1
|
Schultz DC, Chávez-Riveros A, Goertzen MG, Brummel BR, Paes RA, Santos NM, Tenneti S, Abboud KA, Rocca JR, Seabra G, Li C, Chakrabarti D, Huigens RW. Chloroformate-mediated ring cleavage of indole alkaloids leads to re-engineered antiplasmodial agents. Org Biomol Chem 2024; 22:8423-8436. [PMID: 39113550 DOI: 10.1039/d4ob00853g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Natural product ring distortion strategies have enabled rapid access to unique libraries of stereochemically complex compounds to explore new chemical space and increase our understanding of biological processes related to human disease. Herein is described the development of a ring-cleavage strategy using the indole alkaloids yohimbine, apovincamine, vinburnine, and reserpine that were reacted with a diversity of chloroformates paired with various alcohol/thiol nucleophiles to enable the rapid synthesis of 47 novel small molecules. Ring cleavage reactions of yohimbine and reserpine produced two diastereomeric products in moderate to excellent yields, whereas apovincamine and vinburnine produced a single diastereomeric product in significantly lower yields. Free energy calculations indicated that diastereoselectivity regarding select ring cleavage reactions from yohimbine and apovincamine is dictated by the geometry and three-dimensional structure of reactive cationic intermediates. These compounds were screened for antiplasmodial activity due to the need for novel antimalarial agents. Reserpine derivative 41 was found to exhibit interesting antiplasmodial activities against Plasmodium falciparum parasites (EC50 = 0.50 μM against Dd2 cultures), while its diastereomer 40 was found to be three-fold less active (EC50 = 1.78 μM). Overall, these studies demonstrate that the ring distortion of available indole alkaloids can lead to unique compound collections with re-engineered biological activities for exploring and potentially treating human disease.
Collapse
Affiliation(s)
- Daniel C Schultz
- Department of Medicinal Chemistry, Center for Natural Product Drug Discovery & Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, USA.
| | - Alejandra Chávez-Riveros
- Department of Medicinal Chemistry, Center for Natural Product Drug Discovery & Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, USA.
| | - Michael G Goertzen
- Department of Medicinal Chemistry, Center for Natural Product Drug Discovery & Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, USA.
| | - Beau R Brummel
- Department of Medicinal Chemistry, Center for Natural Product Drug Discovery & Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, USA.
| | - Raphaella A Paes
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida 32826, USA
| | - Natalia M Santos
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida 32826, USA
| | - Srinivasarao Tenneti
- Department of Medicinal Chemistry, Center for Natural Product Drug Discovery & Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, USA.
| | - Khalil A Abboud
- Department of Chemistry, University of Florida, Gainesville, Florida 32610, USA
| | - James R Rocca
- Department of Medicinal Chemistry, Center for Natural Product Drug Discovery & Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, USA.
- McKnight Brain Institute, J H Miller Health Center, University of Florida, Gainesville, Florida 32610, USA
| | - Gustavo Seabra
- Department of Medicinal Chemistry, Center for Natural Product Drug Discovery & Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, USA.
| | - Chenglong Li
- Department of Medicinal Chemistry, Center for Natural Product Drug Discovery & Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, USA.
| | - Debopam Chakrabarti
- Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida 32826, USA
| | - Robert W Huigens
- Department of Medicinal Chemistry, Center for Natural Product Drug Discovery & Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, USA.
| |
Collapse
|
2
|
Ahamad S, Abdulla M, Saquib M, Kamil Hussain M. Pseudo-Natural Products: Expanding chemical and biological space by surpassing natural constraints. Bioorg Chem 2024; 150:107525. [PMID: 38852308 DOI: 10.1016/j.bioorg.2024.107525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Abstract
This review explores the recent advancements in the design and synthesis of pseudo-natural products (pseudo-NPs) by employing innovative principles and strategies, heralding a transformative era in chemistry and biology. Pseudo-NPs, produced through in silico fragmentation and the de novo recombination of natural product fragments, reveal compounds endowed with distinct biological activities. Their advantage lies in transcending natural product structures, fostering diverse possibilities. Research in this area over the past decade has yielded unconventional combinations of natural product fragments, leading to the identification of novel compounds possessing unique scaffolds and biological significance, thereby contributing to the discovery of new therapeutics. The pseudo-NPs exert potent biological effects through various signaling pathways. In chemical biology and medicinal chemistry, designing pseudo-NPs is an important strategy, harnessing molecular hybridization and bioinspired synthesis to generate diverse compounds with remarkable biological activities, underscoring their immense potential in drug discovery and development.
Collapse
Affiliation(s)
- Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh-202002, India.
| | - Mohd Abdulla
- Babasaheb Bhimrao Ambedkar University, Lucknow-226025, India
| | - Mohammad Saquib
- Department of Chemistry, University of Allahabad, Prayagraj (Allahabad), 211002, UP, India; Department of Chemistry, G. R. P. B. Degree College, P. R. S. University, Prayagraj (Allahabad), 211010, UP, India.
| | - Mohd Kamil Hussain
- Department of Chemistry, Govt. Raza P.G. College, Rampur-244901, UP, India.
| |
Collapse
|
3
|
Zhang K, Liu J, Jiang Y, Sun S, Wang R, Sun J, Ma C, Chen Y, Wang W, Hou X, Zhu T, Zhang G, Che Q, Keyzers RA, Liu M, Li D. Sorbremnoids A and B: NLRP3 Inflammasome Inhibitors Discovered from Spatially Restricted Crosstalk of Biosynthetic Pathways. J Am Chem Soc 2024; 146:18172-18183. [PMID: 38888159 DOI: 10.1021/jacs.4c06538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Crosstalk-oriented chemical evolution of natural products (NPs) is an efficacious strategy for generating novel skeletons through coupling reactions between NP fragments. In this study, two NOD-like receptor protein 3 (NLRP3) inflammasome inhibitors, sorbremnoids A and B (1 and 2), with unprecedented chemical architectures were identified from a fungus Penicillium citrinum. Compounds 1 and 2 exemplify rare instances of hybrid NPs formed via a major facilitator superfamily (MFS)-like enzyme by coupling reactive intermediates from two separate biosynthetic gene clusters (BGCs), pcisor and pci56. Both sorbremnoids A and B are NLRP3 inflammasome inhibitors. Sorbremnoid A demonstrated strong inhibition of IL-1β by directly binding to the NLRP3 protein, inhibiting the assembly and activation of the NLRP3 inflammasome in vitro, with potential application in diabetic refractory wound healing through the suppression of excessive inflammatory responses. This research will inspire the development of anti-NLRP3 inflammasome agents as lead treatments and enhance knowledge pertaining to NPs derived from biosynthetic crosstalk.
Collapse
Affiliation(s)
- Kaijin Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, Sanya Oceanographic Institute, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Junyu Liu
- Key Laboratory of Marine Drugs, Ministry of Education, Sanya Oceanographic Institute, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yuqi Jiang
- Key Laboratory of Marine Drugs, Ministry of Education, Sanya Oceanographic Institute, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Simin Sun
- Key Laboratory of Marine Drugs, Ministry of Education, Sanya Oceanographic Institute, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Rongrong Wang
- Key Laboratory of Marine Drugs, Ministry of Education, Sanya Oceanographic Institute, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Jingxian Sun
- Key Laboratory of Marine Drugs, Ministry of Education, Sanya Oceanographic Institute, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Chuanteng Ma
- Key Laboratory of Marine Drugs, Ministry of Education, Sanya Oceanographic Institute, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yinghan Chen
- Key Laboratory of Marine Drugs, Ministry of Education, Sanya Oceanographic Institute, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Wenxue Wang
- Key Laboratory of Marine Drugs, Ministry of Education, Sanya Oceanographic Institute, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xuewen Hou
- Key Laboratory of Marine Drugs, Ministry of Education, Sanya Oceanographic Institute, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Tianjiao Zhu
- Key Laboratory of Marine Drugs, Ministry of Education, Sanya Oceanographic Institute, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Guojian Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, Sanya Oceanographic Institute, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Qian Che
- Key Laboratory of Marine Drugs, Ministry of Education, Sanya Oceanographic Institute, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Robert A Keyzers
- School of Chemical and Physical Sciences and Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| | - Ming Liu
- Key Laboratory of Marine Drugs, Ministry of Education, Sanya Oceanographic Institute, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Dehai Li
- Key Laboratory of Marine Drugs, Ministry of Education, Sanya Oceanographic Institute, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
4
|
Lee H, Kim J, Koh M. Medium-Sized Ring Expansion Strategies: Enhancing Small-Molecule Library Development. Molecules 2024; 29:1562. [PMID: 38611841 PMCID: PMC11013129 DOI: 10.3390/molecules29071562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
The construction of a small molecule library that includes compounds with medium-sized rings is increasingly essential in drug discovery. These compounds are essential for identifying novel therapeutic agents capable of targeting "undruggable" targets through high-throughput and high-content screening, given their structural complexity and diversity. However, synthesizing medium-sized rings presents notable challenges, particularly with direct cyclization methods, due to issues such as transannular strain and reduced degrees of freedom. This review presents an overview of current strategies in synthesizing medium-sized rings, emphasizing innovative approaches like ring-expansion reactions. It highlights the challenges of synthesis and the potential of these compounds to diversify the chemical space for drug discovery, underscoring the importance of medium-sized rings in developing new bioactive compounds.
Collapse
Affiliation(s)
- Hwiyeong Lee
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea;
| | - Jonghoon Kim
- Department of Chemistry and Integrative Institute of Basic Science, Soongsil University, Seoul 06978, Republic of Korea;
| | - Minseob Koh
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea;
| |
Collapse
|
5
|
Semeno VV, Vasylchenko VO, Fesun IM, Ruzhylo LY, Kipriianov MO, Melnykov KP, Skreminskyi A, Iminov R, Mykhailiuk P, Vashchenko BV, Grygorenko OO. Bicyclo[m.n.k]alkane Building Blocks as Promising Benzene and Cycloalkane Isosteres: Multigram Synthesis, Physicochemical and Structural Characterization. Chemistry 2024; 30:e202303859. [PMID: 38149408 DOI: 10.1002/chem.202303859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 12/28/2023]
Abstract
Electrophilic double bond functionalization - intramolecular enolate alkylation sequence was used to obtain a series of bridged and fused bicyclo[m.n.k]alkane derivatives (i. e., bicyclo[4.1.1]octanes, bicyclo[2.2.1]heptanes, bicyclo[3.2.1]octanes, bicyclo[3.1.0]hexanes, and bicyclo[4.2.0]heptanes). The scope and limitations of the method were established, and applicability to the multigram synthesis of target bicyclic compounds was illustrated. Using the developed protocols, over 50 mono- and bifunctional building blocks relevant to medicinal chemistry were prepared. The synthesized compounds are promising isosteres of benzene and cycloalkane rings, which is confirmed by their physicochemical and structural characterization (pKa , LogP, and exit vector parameters (EVP)). "Rules of thumb" for the upcoming isosteric replacement studies were proposed.
Collapse
Affiliation(s)
- Volodymyr V Semeno
- Enamine Ltd., Chervonotkatska Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| | | | - Ihor M Fesun
- Enamine Ltd., Chervonotkatska Street 78, Kyїv, 02094, Ukraine
| | - Liudmyla Yu Ruzhylo
- Enamine Ltd., Chervonotkatska Street 78, Kyїv, 02094, Ukraine
- National Technical University of Ukraine " Igor Sikorsky Kyiv Polytechnic Institute", Beresteiskyi Ave. 37, Kyїv, 03056, Ukraine
| | - Mykhailo O Kipriianov
- Enamine Ltd., Chervonotkatska Street 78, Kyїv, 02094, Ukraine
- National Technical University of Ukraine " Igor Sikorsky Kyiv Polytechnic Institute", Beresteiskyi Ave. 37, Kyїv, 03056, Ukraine
| | - Kostiantyn P Melnykov
- Enamine Ltd., Chervonotkatska Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| | | | - Rustam Iminov
- Enamine Ltd., Chervonotkatska Street 78, Kyїv, 02094, Ukraine
| | | | - Bohdan V Vashchenko
- Enamine Ltd., Chervonotkatska Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| | - Oleksandr O Grygorenko
- Enamine Ltd., Chervonotkatska Street 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| |
Collapse
|
6
|
Aoyama H, Davies C, Liu J, Pahl A, Kirchhoff JL, Scheel R, Sievers S, Strohmann C, Grigalunas M, Waldmann H. Collective Synthesis of Sarpagine and Macroline Alkaloid-Inspired Compounds. Chemistry 2024; 30:e202303027. [PMID: 37755456 DOI: 10.1002/chem.202303027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 09/28/2023]
Abstract
Design strategies that can access natural-product-like chemical space in an efficient manner may facilitate the discovery of biologically relevant compounds. We have employed a divergent intermediate strategy to construct an indole alkaloid-inspired compound collection derived from two different molecular design principles, i.e. biology-oriented synthesis and pseudo-natural products. The divergent intermediate was subjected to acid-catalyzed or newly discovered Sn-mediated conditions to selectively promote intramolecular C- or N-acylation, respectively. After further derivatization, a collection totalling 84 compounds representing four classes was obtained. Morphological profiling via the cell painting assay coupled with a subprofile analysis showed that compounds derived from different design principles have different bioactivity profiles. The subprofile analysis suggested that a pseudo-natural product class is enriched in modulators of tubulin, and subsequent assays led to the identification of compounds that suppress in vitro tubulin polymerization and mitotic progression.
Collapse
Affiliation(s)
- Hikaru Aoyama
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, 44227, Dortmund, Germany
| | - Caitlin Davies
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, 44227, Dortmund, Germany
| | - Jie Liu
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, 44227, Dortmund, Germany
| | - Axel Pahl
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, 44227, Dortmund, Germany
- Compound Management and Screening Center, 44227, Dortmund, Germany
| | - Jan-Lukas Kirchhoff
- Technical University Dortmund, Faculty of Chemistry, Inorganic Chemistry, 44227, Dortmund, Germany
| | - Rebecca Scheel
- Technical University Dortmund, Faculty of Chemistry, Inorganic Chemistry, 44227, Dortmund, Germany
| | - Sonja Sievers
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, 44227, Dortmund, Germany
- Compound Management and Screening Center, 44227, Dortmund, Germany
| | - Carsten Strohmann
- Technical University Dortmund, Faculty of Chemistry, Inorganic Chemistry, 44227, Dortmund, Germany
| | - Michael Grigalunas
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, 44227, Dortmund, Germany
| | - Herbert Waldmann
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, 44227, Dortmund, Germany
- Technical University Dortmund, Faculty of Chemistry, Chemical Biology, 44227, Dortmund, Germany
| |
Collapse
|
7
|
Quaglio D, Infante P, Cammarone S, Lamelza L, Conenna M, Ghirga F, Adabbo G, Pisano L, Di Marcotullio L, Botta B, Mori M. Exploring the Potential of Anthraquinone-Based Hybrids for Identifying a Novel Generation of Antagonists for the Smoothened Receptor in HH-Dependent Tumour. Chemistry 2023; 29:e202302237. [PMID: 37565343 DOI: 10.1002/chem.202302237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/12/2023]
Abstract
Natural products (NPs) are highly profitable pharmacological tools due to their chemical diversity and ability to modulate biological systems. Accessing new chemical entities while retaining the biological relevance of natural chemotypes is a fundamental goal in the design of novel bioactive compounds. Notably, NPs have played a crucial role in understanding Hedgehog (HH) signalling and its pharmacological modulation in anticancer therapy. However, HH antagonists developed so far have shown several limitations, thus growing interest in the design of second-generation HH inhibitors. Through smart manipulation of the NPs core-scaffold, unprecedented and intriguing architectures have been achieved following different design strategies. This study reports the rational design and synthesis of a first and second generation of anthraquinone-based hybrids by combining the rhein scaffold with variously substituted piperazine nuclei that are structurally similar to the active portion of known SMO antagonists, the main transducer of the HH pathway. A thorough functional and biological investigation identified RH2_2 and RH2_6 rhein-based hybrids as valuable candidates for HH inhibition through SMO antagonism, with the consequent suppression of HH-dependent tumour growth. These findings also corroborated the successful application of the NPs-based hybrid design strategy in the development of novel NP-based SMO antagonists.
Collapse
Affiliation(s)
- Deborah Quaglio
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Paola Infante
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy
| | - Silvia Cammarone
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Lara Lamelza
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Marilisa Conenna
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy
| | - Francesca Ghirga
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Gennaro Adabbo
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy
| | - Luca Pisano
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Lucia Di Marcotullio
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy
| | - Bruno Botta
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| |
Collapse
|
8
|
Gómez-García A, Jiménez DAA, Zamora WJ, Barazorda-Ccahuana HL, Chávez-Fumagalli MÁ, Valli M, Andricopulo AD, Bolzani VDS, Olmedo DA, Solís PN, Núñez MJ, Rodríguez Pérez JR, Valencia Sánchez HA, Cortés Hernández HF, Medina-Franco JL. Navigating the Chemical Space and Chemical Multiverse of a Unified Latin American Natural Product Database: LANaPDB. Pharmaceuticals (Basel) 2023; 16:1388. [PMID: 37895859 PMCID: PMC10609821 DOI: 10.3390/ph16101388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
The number of databases of natural products (NPs) has increased substantially. Latin America is extraordinarily rich in biodiversity, enabling the identification of novel NPs, which has encouraged both the development of databases and the implementation of those that are being created or are under development. In a collective effort from several Latin American countries, herein we introduce the first version of the Latin American Natural Products Database (LANaPDB), a public compound collection that gathers the chemical information of NPs contained in diverse databases from this geographical region. The current version of LANaPDB unifies the information from six countries and contains 12,959 chemical structures. The structural classification showed that the most abundant compounds are the terpenoids (63.2%), phenylpropanoids (18%) and alkaloids (11.8%). From the analysis of the distribution of properties of pharmaceutical interest, it was observed that many LANaPDB compounds satisfy some drug-like rules of thumb for physicochemical properties. The concept of the chemical multiverse was employed to generate multiple chemical spaces from two different fingerprints and two dimensionality reduction techniques. Comparing LANaPDB with FDA-approved drugs and the major open-access repository of NPs, COCONUT, it was concluded that the chemical space covered by LANaPDB completely overlaps with COCONUT and, in some regions, with FDA-approved drugs. LANaPDB will be updated, adding more compounds from each database, plus the addition of databases from other Latin American countries.
Collapse
Affiliation(s)
- Alejandro Gómez-García
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México Avenida Universidad 3000, Mexico City 04510, Mexico;
| | - Daniel A. Acuña Jiménez
- CBio3 Laboratory, School of Chemistry, University of Costa Rica, San Pedro, San José 11501-2060, Costa Rica; (D.A.A.J.); (W.J.Z.)
| | - William J. Zamora
- CBio3 Laboratory, School of Chemistry, University of Costa Rica, San Pedro, San José 11501-2060, Costa Rica; (D.A.A.J.); (W.J.Z.)
- Laboratory of Computational Toxicology and Artificial Intelligence (LaToxCIA), Biological Testing Laboratory (LEBi), University of Costa Rica, San Pedro, San José 11501-2060, Costa Rica
- Advanced Computing Lab (CNCA), National High Technology Center (CeNAT), Pavas, San José 1174-1200, Costa Rica
| | - Haruna L. Barazorda-Ccahuana
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa Maria, Arequipa 04000, Peru; (H.L.B.-C.); (M.Á.C.-F.)
| | - Miguel Á. Chávez-Fumagalli
- Computational Biology and Chemistry Research Group, Vicerrectorado de Investigación, Universidad Católica de Santa Maria, Arequipa 04000, Peru; (H.L.B.-C.); (M.Á.C.-F.)
| | - Marilia Valli
- Laboratory of Medicinal and Computational Chemistry (LQMC), Centre for Research and Innovation in Biodiversity and Drug Discovery (CIBFar), São Carlos Institute of Physics (IFSC), University of São Paulo (USP), Av. João Dagnone, 1100, São Carlos 13563-120, SP, Brazil; (M.V.); (A.D.A.)
| | - Adriano D. Andricopulo
- Laboratory of Medicinal and Computational Chemistry (LQMC), Centre for Research and Innovation in Biodiversity and Drug Discovery (CIBFar), São Carlos Institute of Physics (IFSC), University of São Paulo (USP), Av. João Dagnone, 1100, São Carlos 13563-120, SP, Brazil; (M.V.); (A.D.A.)
| | - Vanderlan da S. Bolzani
- Nuclei of Bioassays, Biosynthesis and Ecophysiology of Natural Products (NuBBE), Department of Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Av. Prof. Francisco Degni, 55, Araraquara 14800-900, SP, Brazil;
| | - Dionisio A. Olmedo
- Center for Pharmacognostic Research on Panamanian Flora (CIFLORPAN), College of Pharmacy, University of Panama, Av. Manuel E. Batista and Jose De Fabrega, Panama City 3366, Panama; (D.A.O.); (P.N.S.)
| | - Pablo N. Solís
- Center for Pharmacognostic Research on Panamanian Flora (CIFLORPAN), College of Pharmacy, University of Panama, Av. Manuel E. Batista and Jose De Fabrega, Panama City 3366, Panama; (D.A.O.); (P.N.S.)
| | - Marvin J. Núñez
- Natural Product Research Laboratory, School of Chemistry and Pharmacy, University of El Salvador, Final Ave. Mártires Estudiantes del 30 de Julio, San Salvador 01101, El Salvador;
| | - Johny R. Rodríguez Pérez
- GIFES Research Group, School of Chemistry Technology, Universidad Tecnológica de Pereira, Pereira 660003, Colombia; (J.R.R.P.); (H.A.V.S.); (H.F.C.H.)
- GIEPRONAL Research Group, School of Basic Sciences, Technology and Engineering, Universidad Nacional Abierta y a Distancia, Dosquebradas 661001, Colombia
| | - Hoover A. Valencia Sánchez
- GIFES Research Group, School of Chemistry Technology, Universidad Tecnológica de Pereira, Pereira 660003, Colombia; (J.R.R.P.); (H.A.V.S.); (H.F.C.H.)
| | - Héctor F. Cortés Hernández
- GIFES Research Group, School of Chemistry Technology, Universidad Tecnológica de Pereira, Pereira 660003, Colombia; (J.R.R.P.); (H.A.V.S.); (H.F.C.H.)
| | - José L. Medina-Franco
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México Avenida Universidad 3000, Mexico City 04510, Mexico;
| |
Collapse
|
9
|
Qun T, Zhou T, Hao J, Wang C, Zhang K, Xu J, Wang X, Zhou W. Antibacterial activities of anthraquinones: structure-activity relationships and action mechanisms. RSC Med Chem 2023; 14:1446-1471. [PMID: 37593578 PMCID: PMC10429894 DOI: 10.1039/d3md00116d] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/24/2023] [Indexed: 08/19/2023] Open
Abstract
With the increasing prevalence of untreatable infections caused by antibiotic-resistant bacteria, the discovery of new drugs from natural products has become a hot research topic. The antibacterial activity of anthraquinones widely distributed in traditional Chinese medicine has attracted much attention. Herein, the structure and activity relationships (SARs) of anthraquinones as bacteriostatic agents are reviewed and elucidated. The substituents of anthraquinone and its derivatives are closely related to their antibacterial activities. The stronger the polarity of anthraquinone substituents is, the more potent the antibacterial effects appear. The presence of hydroxyl groups is not necessary for the antibacterial activity of hydroxyanthraquinone derivatives. Substitution of di-isopentenyl groups can improve the antibacterial activity of anthraquinone derivatives. The rigid plane structure of anthraquinone lowers its water solubility and results in the reduced activity. Meanwhile, the antibacterial mechanisms of anthraquinone and its analogs are explored, mainly including biofilm formation inhibition, destruction of the cell wall, endotoxin inhibition, inhibition of nucleic acid and protein synthesis, and blockage of energy metabolism and other substances.
Collapse
Affiliation(s)
- Tang Qun
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences 200241 Shanghai China
| | - Tiantian Zhou
- School of Chinese Materia Medica, Guangdong Pharmaceutical University 440113 Guangzhou China
| | - Jiongkai Hao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences 200241 Shanghai China
| | - Chunmei Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences 200241 Shanghai China
- Key laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Research Institute, Chinese Academy of Agricultural Sciences Shanghai 200241 China
| | - Keyu Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences 200241 Shanghai China
- Key laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Research Institute, Chinese Academy of Agricultural Sciences Shanghai 200241 China
| | - Jing Xu
- Huanghua Agricultural and Rural Development Bureau Bohai New Area 061100 Hebei China
| | - Xiaoyang Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences 200241 Shanghai China
- Key laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Research Institute, Chinese Academy of Agricultural Sciences Shanghai 200241 China
| | - Wen Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences 200241 Shanghai China
- Key laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Research Institute, Chinese Academy of Agricultural Sciences Shanghai 200241 China
| |
Collapse
|
10
|
Liu J, Zhang R, Mallick S, Patil S, Wientjens C, Flegel J, Krupp A, Strohmann C, Grassin C, Merten C, Pahl A, Grigalunas M, Waldmann H. A highly enantioselective intramolecular 1,3-dipolar cycloaddition yields novel pseudo-natural product inhibitors of the Hedgehog signalling pathway. Chem Sci 2023; 14:7936-7943. [PMID: 37502335 PMCID: PMC10370549 DOI: 10.1039/d3sc01240a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/18/2023] [Indexed: 07/29/2023] Open
Abstract
De novo combination of natural product (NP) fragments by means of efficient, complexity- and stereogenic character-generating transformations to yield pseudo-natural products (PNPs) may explore novel biologically relevant chemical space. Pyrrolidine- and tetrahydroquinoline fragments rarely occur in combination in nature, such that PNPs that embody both fragments might represent novel NP-inspired chemical matter endowed with bioactivity. We describe the synthesis of pyrrolo[3,2-c]quinolines by means of a highly enantioselective intramolecular exo-1,3-dipolar cycloaddition catalysed by the AgOAc/(S)-DMBiphep complex. The cycloadditions proceeded in excellent yields (up to 98%) and with very high enantioselectivity (up to 99% ee). Investigation of the resulting PNP collection in cell-based assays monitoring different biological programmes led to the discovery of a structurally novel and potent inhibitor of the Hedgehog signalling pathway that targets the Smoothened protein.
Collapse
Affiliation(s)
- Jie Liu
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology Otto-Hahn-Street 11 44227 Dortmund Germany
| | - Ruirui Zhang
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology Otto-Hahn-Street 11 44227 Dortmund Germany
| | - Shubhadip Mallick
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology Otto-Hahn-Street 11 44227 Dortmund Germany
| | - Sohan Patil
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology Otto-Hahn-Street 11 44227 Dortmund Germany
| | - Chantal Wientjens
- Faculty of Chemistry, Chemical Biology, Technical University Dortmund Otto-Hahn-Street 6 44221 Dortmund Germany
| | - Jana Flegel
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology Otto-Hahn-Street 11 44227 Dortmund Germany
| | - Anna Krupp
- Faculty of Chemistry, Inorganic Chemistry, Technical University Dortmund Otto-Hahn-Street 6 44221 Dortmund Germany
| | - Carsten Strohmann
- Faculty of Chemistry, Inorganic Chemistry, Technical University Dortmund Otto-Hahn-Street 6 44221 Dortmund Germany
| | - Corentin Grassin
- Faculty of Chemistry and Biochemistry, Organic Chemistry II, Ruhr University Bochum University-Street 150 44801 Bochum Germany
| | - Christian Merten
- Faculty of Chemistry and Biochemistry, Organic Chemistry II, Ruhr University Bochum University-Street 150 44801 Bochum Germany
| | - Axel Pahl
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology Otto-Hahn-Street 11 44227 Dortmund Germany
- Compound Management and Screening Center Otto-Hahn-Street 11 44227 Dortmund Germany
| | - Michael Grigalunas
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology Otto-Hahn-Street 11 44227 Dortmund Germany
| | - Herbert Waldmann
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology Otto-Hahn-Street 11 44227 Dortmund Germany
- Faculty of Chemistry, Chemical Biology, Technical University Dortmund Otto-Hahn-Street 6 44221 Dortmund Germany
| |
Collapse
|
11
|
Li L, Wang Y, Chen N, Li X, Li H, Jin L, Ou Y, Kong XJ, Cao S, Xu Q, Wu X, Han J, Deng X. Exploring Diversity through Dimerization in Natural Products by a Rational Tandem Mass-Based Molecular Network Strategy. Org Lett 2023; 25:4016-4021. [PMID: 37249258 DOI: 10.1021/acs.orglett.3c01038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The step- and atom-efficient dimerization strategy is frequently used in nature to build structural complexity and diversity. We propose the rationale and structural features of the versatile monomers that are responsible for "diversity through dimerization". Using 5-FAM-maleimide combined with a UHPLC-MS/MS-FBMN workflow, we successfully identified a diverse set of dimeric natural products from fungus Panus rudis F01315, in which all four complex 4'5-ring scaffolds are derived from one monomeric epoxyquinol and endowed with functional diversity.
Collapse
Affiliation(s)
- Li Li
- State Key Laboratory of Cellular Stress Biology, State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yuezhou Wang
- State Key Laboratory of Cellular Stress Biology, State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Naixin Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaoyang Li
- State Key Laboratory of Cellular Stress Biology, State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Hanpeng Li
- State Key Laboratory of Cellular Stress Biology, State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Ling Jin
- State Key Laboratory of Cellular Stress Biology, State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yixin Ou
- State Key Laboratory of Cellular Stress Biology, State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiang-Jian Kong
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Shugeng Cao
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, 200 W. Kawili St., Hilo, Hawaii 96720, USA
| | - Qingyan Xu
- State Key Laboratory of Cellular Stress Biology, State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiaobing Wu
- State Key Laboratory of Cellular Stress Biology, State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Jianyong Han
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xianming Deng
- State Key Laboratory of Cellular Stress Biology, State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|
12
|
Liu B, Yu X, Liu L, Wang L, Wang J, Huang Q, Xu Z, Luo C, Lou L, Huang W, Yang W. Modular Biomimetic Strategy Enabled Discovery of Simplified Pseudo-Natural Macrocyclic P-Glycoprotein Inhibitors Capable of Overcoming Multidrug Resistance. J Med Chem 2023; 66:2550-2565. [PMID: 36728755 DOI: 10.1021/acs.jmedchem.2c01424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Natural macrocycles have shown impressive activity to overcome P-glycoprotein (P-gp)-mediated multidrug resistance (MDR). However, the total synthesis and structural modification of natural macrocycles are challenging, which would hamper the deeper investigations of their structure-activity relationship (SAR) and drug likeness. Herein, we describe a modular biomimetic strategy to expeditiously achieve a new class of macrocycles featuring polysubstituted 1,3-diene, which efficiently inhibited P-gp and reversed MDR in cancer cells. The SAR analysis revealed that the size and linker of the macrocycles are important structural characteristics to restore activity. Particularly, 32 containing a naphthyl group and (d)-Phe moiety has higher potency with an excellent reversal fold than verapamil at a concentration of 5 μM, which induces conformational change of P-gp and inhibits its function instead of altering P-gp expression. Furthermore, 23 and 32 were identified to be attractive leads, which possess a good pharmacokinetic profile and antitumor activity in a KBV200 xenograft mouse model.
Collapse
Affiliation(s)
- Bo Liu
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Xueni Yu
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liping Liu
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Wang
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Wang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Qianqian Huang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Zhongliang Xu
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Luo
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.,State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liguang Lou
- State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Huang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.,State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weibo Yang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.,State key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Li J, Sheng H, Wang Y, Lai Z, Wang Y, Cui S. Scaffold Hybrid of the Natural Product Tanshinone I with Piperidine for the Discovery of a Potent NLRP3 Inflammasome Inhibitor. J Med Chem 2023; 66:2946-2963. [PMID: 36786612 DOI: 10.1021/acs.jmedchem.2c01967] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Natural products provide inspiration and have proven to be the most valuable source for drug discovery. Herein, we report a scaffold hybrid strategy of Tanshinone I for the discovery of NLRP3 inflammasome inhibitors. 36 compounds were designed and synthesized, and the cheminformatic analyses showed that these compounds occupy a unique chemical space. The biological evaluation identified compounds 5j, 12a, and 12d as NLRP3 inflammasome inhibitors with significant potency, selectivity, and drug-likeness. Mechanistic studies revealed that these Tanshinone I derivatives could inhibit the degradation of the protein NLRP3 and block the oligomerization of NLRP3-induced apoptosis-associated speck-like proteins, thus inhibiting NLRP3 inflammasome activation. In addition, the water solubility, in vitro metabolic stability, and oral bioavailability of these compounds were also greatly improved compared to Tanshinone I. Therefore, this protocol provides a new structural evolution of Tanshinone I and a new class of potent NLRP3 inflammasome inhibitors.
Collapse
Affiliation(s)
- Jiaming Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongda Sheng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yingchao Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhencheng Lai
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yi Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Sunliang Cui
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
14
|
Zhang H, Tian Y, Yuan X, Xie F, Yu S, Cai J, Sun B, Shan C, Zhang W. Site-directed late-stage diversification of macrocyclic nannocystins facilitating anticancer SAR and mode of action studies. RSC Med Chem 2023; 14:299-312. [PMID: 36846368 PMCID: PMC9945860 DOI: 10.1039/d2md00393g] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Nannocystins are a family of 21-membered cyclodepsipeptides with excellent anticancer activity. However, their macrocyclic architecture poses a significant challenge to structure modification. Herein, this issue is addressed by leveraging the strategy of post-macrocyclization diversification. In particular, a novel serine-incorporating nannocystin was designed so that its appending hydroxyl group could diversify into a wide variety of side chain analogues. Such effort facilitated not only structure-activity correlation at the subdomain of interest, but also the development of a macrocyclic coumarin-labeled fluorescence probe. Uptake experiments indicated good cell permeability of the probe, and endoplasmic reticulum was identified as its subcellular localization site.
Collapse
Affiliation(s)
- Han Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University Tianjin People's Republic of China
| | - Yunfeng Tian
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University Tianjin People's Republic of China
| | - Xiaoya Yuan
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University Tianjin People's Republic of China
| | - Fei Xie
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University Tianjin People's Republic of China
| | - Siqi Yu
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University Tianjin People's Republic of China
| | - Jiayou Cai
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University Tianjin People's Republic of China
| | - Bin Sun
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University Tianjin People's Republic of China
| | - Changliang Shan
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University Tianjin People's Republic of China
| | - Weicheng Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University Tianjin People's Republic of China
| |
Collapse
|
15
|
Gago F. Computational Approaches to Enzyme Inhibition by Marine Natural Products in the Search for New Drugs. Mar Drugs 2023; 21:100. [PMID: 36827141 PMCID: PMC9961086 DOI: 10.3390/md21020100] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/03/2023] Open
Abstract
The exploration of biologically relevant chemical space for the discovery of small bioactive molecules present in marine organisms has led not only to important advances in certain therapeutic areas, but also to a better understanding of many life processes. The still largely untapped reservoir of countless metabolites that play biological roles in marine invertebrates and microorganisms opens new avenues and poses new challenges for research. Computational technologies provide the means to (i) organize chemical and biological information in easily searchable and hyperlinked databases and knowledgebases; (ii) carry out cheminformatic analyses on natural products; (iii) mine microbial genomes for known and cryptic biosynthetic pathways; (iv) explore global networks that connect active compounds to their targets (often including enzymes); (v) solve structures of ligands, targets, and their respective complexes using X-ray crystallography and NMR techniques, thus enabling virtual screening and structure-based drug design; and (vi) build molecular models to simulate ligand binding and understand mechanisms of action in atomic detail. Marine natural products are viewed today not only as potential drugs, but also as an invaluable source of chemical inspiration for the development of novel chemotypes to be used in chemical biology and medicinal chemistry research.
Collapse
Affiliation(s)
- Federico Gago
- Department of Biomedical Sciences & IQM-CSIC Associate Unit, School of Medicine and Health Sciences, University of Alcalá, E-28805 Madrid, Alcalá de Henares, Spain
| |
Collapse
|
16
|
Progress and Impact of Latin American Natural Product Databases. Biomolecules 2022; 12:biom12091202. [PMID: 36139041 PMCID: PMC9496143 DOI: 10.3390/biom12091202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
Natural products (NPs) are a rich source of structurally novel molecules, and the chemical space they encompass is far from being fully explored. Over history, NPs have represented a significant source of bioactive molecules and have served as a source of inspiration for developing many drugs on the market. On the other hand, computer-aided drug design (CADD) has contributed to drug discovery research, mitigating costs and time. In this sense, compound databases represent a fundamental element of CADD. This work reviews the progress toward developing compound databases of natural origin, and it surveys computational methods, emphasizing chemoinformatic approaches to profile natural product databases. Furthermore, it reviews the present state of the art in developing Latin American NP databases and their practical applications to the drug discovery area.
Collapse
|
17
|
Li Y, Cheng S, Tian Y, Zhang Y, Zhao Y. Recent ring distortion reactions for diversifying complex natural products. Nat Prod Rep 2022; 39:1970-1992. [PMID: 35972343 DOI: 10.1039/d2np00027j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: 2013-2022.Chemical diversification of natural products is an efficient way to generate natural product-like compounds for modern drug discovery programs. Utilizing ring-distortion reactions for diversifying natural products would directly alter the core ring systems of small molecules and lead to the production of structurally complex and diverse compounds for high-throughput screening. We review the ring distortion reactions recently used in complexity-to-diversity (CtD) and pseudo natural products (pseudo-NPs) strategies for diversifying complex natural products. The core ring structures of natural products are altered via ring expansion, ring cleavage, ring edge-fusion, ring spiro-fusion, ring rearrangement, and ring contraction. These reactions can rapidly provide natural product-like collections with properties suitable for a wide variety of biological and medicinal applications. The challenges and limitations of current ring distortion reactions are critically assessed, and avenues for future improvements of this rapidly expanding field are discussed. We also provide a toolbox for chemists for the application of ring distortion reactions to access natural product-like molecules.
Collapse
Affiliation(s)
- Yu Li
- School of Pharmacy, Nantong University, Nantong 226001, China.
| | - Shihao Cheng
- School of Pharmacy, Nantong University, Nantong 226001, China.
| | - Yun Tian
- School of Pharmacy, Nantong University, Nantong 226001, China.
| | - Yanan Zhang
- School of Pharmacy, Nantong University, Nantong 226001, China.
| | - Yu Zhao
- School of Pharmacy, Nantong University, Nantong 226001, China.
| |
Collapse
|
18
|
Kozubek M, Hoenke S, Schmidt T, Deigner HP, Al-Harrasi A, Csuk R. Synthesis and cytotoxicity of betulin and betulinic acid derived 30-oxo-amides. Steroids 2022; 182:109014. [PMID: 35314417 DOI: 10.1016/j.steroids.2022.109014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 10/18/2022]
Abstract
Betulin and betulinic acid derived 30-oxo-amides were prepared by hydroboration, subsequent oxidation and amidation; these novel compounds were screened for their cytotoxic activity by SRB assays. All of the compounds showed significant cytotoxic activity for different human tumor cell lines. Small changes in the structure, however, resulted in significant changes in the cytotoxicity of the compounds. Of special interest were compounds 11 and 12, each holding an extra ethylenediamine moiety. These C-30 amides which showed low EC50 values, and both of them acted mainly by apoptosis.
Collapse
Affiliation(s)
- Marie Kozubek
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| | - Sophie Hoenke
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| | - Theresa Schmidt
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| | - Hans-Peter Deigner
- Furtwangen University, Institute of Precision Medicine, Medical and Life Science Faculty, Jakob-Kienzle-Str. 17, D-78054 Villigen, Schwenningen, Germany
| | - Ahmed Al-Harrasi
- University of Nizwa, Chair of Oman's Medicinal Plants and Marine Natural Products, P.O. Box 33, PC 616, Birkat Al-Mauz, Nizwa, Oman
| | - René Csuk
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| |
Collapse
|
19
|
Niggemeyer G, Knyazeva A, Gasper R, Corkery D, Bodenbinder P, Holstein JJ, Sievers S, Wu Y, Waldmann H. Synthesis of 20-Membered Macrocyclic Pseudo-Natural Products Yields Inducers of LC3 Lipidation. Angew Chem Int Ed Engl 2022; 61:e202114328. [PMID: 34978373 PMCID: PMC9303634 DOI: 10.1002/anie.202114328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Indexed: 01/02/2023]
Abstract
Design and synthesis of pseudo-natural products (PNPs) through recombination of natural product (NP) fragments in unprecedented arrangements enables the discovery of novel biologically relevant chemical matter. With a view to wider coverage of NP-inspired chemical and biological space, we describe the combination of this principle with macrocycle formation. PNP-macrocycles were synthesized efficiently in a stereoselective one-pot procedure including the 1,3-dipolar cycloadditions of different dipolarophiles with dimeric cinchona alkaloid-derived azomethine ylides formed in situ. The 20-membered bis-cycloadducts embody 18 stereocenters and an additional fragment-sized NP-structure. After further functionalization, a collection of 163 macrocyclic PNPs was obtained. Biological investigation revealed potent inducers of the lipidation of the microtubule associated protein 1 light chain 3 (LC3) protein, which plays a prominent role in various autophagy-related processes.
Collapse
Affiliation(s)
- Georg Niggemeyer
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyOtto-Hahn-Strasse 1144227DortmundGermany
- Technical University DortmundFaculty of Chemistry, Chemical BiologyOtto-Hahn-Strasse 644221DortmundGermany
| | - Anastasia Knyazeva
- Umeå UniversityDepartment of Chemistry90187UmeåSweden
- Umeå UniversityUmeå Center for Microbial Research90187UmeåSweden
| | - Raphael Gasper
- Max Planck Institute of Molecular PhysiologyCrystallography and Biophysics UnitOtto-Hahn-Strasse 1144227DortmundGermany
| | - Dale Corkery
- Umeå UniversityDepartment of Chemistry90187UmeåSweden
- Umeå UniversityUmeå Center for Microbial Research90187UmeåSweden
| | - Pia Bodenbinder
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyOtto-Hahn-Strasse 1144227DortmundGermany
- Technical University DortmundFaculty of Chemistry, Chemical BiologyOtto-Hahn-Strasse 644221DortmundGermany
| | - Julian J. Holstein
- Technical University DortmundFaculty of Chemistry, Chemical BiologyOtto-Hahn-Strasse 644221DortmundGermany
- Technical University DortmundFaculty of Chemistry, Inorganic ChemistryOtto-Hahn-Strasse 644221DortmundGermany
| | - Sonja Sievers
- Compound Management and Screening Center (COMAS)Otto-Hahn-Strasse 1144221DortmundGermany
| | - Yao‐Wen Wu
- Umeå UniversityDepartment of Chemistry90187UmeåSweden
- Umeå UniversityUmeå Center for Microbial Research90187UmeåSweden
| | - Herbert Waldmann
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyOtto-Hahn-Strasse 1144227DortmundGermany
- Technical University DortmundFaculty of Chemistry, Chemical BiologyOtto-Hahn-Strasse 644221DortmundGermany
| |
Collapse
|
20
|
Recent advances in cell membrane-coated technology for drug discovery from natural products. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116601] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
21
|
Abstract
![]()
Natural products
are the result of Nature’s exploration
of biologically relevant chemical space through evolution and an invaluable
source of bioactive small molecules for chemical biology and medicinal
chemistry. Novel concepts for the discovery of new bioactive compound
classes based on natural product structure may enable exploration
of wider biologically relevant chemical space. The pseudo-natural
product concept merges the relevance of natural product structure
with efficient exploration of chemical space by means of fragment-based
compound development to inspire the discovery of new bioactive chemical
matter through de novo combination of natural product
fragments in unprecedented arrangements. The novel scaffolds retain
the biological relevance of natural products but are not obtainable
through known biosynthetic pathways which can lead to new chemotypes
that may have unexpected or unprecedented bioactivities. Herein, we
cover the workflow of pseudo-natural product design and development,
highlight recent examples, and discuss a cheminformatic analysis in
which a significant portion of biologically active synthetic compounds
were found to be pseudo-natural products. We compare the concept to
natural evolution and discuss pseudo-natural products as the human-made
equivalent, i.e. the chemical evolution of natural product structure.
Collapse
Affiliation(s)
- Michael Grigalunas
- Max-Planck-Institute of Molecular Physiology, Otto-Hahn Strasse 11, 44227, Dortmund, Germany
| | - Susanne Brakmann
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Strasse 4a, 44227, Dortmund, Germany
| | - Herbert Waldmann
- Max-Planck-Institute of Molecular Physiology, Otto-Hahn Strasse 11, 44227, Dortmund, Germany
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Strasse 4a, 44227, Dortmund, Germany
| |
Collapse
|
22
|
Davies C, Shaaban S, Waldmann H. Asymmetric catalysis with chiral cyclopentadienyl complexes to access privileged scaffolds. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Niggemeyer G, Knyazeva A, Gasper R, Corkery D, Bodenbinder P, Holstein JJ, Sievers S, Wu Y, Waldmann H. Synthesis of 20‐Membered Macrocyclic Pseudo‐Natural Products Yields Inducers of LC3 Lipidation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Georg Niggemeyer
- Max Planck Institute of Molecular Physiology Department of Chemical Biology Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Technical University Dortmund Faculty of Chemistry, Chemical Biology Otto-Hahn-Strasse 6 44221 Dortmund Germany
| | - Anastasia Knyazeva
- Umeå University Department of Chemistry 90187 Umeå Sweden
- Umeå University Umeå Center for Microbial Research 90187 Umeå Sweden
| | - Raphael Gasper
- Max Planck Institute of Molecular Physiology Crystallography and Biophysics Unit Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Dale Corkery
- Umeå University Department of Chemistry 90187 Umeå Sweden
- Umeå University Umeå Center for Microbial Research 90187 Umeå Sweden
| | - Pia Bodenbinder
- Max Planck Institute of Molecular Physiology Department of Chemical Biology Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Technical University Dortmund Faculty of Chemistry, Chemical Biology Otto-Hahn-Strasse 6 44221 Dortmund Germany
| | - Julian J. Holstein
- Technical University Dortmund Faculty of Chemistry, Chemical Biology Otto-Hahn-Strasse 6 44221 Dortmund Germany
- Technical University Dortmund Faculty of Chemistry, Inorganic Chemistry Otto-Hahn-Strasse 6 44221 Dortmund Germany
| | - Sonja Sievers
- Compound Management and Screening Center (COMAS) Otto-Hahn-Strasse 11 44221 Dortmund Germany
| | - Yao‐Wen Wu
- Umeå University Department of Chemistry 90187 Umeå Sweden
- Umeå University Umeå Center for Microbial Research 90187 Umeå Sweden
| | - Herbert Waldmann
- Max Planck Institute of Molecular Physiology Department of Chemical Biology Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Technical University Dortmund Faculty of Chemistry, Chemical Biology Otto-Hahn-Strasse 6 44221 Dortmund Germany
| |
Collapse
|
24
|
Srinivasulu V, Srikanth G, Khanfar MA, Abu-Yousef IA, Majdalawieh AF, Mazitschek R, Setty SC, Sebastian A, Al-Tel TH. Stereodivergent Complexity-to-Diversity Strategy en Route to the Synthesis of Nature-Inspired Skeleta. J Org Chem 2022; 87:1377-1397. [PMID: 35014258 DOI: 10.1021/acs.joc.1c02698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The complexity-to-diversity (CtD) strategy has become one of the most powerful tools used to transform complex natural products into diverse skeleta. However, the reactions utilized in this process are often limited by their compatibility with existing functional groups, which in turn restricts access to the desired skeletal diversity. In the course of employing a CtD strategy en route to the synthesis of natural product-inspired compounds, our group has developed several stereodivergent strategies employing indoloquinolizine natural product analogues as starting materials. These transformations led to the rapid and diastereoselective synthesis of diverse classes of natural product-like architectures, including camptothecin-inspired analogues, azecane medium-sized ring systems, arborescidine-inspired systems, etc. This manifestation required a drastic modification of the synthetic design that ultimately led to modular and diastereoselective access to a diverse collection of various classes of biologically significant natural product analogues. The reported strategies provide a unique platform that will be broadly applicable to other late-stage natural product transformation approaches.
Collapse
Affiliation(s)
- Vunnam Srinivasulu
- Sharjah Institute for Medical Research, University of Sharjah, P.O. Box 27272, Sharjah, UAE
| | - Gourishetty Srikanth
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, P.O. Box 26666, Sharjah, UAE
| | - Monther A Khanfar
- College of Science, Department of Chemistry, Pure and Applied Chemistry Group, University of Sharjah, P.O. Box 27272, Sharjah, UAE
| | - Imad A Abu-Yousef
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, P.O. Box 26666, Sharjah, UAE
| | - Amin F Majdalawieh
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, P.O. Box 26666, Sharjah, UAE
| | - Ralph Mazitschek
- Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Subbaiah Chennam Setty
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, P.O. Box 26666, Sharjah, UAE
| | - Anusha Sebastian
- Sharjah Institute for Medical Research, University of Sharjah, P.O. Box 27272, Sharjah, UAE
| | - Taleb H Al-Tel
- Sharjah Institute for Medical Research, University of Sharjah, P.O. Box 27272, Sharjah, UAE.,College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, UAE
| |
Collapse
|
25
|
Yin ZG, Liu XW, Chen L, Liu XL, Pan BW, Zhou Y. Regio- and stereoselective synthesis and evaluation of densely functionalized bispiro[oxindole-isoxazole-indandione] hybrids as anticancer agents. NEW J CHEM 2022. [DOI: 10.1039/d2nj03349f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This is the combination of three key pharmacophores through bispiro quaternary carbon atoms and evaluation of their anticancer activity.
Collapse
Affiliation(s)
- Zhi-Gang Yin
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), Institute of Agro-Bioengineering/College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Xiong-Wei Liu
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Lin Chen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), Institute of Agro-Bioengineering/College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Xiong-Li Liu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), Institute of Agro-Bioengineering/College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Bo-Wen Pan
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Ying Zhou
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| |
Collapse
|
26
|
Gally JM, Pahl A, Czodrowski P, Waldmann H. Pseudonatural Products Occur Frequently in Biologically Relevant Compounds. J Chem Inf Model 2021; 61:5458-5468. [PMID: 34669418 PMCID: PMC8611719 DOI: 10.1021/acs.jcim.1c01084] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
A new methodology
for classifying fragment combinations and characterizing
pseudonatural products (PNPs) is described. The source code is based
on open-source tools and is organized as a Python package. Tasks can
be executed individually or within the context of scalable, robust
workflows. First, structures are standardized and duplicate entries
are filtered out. Then, molecules are probed for the presence of predefined
fragments. For molecules with more than one match, fragment combinations
are classified. The algorithm considers the pairwise relative position
of fragments within the molecule (fused atoms, linkers, intermediary
rings), resulting in 18 different possible fragment combination categories.
Finally, all combinations for a given molecule are assembled into
a fragment combination graph, with fragments as nodes and combination
types as edges. This workflow was applied to characterize PNPs in
the ChEMBL database via comparison of fragment combination graphs
with natural product (NP) references, represented by the Dictionary
of Natural Products. The Murcko fragments extracted from 2000 structures
previously described were used to define NP fragments. The results
indicate that ca. 23% of the biologically relevant compounds listed
in ChEMBL comply to the PNP definition and that, therefore, PNPs occur
frequently among known biologically relevant small molecules. The
majority (>95%) of PNPs contain two to four fragments, mainly (>95%)
distributed in five different combination types. These findings may
provide guidance for the design of new PNPs.
Collapse
Affiliation(s)
- José-Manuel Gally
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Axel Pahl
- Compound Management and Screening Center, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Paul Czodrowski
- Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Straße 6, 44227 Dortmund, Germany
| | - Herbert Waldmann
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany.,Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Straße 6, 44227 Dortmund, Germany
| |
Collapse
|
27
|
Greiner LC, Inuki S, Arichi N, Oishi S, Suzuki R, Iwai T, Sawamura M, Hashmi ASK, Ohno H. Access to Indole-Fused Benzannulated Medium-Sized Rings through a Gold(I)-Catalyzed Cascade Cyclization of Azido-Alkynes. Chemistry 2021; 27:12992-12997. [PMID: 34110644 DOI: 10.1002/chem.202101824] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Indexed: 02/05/2023]
Abstract
Because benzannulated and indole-fused medium-sized rings are found in many bioactive compounds, combining these fragments might lead to unexplored areas of biologically relevant and uncovered chemical space. Herein is shown that α-imino gold carbene chemistry can play an important role in solving the difficulty in the formation of medium-sized rings. Namely, phenylene-tethered azido-alkynes undergo arylative cyclization through the formation of a gold carbene intermediate to afford benzannulated indole-fused medium-sized tetracycles. The reactions allow a range of different aryl substitution patterns and efficient access to these otherwise difficult-to-obtain medium-sized rings. This study also demonstrates the feasibility of the semihollow-shaped C-dtbm ligand for the construction of a nine-membered ring.
Collapse
Affiliation(s)
- Luca C Greiner
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Shinsuke Inuki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Norihito Arichi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Shinya Oishi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan.,Current Address: Department of Medicinal Chemistry, Kyoto Pharmaceutical University, Yashima-ku, Kyoto, 607-8412, Japan
| | - Rikito Suzuki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Tomohiro Iwai
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan.,Current Address: Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, 153-8902, Japan
| | - Masaya Sawamura
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - A Stephen K Hashmi
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Hiroaki Ohno
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
28
|
Greiner LC, Matsuoka J, Inuki S, Ohno H. Azido-Alkynes in Gold(I)-Catalyzed Indole Syntheses. CHEM REC 2021; 21:3897-3910. [PMID: 34498385 DOI: 10.1002/tcr.202100202] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/26/2021] [Indexed: 12/20/2022]
Abstract
The exploitation of nitrogen-functionalized reactive intermediates plays an important role in the synthesis of biologically relevant scaffolds in the field of pharmaceutical sciences. Those based on gold carbenes carry a strong potential for the design of highly efficient cascade processes toward the synthesis of compounds containing a fused indole core structure. This personal account gives a detailed explanation of our contribution to this sector, and embraces the reaction development of efficient gold-catalyzed cascade processes based on diversely functionalized azido-alkynes. Challenging cyclizations and their subsequent application in the synthesis of pharmaceutically relevant scaffolds and natural products conducted in an intra- or intermolecular fashion are key features of our research.
Collapse
Affiliation(s)
- Luca C Greiner
- Graduate School of Pharmaceutical Sciences, Kyoto University Sakyo-ku, Kyoto, 606-8501, Japan
| | - Junpei Matsuoka
- Graduate School of Pharmaceutical Sciences, Kyoto University Sakyo-ku, Kyoto, 606-8501, Japan.,Current address: Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kodo, Kyotanabe, 610-0395, Japan
| | - Shinsuke Inuki
- Graduate School of Pharmaceutical Sciences, Kyoto University Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hiroaki Ohno
- Graduate School of Pharmaceutical Sciences, Kyoto University Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
29
|
Karageorgis G, Foley DJ, Laraia L, Brakmann S, Waldmann H. Pseudo Natural Products-Chemical Evolution of Natural Product Structure. Angew Chem Int Ed Engl 2021; 60:15705-15723. [PMID: 33644925 PMCID: PMC8360037 DOI: 10.1002/anie.202016575] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/27/2021] [Indexed: 01/05/2023]
Abstract
Pseudo-natural products (PNPs) combine natural product (NP) fragments in novel arrangements not accessible by current biosynthesis pathways. As such they can be regarded as non-biogenic fusions of NP-derived fragments. They inherit key biological characteristics of the guiding natural product, such as chemical and physiological properties, yet define small molecule chemotypes with unprecedented or unexpected bioactivity. We iterate the design principles underpinning PNP scaffolds and highlight their syntheses and biological investigations. We provide a cheminformatic analysis of PNP collections assessing their molecular properties and shape diversity. We propose and discuss how the iterative analysis of NP structure, design, synthesis, and biological evaluation of PNPs can be regarded as a human-driven branch of the evolution of natural products, that is, a chemical evolution of natural product structure.
Collapse
Affiliation(s)
- George Karageorgis
- Max-Planck Institute of Molecular PhysiologyOtto-Hahn Strasse 1144227DortmundGermany
| | - Daniel J. Foley
- Max-Planck Institute of Molecular PhysiologyOtto-Hahn Strasse 1144227DortmundGermany
- Current address: School of Physical and Chemical SciencesUniversity of CanterburyPrivate Bag 4800Christchurch8140New Zealand
| | - Luca Laraia
- Max-Planck Institute of Molecular PhysiologyOtto-Hahn Strasse 1144227DortmundGermany
- Current address: Department of ChemistryTechnical University of Denmark, kemitorvet 2072800 Kgs.LyngbyDenmark
| | - Susanne Brakmann
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn Strasse 4a44227DortmundGermany
| | - Herbert Waldmann
- Max-Planck Institute of Molecular PhysiologyOtto-Hahn Strasse 1144227DortmundGermany
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn Strasse 4a44227DortmundGermany
| |
Collapse
|
30
|
|
31
|
Ohno H, Inuki S. Nonbiomimetic total synthesis of indole alkaloids using alkyne-based strategies. Org Biomol Chem 2021; 19:3551-3568. [PMID: 33908430 DOI: 10.1039/d0ob02577a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Biomimetic natural product synthesis is generally straightforward and efficient because of its established feasibility in nature and utility in comprehensive synthesis, and the cost-effectiveness of naturally derived starting materials. On the other hand, nonbiomimetic strategies can be an important option in natural product synthesis since (1) nonbiomimetic synthesis offers more flexibility and can demonstrate the originality of chemists, and (2) the structures of derivatives accessible by nonbiomimetic synthesis can be considerably different from those that are synthesised in nature. This review summarises nonbiomimetic total syntheses of indole alkaloids using alkyne chemistry for constructing core structures, including ergot alkaloids, monoterpene indole alkaloids (mainly corynanthe, aspidosperma, strychnos, and akuammiline), and pyrroloindole and related alkaloids. To clarify the differences between alkyne-based strategies and biosynthesis, the alkynes in nature and the biosyntheses of indole alkaloids are also outlined.
Collapse
Affiliation(s)
- Hiroaki Ohno
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Shinsuke Inuki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
32
|
Karageorgis G, Foley DJ, Laraia L, Brakmann S, Waldmann H. Pseudo Natural Products—Chemical Evolution of Natural Product Structure. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016575] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- George Karageorgis
- Max-Planck Institute of Molecular Physiology Otto-Hahn Strasse 11 44227 Dortmund Germany
| | - Daniel J. Foley
- Max-Planck Institute of Molecular Physiology Otto-Hahn Strasse 11 44227 Dortmund Germany
- Current address: School of Physical and Chemical Sciences University of Canterbury Private Bag 4800 Christchurch 8140 New Zealand
| | - Luca Laraia
- Max-Planck Institute of Molecular Physiology Otto-Hahn Strasse 11 44227 Dortmund Germany
- Current address: Department of Chemistry Technical University of Denmark, kemitorvet 207 2800 Kgs. Lyngby Denmark
| | - Susanne Brakmann
- Faculty of Chemistry and Chemical Biology TU Dortmund University Otto-Hahn Strasse 4a 44227 Dortmund Germany
| | - Herbert Waldmann
- Max-Planck Institute of Molecular Physiology Otto-Hahn Strasse 11 44227 Dortmund Germany
- Faculty of Chemistry and Chemical Biology TU Dortmund University Otto-Hahn Strasse 4a 44227 Dortmund Germany
| |
Collapse
|
33
|
Abstract
It is well established that medicinal chemists should depart from the flat, sp2-dominated nature of traditional drugs and incorporate complexities of bioactive natural products, such as sp3-richness, 3D topology and chirality. There is a gray area, however, in the relevance of newly developed chemical scaffolds that exhibit these complexities but do not correlate to anything observed in nature. This can leave synthetic methodologists searching for structural similarities between their newly developed products and known natural products in search of justification. This article offers a perspective on how these types of complex 'abiotic' scaffolds can be appreciated purely on the basis of their structural novelty, and identifies the unique advantages arising when a complex chemical entity unrecognized by nature is introduced to biological systems.
Collapse
|
34
|
Zhao JQ, Zhou S, Wang ZH, You Y, Chen S, Liu XL, Zhou MQ, Yuan WC. Catalytic asymmetric dearomative [4 + 2] annulation of 2-nitrobenzofurans and 5 H-thiazol-4-ones: stereoselective construction of dihydrobenzofuran-bridged polycyclic skeletons. Org Chem Front 2021. [DOI: 10.1039/d1qo01061a] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An organocatalytic asymmetric dearomative [4 + 2] annulation of 2-nitrobenzofurans and 5H-thiazol-4-ones is developed for the construction of dihydrobenzofuran-bridged polycyclic skeletons with good results.
Collapse
Affiliation(s)
- Jian-Qiang Zhao
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Shun Zhou
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Zhen-Hua Wang
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yong You
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Shuang Chen
- Guizhou Engineering Center for Innovative Traditional Chinese Medicine and Ethnic Medicine, Guizhou University, Guiyang, Guizhou 550025, China
| | - Xiong-Li Liu
- Guizhou Engineering Center for Innovative Traditional Chinese Medicine and Ethnic Medicine, Guizhou University, Guiyang, Guizhou 550025, China
| | - Ming-Qiang Zhou
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Wei-Cheng Yuan
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| |
Collapse
|
35
|
Chávez-Hernández AL, Sánchez-Cruz N, Medina-Franco JL. Fragment Library of Natural Products and Compound Databases for Drug Discovery. Biomolecules 2020; 10:E1518. [PMID: 33172012 PMCID: PMC7694623 DOI: 10.3390/biom10111518] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 12/27/2022] Open
Abstract
Natural products and semi-synthetic compounds continue to be a significant source of drug candidates for a broad range of diseases, including coronavirus disease 2019 (COVID-19), which is causing the current pandemic. Besides being attractive sources of bioactive compounds for further development or optimization, natural products are excellent substrates of unique substructures for fragment-based drug discovery. To this end, fragment libraries should be incorporated into automated drug design pipelines. However, public fragment libraries based on extensive collections of natural products are still limited. Herein, we report the generation and analysis of a fragment library of natural products derived from a database with more than 400,000 compounds. We also report fragment libraries of a large food chemical database and other compound datasets of interest in drug discovery, including compound libraries relevant for COVID-19 drug discovery. The fragment libraries were characterized in terms of content and diversity.
Collapse
Affiliation(s)
| | | | - José L. Medina-Franco
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Mexico City 04510, Mexico; (A.L.C.-H.); (N.S.-C.)
| |
Collapse
|