat Glioma. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300570. [PMID: 37222118 DOI: 10.1002/smll.202300570] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/13/2023] [Indexed: 05/25/2023]
Abstract
Invasive glioma usually disrupts the integrity of the blood-brain barrier (BBB), making the delivery of nanodrugs across the BBB possible, but sufficient targeting ability is still avidly needed to improve drug accumulation in glioma. Membrane-bound heat shock protein 70 (Hsp70) is expressed on the membrane of glioma cells rather than adjacent normal cells, therefore it can serve as a specific glioma target. Meanwhile, prolonging the retention in tumors is important for active-targeting nanoparticles to overcome receptor-binding barriers. Herein, the Hsp70-targeting and acid-triggered self-assembled gold nanoparticles (D-A-DA/TPP) are proposed to realize selective delivery of doxorubicin (DOX) to glioma. In the weakly acidic glioma matrix, D-A-DA/TPP formed aggregates to prolong retention, improve receptor-binding efficiency and facilitate acid-responsive DOX release. DOX accumulation in glioma induced immunogenic cell death (ICD) to promote antigen presentation. Meanwhile, combination with the PD-1 checkpoint blockade further activate T cells and provokes robust anti-tumor immunity. The results showed that D-A-DA/TPP can induce more glioma apoptosis. Furthermore, in vivo studies indicated D-A-DA/TPP plus PD-1 checkpoint blockade significantly improved median survival time. This study offeres a potential nanocarrier combining size-tunable strategy with active targeting ability to increase drug enrichment in glioma and synergizes with PD-1 checkpoint blockade to achieve chemo-immunotherapy.
Collapse
Affiliation(s)
- Rou Xie
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, 610064, Chengdu, China
| | - Yufan Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, 610064, Chengdu, China
| | - Fan Tong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, 610064, Chengdu, China
| | - Wenqin Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, 610064, Chengdu, China
| | - Ting Lei
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, 610064, Chengdu, China
| | - Yufan Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, 610064, Chengdu, China
| | - Xiaorong Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, 610064, Chengdu, China
| | - Zixiao Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, 610064, Chengdu, China
| | - Tao Gong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, 610064, Chengdu, China
| | - Maxim Shevtsov
- Institute of Cytology of the Russian Academy of Sciences (RAS), 194064, St. Petersburg, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, 197341, Saint Petersburg, Russia
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, 610064, Chengdu, China
| |
Collapse
|
6
|
Navale GR, Singh S, Ghosh K. NO donors as the wonder molecules with therapeutic potential: Recent trends and future perspectives. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
7
|
Mishra S, Bhatt T, Kumar H, Jain R, Shilpi S, Jain V. Nanoconstructs for theranostic application in cancer: Challenges and strategies to enhance the delivery. Front Pharmacol 2023; 14:1101320. [PMID: 37007005 PMCID: PMC10050349 DOI: 10.3389/fphar.2023.1101320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
Nanoconstructs are made up of nanoparticles and ligands, which can deliver the loaded cargo at the desired site of action. Various nanoparticulate platforms have been utilized for the preparation of nanoconstructs, which may serve both diagnostic as well as therapeutic purposes. Nanoconstructs are mostly used to overcome the limitations of cancer therapies, such as toxicity, nonspecific distribution of the drug, and uncontrolled release rate. The strategies employed during the design of nanoconstructs help improve the efficiency and specificity of loaded theranostic agents and make them a successful approach for cancer therapy. Nanoconstructs are designed with a sole purpose of targeting the requisite site, overcoming the barriers which hinders its right placement for desired benefit. Therefore, instead of classifying modes for delivery of nanoconstructs as actively or passively targeted systems, they are suitably classified as autonomous and nonautonomous types. At large, nanoconstructs offer numerous benefits, however they suffer from multiple challenges, too. Hence, to overcome such challenges computational modelling methods and artificial intelligence/machine learning processes are being explored. The current review provides an overview on attributes and applications offered by nanoconstructs as theranostic agent in cancer.
Collapse
Affiliation(s)
- Shivani Mishra
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, India
| | - Tanvi Bhatt
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, India
| | - Hitesh Kumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, India
| | - Rupshee Jain
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, India
| | - Satish Shilpi
- Department of Pharmaceutics, School of Pharmaceutical and Populations Health Informatics, DIT University, Dehradun, India
| | - Vikas Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, India
- *Correspondence: Vikas Jain,
| |
Collapse
|
8
|
Remmers RCPA, Neumann K. Reaching new lights: a review on photo-controlled nanomedicines and their in vivo evaluation. Biomater Sci 2023; 11:1607-1624. [PMID: 36727448 DOI: 10.1039/d2bm01621d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The selective and efficient delivery of bioactive molecules to sites of interest remains a formidable challenge in medicine. In recent years, it has been shown that stimuli-responsive drug delivery systems display several advantages over traditional drug administration such as an improved pharmacokinetic profile and the desirable ability to gain control over release. Light emerged as one of the most powerful stimuli due to its high biocompatibility, spatio-temporal control, and non-invasiveness. On the road to clinical translation, various chemical systems of high complexity have been reported with the aim to improve efficacy, safety, and versatility of drug delivery under complex biological conditions. For future research on the chemical design of such photo-controlled nanomedicines, it is essential to gain an understanding of their in vivo translation and efficiency. Here, we discuss photo-controlled nanomedicines that have been evaluated in vivo and provide an overview of the state-of-the-art that should guide future research design.
Collapse
Affiliation(s)
- Rik C P A Remmers
- Institute for Molecules and Materials, Radboud University, Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands.
| | - Kevin Neumann
- Institute for Molecules and Materials, Radboud University, Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands.
| |
Collapse
|
9
|
Wei W, Zhang Y, Lin Z, Wu X, Fan W, Chen J. Advances, challenge and prospects in cell-mediated nanodrug delivery for cancer therapy: a review. J Drug Target 2023; 31:1-13. [PMID: 35857432 DOI: 10.1080/1061186x.2022.2104299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nanomedicine offers considerable opportunities to improve drugability and reduce toxicity for tumour therapy. However, the application of nanomedicine has achieved little success in clinical trials due to multiple physiological barriers to drug delivery. Circulating cells are expected to improve the physical distribution of drugs and enhance the therapeutic effect by overcoming various biological barriers in collaboration with nano-drug delivery systems owing to excellent biocompatibility, low immunogenicity and a long-circulation time and strong binding specificity. Nonetheless, we have noticed some limitations in implementing tthe strategy. In this article, we intend to introduce the latest progress in research and application of circulating cell-mediated nano-drug delivery systems, describe the main cell-related drug delivery modes, sum up the relevant points of the transport systems in the process of loading, transport and release, and lastly discuss the advantages, challenges and future development trends in cell-mediated nano-drug delivery.
Collapse
Affiliation(s)
- Wuhao Wei
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine Fuzhou, Fujian, China
| | | | | | - Xin Wu
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine Fuzhou, Fujian, China.,Shanghai Wei Er Lab, Shanghai, China
| | - Wei Fan
- Seventh People's Hospital of Shanghai University of Traditional Chinese, Shanghai, China
| | - Jianming Chen
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine Fuzhou, Fujian, China
| |
Collapse
|
10
|
Dinakar YH, Karole A, Parvez S, Jain V, Mudavath SL. Organ-restricted delivery through stimuli-responsive nanocarriers for lung cancer therapy. Life Sci 2022; 310:121133. [DOI: 10.1016/j.lfs.2022.121133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022]
|
11
|
Muthwill MS, Kong P, Dinu IA, Necula D, John C, Palivan CG. Tailoring Polymer-Based Nanoassemblies for Stimuli-Responsive Theranostic Applications. Macromol Biosci 2022; 22:e2200270. [PMID: 36100461 DOI: 10.1002/mabi.202200270] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/28/2022] [Indexed: 12/25/2022]
Abstract
Polymer assemblies on the nanoscale represent a powerful toolbox for the design of theranostic systems when combined with both therapeutic compounds and diagnostic reporting ones. Here, recent advances in the design of theranostic systems for various diseases, containing-in their architecture-either polymers or polymer assemblies as one of the building blocks are presented. This review encompasses the general principles of polymer self-assembly, from the production of adequate copolymers up to supramolecular assemblies with theranostic functionality. Such polymer nanoassemblies can be further tailored through the incorporation of inorganic nanoparticles to endow them with multifunctional therapeutic and/or diagnostic features. Systems that change their architecture or properties in the presence of stimuli are selected, as responsivity to changes in the environment is a key factor for enhancing efficiency. Such theranostic systems are based on the intrinsic properties of copolymers or one of the other components. In addition, systems with a more complex architecture, such as multicompartments, are presented. Selected systems indicate the advantages of such theranostic approaches and provide a basis for further developments in the field.
Collapse
Affiliation(s)
- Moritz S Muthwill
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, 4058, Switzerland.,NCCR-Molecular Systems Engineering, Mattenstrasse 24a, BPR 1095, Basel, 4058, Switzerland
| | - Phally Kong
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, 4058, Switzerland
| | - Ionel Adrian Dinu
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, 4058, Switzerland
| | - Danut Necula
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, 4058, Switzerland
| | - Christoph John
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, 4058, Switzerland
| | - Cornelia G Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, 4058, Switzerland.,NCCR-Molecular Systems Engineering, Mattenstrasse 24a, BPR 1095, Basel, 4058, Switzerland
| |
Collapse
|
12
|
Rabiee N, Ghadiri AM, Alinezhad V, Sedaghat A, Ahmadi S, Fatahi Y, Makvandi P, Saeb MR, Bagherzadeh M, Asadnia M, Varma RS, Lima EC. Synthesis of green benzamide-decorated UiO-66-NH 2 for biomedical applications. CHEMOSPHERE 2022; 299:134359. [PMID: 35318020 DOI: 10.1016/j.chemosphere.2022.134359] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/01/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Metal-organic frameworks (MOFs) biocompatible systems can host enzymes/bacteria/viruses. Herein we synthesized a series of fatty acid amide hydrolase (FAAH)-decorated UiO-66-NH2 based on Citrus tangerine leaf extract for drug delivery and biosensor applications. Five chemically manipulated FAAH-like benzamides were localized on the UiO-66-NH2 surface with physical interactions. Comprehensive cellular and molecular analyses were conducted on HEK-293, HeLa, HepG2, PC12, MCF-7, and HT-29 cell lines (cytotoxicity assessment after 24 and 48 h). MTT results proved above 95 and 50% relative cell viability in the absence and presence of the drug, respectively. A complete targeted drug-releasing capability of nanocarriers was demonstrated after capping with leaf extract from Citrus tangerine, with a stimuli-responsive effect in acidic media. Targeted delivery was complete to the nucleus and cytoplasm of HT-29 cell, but merely to the cytoplasm of HeLa cell lines. Nanocarrier could be targeted for drug delivery to the cytoplasm of the HeLa cell line and to both the nucleus and cytoplasm of HT-29 cell lines. MOF-based nanocarriers proved authentic in vivo towards kidney and liver tissues with targeted cancerous cells efficiently. Besides, FAAH-like molecules revealed optical biosensor potential with high selectivity (even ˂5 nM LOD) towards ssDNA, sgRNA, and Anti-cas9 proteins.
Collapse
Affiliation(s)
- Navid Rabiee
- Department of Physics, Sharif University of Technology, Tehran, P.O. Box 11155-9161, Iran; School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia.
| | | | - Vida Alinezhad
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Anna Sedaghat
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepideh Ahmadi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 14155-6451, Iran; Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 14155-6451, Iran
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials Interfaces, Viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12 80-233, Gdańsk, Poland
| | | | - Mohsen Asadnia
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Rajender S Varma
- Regional Center of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Eder C Lima
- Institute of Chemistry, Federal University of Rio Grande Do Sul (UFRGS), Av. Bento Goncalves 9500, Postal Box, 15003, ZIP, 91501-970, Brazil.
| |
Collapse
|
13
|
Cong X, Chen J, Xu R. Recent Progress in Bio-Responsive Drug Delivery Systems for Tumor Therapy. Front Bioeng Biotechnol 2022; 10:916952. [PMID: 35845404 PMCID: PMC9277442 DOI: 10.3389/fbioe.2022.916952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 06/09/2022] [Indexed: 12/24/2022] Open
Abstract
Spatially- and/or temporally-controlled drug release has always been the pursuit of drug delivery systems (DDSs) to achieve the ideal therapeutic effect. The abnormal pathophysiological characteristics of the tumor microenvironment, including acidosis, overexpression of special enzymes, hypoxia, and high levels of ROS, GSH, and ATP, offer the possibility for the design of stimulus-responsive DDSs for controlled drug release to realize more efficient drug delivery and anti-tumor activity. With the help of these stimulus signals, responsive DDSs can realize controlled drug release more precisely within the local tumor site and decrease the injected dose and systemic toxicity. This review first describes the major pathophysiological characteristics of the tumor microenvironment, and highlights the recent cutting-edge advances in DDSs responding to the tumor pathophysiological environment for cancer therapy. Finally, the challenges and future directions of bio-responsive DDSs are discussed.
Collapse
Affiliation(s)
- Xiufeng Cong
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jun Chen
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ran Xu
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Ran Xu,
| |
Collapse
|
14
|
Functionalization of Nanoparticulate Drug Delivery Systems and Its Influence in Cancer Therapy. Pharmaceutics 2022; 14:pharmaceutics14051113. [PMID: 35631699 PMCID: PMC9145684 DOI: 10.3390/pharmaceutics14051113] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/11/2022] [Accepted: 05/19/2022] [Indexed: 12/13/2022] Open
Abstract
Research into the application of nanocarriers in the delivery of cancer-fighting drugs has been a promising research area for decades. On the other hand, their cytotoxic effects on cells, low uptake efficiency, and therapeutic resistance have limited their therapeutic use. However, the urgency of pressing healthcare needs has resulted in the functionalization of nanoparticles' (NPs) physicochemical properties to improve clinical outcomes of new, old, and repurposed drugs. This article reviews recent research on methods for targeting functionalized nanoparticles to the tumor microenvironment (TME). Additionally, the use of relevant engineering techniques for surface functionalization of nanocarriers (liposomes, dendrimers, and mesoporous silica) and their critical roles in overcoming the current limitations in cancer therapy-targeting ligands used for targeted delivery, stimuli strategies, and multifunctional nanoparticles-were all reviewed. The limitations and future perspectives of functionalized nanoparticles were also finally discussed. Using relevant keywords, published scientific literature from all credible sources was retrieved. A quick search of the literature yielded almost 400 publications. The subject matter of this review was addressed adequately using an inclusion/exclusion criterion. The content of this review provides a reasonable basis for further studies to fully exploit the potential of these nanoparticles in cancer therapy.
Collapse
|
15
|
Liposomal-Based Formulations: A Path from Basic Research to Temozolomide Delivery Inside Glioblastoma Tissue. Pharmaceutics 2022; 14:pharmaceutics14020308. [PMID: 35214041 PMCID: PMC8875825 DOI: 10.3390/pharmaceutics14020308] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 11/16/2022] Open
Abstract
Glioblastoma (GBM) is a lethal brain cancer with a very difficult therapeutic approach and ultimately frustrating results. Currently, therapeutic success is mainly limited by the high degree of genetic and phenotypic heterogeneity, the blood brain barrier (BBB), as well as increased drug resistance. Temozolomide (TMZ), a monofunctional alkylating agent, is the first line chemotherapeutic drug for GBM treatment. Yet, the therapeutic efficacy of TMZ suffers from its inability to cross the BBB and very short half-life (~2 h), which requires high doses of this drug for a proper therapeutic effect. Encapsulation in a (nano)carrier is a promising strategy to effectively improve the therapeutic effect of TMZ against GBM. Although research on liposomes as carriers for therapeutic agents is still at an early stage, their integration in GBM treatment has a great potential to advance understanding and treating this disease. In this review, we provide a critical discussion on the preparation methods and physico-chemical properties of liposomes, with a particular emphasis on TMZ-liposomal formulations targeting GBM developed within the last decade. Furthermore, an overview on liposome-based formulations applied to translational oncology and clinical trials formulations in GBM treatment is provided. We emphasize that despite many years of intense research, more careful investigations are still needed to solve the main issues related to the manufacture of reproducible liposomal TMZ formulations for guaranteed translation to the market.
Collapse
|
16
|
Li K, Zhang L, Li J, Xue Y, Zhou J, Han Y. pH-Responsive ECM Coating on Ti Implants for Antibiosis in Reinfected Models. ACS APPLIED BIO MATERIALS 2022; 5:344-354. [PMID: 35014807 DOI: 10.1021/acsabm.1c01143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Reinfection of implants during their service life causes troubles to patients. Traditionally, physical loading or chemical bonding of antibacterial agents on implant surfaces cannot settle the repeated bacterial invasion after a period of implantation. In this work, a pH-responsive extracellular matrix (ECM) coating was fabricated on Ti. It consisted of hydroxyapatite (HA) nanorods, antimicrobial peptide (AMP) cross-linked collagen I nanonets (CA nanonets), and physically loaded AMPs. CA nanonets formed in the interspaces of HA nanorods and had an average pore size of 46.5 nm. With the increase in the weight ratio of AMP cross-linkers in collagen I (from 0 to 1:3), the isoelectric points of CA nanonets increased. CA nanonets linked with 50 wt % of AMPs (HCA1) had an isoelectric point of about 7, and their zeta potential shifted from electronegativity to electropositivity when the pH value changed from 7.4 to 6.0. Compared with other nanonets, HCA1 showed a pH-responsive blast release of physically loaded AMPs. It was due to the electrostatic repulsion between the physically adsorbed AMPs and HCA1 after a shift in the potential. In vitro, all the CA nanonets were cytocompatible and exhibited significant short-term antibacterial performance; however, just HCA1 showed outstanding long-time responsive antibacterial activity; in vivo, HCA1 inhibited bacterial infection and suppressed the inflammatory response, especially in a reinfected model, indicating its potential application in Ti implants to mitigate the risk of reinfection.
Collapse
Affiliation(s)
- Kai Li
- State-key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China.,Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, Shandong, China
| | - Lan Zhang
- State-key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jianhua Li
- Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, Shandong, China
| | - Yang Xue
- State-key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jianhong Zhou
- Institute of Physics & Optoelectronics Technology, Advanced Titanium Alloys and Functional Coatings Cooperative Innovation Center, Baoji University of Arts and Sciences, Baoji 721016, China
| | - Yong Han
- State-key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
17
|
Navarro-Barreda D, Angulo-Pachón CA, Galindo F, Miravet JF. Photoreversible formation of nanotubes in water from an amphiphilic azobenzene derivative. Chem Commun (Camb) 2021; 57:11545-11548. [PMID: 34664569 DOI: 10.1039/d1cc04319f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An anionic azobenzene-appended derivative of L-ValylGlycine self-assembles into nanotubes in water. Irradiation with 365 nm light provokes trans-cis isomerization of the azobenzene unit and subsequent tube disassembly. Thermal or photoinduced (457 nm light) recovery of the trans isomer restores the nanotubes.
Collapse
Affiliation(s)
- Diego Navarro-Barreda
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Av. Vicent Sos Baynat s/n, Castellón, 12071, Spain.
| | - César A Angulo-Pachón
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Av. Vicent Sos Baynat s/n, Castellón, 12071, Spain.
| | - Francisco Galindo
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Av. Vicent Sos Baynat s/n, Castellón, 12071, Spain.
| | - Juan F Miravet
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Av. Vicent Sos Baynat s/n, Castellón, 12071, Spain.
| |
Collapse
|
18
|
Wang H, Zheng Y, Sun Q, Zhang Z, Zhao M, Peng C, Shi S. Ginsenosides emerging as both bifunctional drugs and nanocarriers for enhanced antitumor therapies. J Nanobiotechnology 2021; 19:322. [PMID: 34654430 PMCID: PMC8518152 DOI: 10.1186/s12951-021-01062-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022] Open
Abstract
Ginsenosides, the main components isolated from Panax ginseng, can play a therapeutic role by inducing tumor cell apoptosis and reducing proliferation, invasion, metastasis; by enhancing immune regulation; and by reversing tumor cell multidrug resistance. However, clinical applications have been limited because of ginsenosides' physical and chemical properties such as low solubility and poor stability, as well as their short half-life, easy elimination, degradation, and other pharmacokinetic properties in vivo. In recent years, developing a ginsenoside delivery system for bifunctional drugs or carriers has attracted much attention from researchers. To create a precise treatment strategy for cancer, a variety of nano delivery systems and preparation technologies based on ginsenosides have been conducted (e.g., polymer nanoparticles [NPs], liposomes, micelles, microemulsions, protein NPs, metals and inorganic NPs, biomimetic NPs). It is desirable to design a targeted delivery system to achieve antitumor efficacy that can not only cross various barriers but also can enhance immune regulation, eventually converting to a clinical application. Therefore, this review focused on the latest research about delivery systems encapsulated or modified with ginsenosides, and unification of medicines and excipients based on ginsenosides for improving drug bioavailability and targeting ability. In addition, challenges and new treatment methods were discussed to support the development of these new tumor therapeutic agents for use in clinical treatment.
Collapse
Affiliation(s)
- Hong Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yu Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qiang Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Mengnan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Sanjun Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
19
|
He Y, de Araújo Júnior RF, Cruz LJ, Eich C. Functionalized Nanoparticles Targeting Tumor-Associated Macrophages as Cancer Therapy. Pharmaceutics 2021; 13:1670. [PMID: 34683963 PMCID: PMC8540805 DOI: 10.3390/pharmaceutics13101670] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/02/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022] Open
Abstract
The tumor microenvironment (TME) plays a central role in regulating antitumor immune responses. As an important part of the TME, alternatively activated type 2 (M2) macrophages drive the development of primary and secondary tumors by promoting tumor cell proliferation, tumor angiogenesis, extracellular matrix remodeling and overall immunosuppression. Immunotherapy approaches targeting tumor-associated macrophages (TAMs) in order to reduce the immunosuppressive state in the TME have received great attention. Although these methods hold great potential for the treatment of several cancers, they also face some limitations, such as the fast degradation rate of drugs and drug-induced cytotoxicity of organs and tissues. Nanomedicine formulations that prevent TAM signaling and recruitment to the TME or deplete M2 TAMs to reduce tumor growth and metastasis represent encouraging novel strategies in cancer therapy. They allow the specific delivery of antitumor drugs to the tumor area, thereby reducing side effects associated with systemic application. In this review, we give an overview of TAM biology and the current state of nanomedicines that target M2 macrophages in the course of cancer immunotherapy, with a specific focus on nanoparticles (NPs). We summarize how different types of NPs target M2 TAMs, and how the physicochemical properties of NPs (size, shape, charge and targeting ligands) influence NP uptake by TAMs in vitro and in vivo in the TME. Furthermore, we provide a comparative analysis of passive and active NP-based TAM-targeting strategies and discuss their therapeutic potential.
Collapse
Affiliation(s)
- Yuanyuan He
- Translational Nanobiomaterials and Imaging (TNI) Group, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (Y.H.); (R.F.d.A.J.)
| | - Raimundo Fernandes de Araújo Júnior
- Translational Nanobiomaterials and Imaging (TNI) Group, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (Y.H.); (R.F.d.A.J.)
- Postgraduate Program in Health Science, Federal University of Rio Grande do Norte (UFRN), Natal 59064-720, Brazil
- Cancer and Inflammation Research Laboratory (LAICI), Postgraduate Program in Functional and Structural Biology, Department of Morphology, Federal University of Rio Grande do Norte (UFRN), Natal 59064-720, Brazil
- Percuros B.V., 2333 CL Leiden, The Netherlands
| | - Luis J. Cruz
- Translational Nanobiomaterials and Imaging (TNI) Group, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (Y.H.); (R.F.d.A.J.)
| | - Christina Eich
- Translational Nanobiomaterials and Imaging (TNI) Group, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (Y.H.); (R.F.d.A.J.)
| |
Collapse
|