1
|
Das P, Ghosh P, Mainkar PS, Madhavachary R, Chandrasekhar S. Total Synthesis of an Immunosuppressive C 25 Macrocyclic Terpenoid Produced by Terpene Synthase ( LcTPS2). J Org Chem 2024; 89:15145-15150. [PMID: 39358673 DOI: 10.1021/acs.joc.4c01915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Macrocyclic natural products, particularly those with no functionalities except unsaturation, are recognized for their therapeutic potential but are notoriously challenging to synthesize. In this study, we report the first total synthesis of an unconventional 18-membered, C25 macrocyclic terpenoid, which has demonstrated substantial immunosuppressive activity. This synthesis was achieved through strategic modifications and innovative reaction engineering, utilizing α-terpineol and geraniol as starting materials, highlighting a novel approach in macrocyclic terpenoid synthesis.
Collapse
Affiliation(s)
- Pralay Das
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Palash Ghosh
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Prathama S Mainkar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rudrakshula Madhavachary
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
| | - Srivari Chandrasekhar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Lv K, Duan Y, Li X, Wang X, Xing C, Lan K, Zhu B, Zhu G, Qiu Y, Li S, Hsiang T, Zhang L, Jiang L, Liu X. Identifying sesterterpenoids via feature-based molecular networking and small-scale fermentation. Appl Microbiol Biotechnol 2024; 108:483. [PMID: 39377838 PMCID: PMC11461746 DOI: 10.1007/s00253-024-13299-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/12/2024] [Accepted: 08/30/2024] [Indexed: 10/09/2024]
Abstract
Terpenoids are known for their diverse structures and broad bioactivities with significant potential in pharmaceutical applications. However, natural products with low yields are usually ignored in traditional chemical analysis. Feature-based molecular networking (FBMN) was developed recently to cluster compounds with similar skeletons, which can highlight trace amounts of unknown compounds. Fusoxypene A is a sesterterpene synthesized by Fusarium oxysporum fusoxypene synthase (FoFS) with a unique 5/6/7/3/5 ring system. In this study, the FoFS-containing biosynthetic gene cluster was identified from F. oxysporum FO14005, and an efficient FBMN-based strategy was established to characterize four new sesterterpenoids, fusoxyordienoid A-D (1-4), based on a small-scale fermentation strategy. A cytochrome P450 monooxygenase, FusB, was found to be involved in the functionalization of fusoxypene A at C-17 and C-24 and responsible for the hydroxylation of fusoxyordienoid A at C-1 and C-8. This study highlights the potential of FBMN as a powerful tool for the discovery and characterization of natural compounds with low abundance. KEY POINTS: Combined small-scale fermentation and FBMN for rapid discovery of fusoxyordienoids Characterization of four new fusoxyordienoids with 5/6/7/3/5 ring system Biosynthetic pathway elucidation via tandem expression and substrate feeding.
Collapse
Affiliation(s)
- Kangjie Lv
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai, 200237, China
| | - Yuyang Duan
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai, 200237, China
| | - Xiaoying Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai, 200237, China
| | - Xinye Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai, 200237, China
| | - Cuiping Xing
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai, 200237, China
| | - Keying Lan
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai, 200237, China
| | - Bin Zhu
- Lab of Pharmaceutical Crystal Engineering Research and Technology, East China University of Science and Technology, Shanghai, 200237, China
| | - Guoliang Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai, 200237, China
| | - Yuyang Qiu
- School of Insurance, Shandong University of Finance and Economics, Jinan, 250014, China
| | - Songwei Li
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai, 200237, China
| | - Lan Jiang
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210093, China.
| | - Xueting Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai, 200237, China.
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210093, China.
| |
Collapse
|
3
|
Geng H, Fu R, Zhou TT, Li M, Liu YC, Li XN, Liu Y, Zheng Y, Li SH. Selenium dioxide promoted selenylation/cyclization of leucosceptrane sesterterpenoids. Chem Commun (Camb) 2024; 60:10512-10515. [PMID: 39225283 DOI: 10.1039/d4cc03674c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
A novel selenium dioxide promoted selenylation/cyclization of leucosceptrane sesterterpenoids was reported. Two types of leucosceptrane derivatives with different valence states of selenium atoms (Se2+ and Se4+) were obtained. The mechanisms of these two processes were proposed, and the selenium-containing derivates may serve as intermediates of Riley oxidation that could be trapped with appropriate substrates. Immunosuppressive activity screening revealed that 10 and 11 had obvious inhibitory effects on IFN-γ production, with IC50 values of 5.29 and 17.60 μM, respectively, which were more active than their precursor leucosceptroid A.
Collapse
Affiliation(s)
- Hao Geng
- Key Laboratory of Phytochemistry and Natural Medicines, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China.
| | - Ran Fu
- Key Laboratory of Phytochemistry and Natural Medicines, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ting-Ting Zhou
- Key Laboratory of Phytochemistry and Natural Medicines, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China.
| | - Man Li
- Key Laboratory of Phytochemistry and Natural Medicines, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China.
| | - Yan-Chun Liu
- Key Laboratory of Phytochemistry and Natural Medicines, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiao-Nian Li
- Key Laboratory of Phytochemistry and Natural Medicines, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China.
| | - Yan Liu
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Yu Zheng
- Key Laboratory of Phytochemistry and Natural Medicines, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China.
| | - Sheng-Hong Li
- Key Laboratory of Phytochemistry and Natural Medicines, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China.
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| |
Collapse
|
4
|
Xue Y, Hou SH, Zhang X, Zhang FM, Zhang XM, Tu YQ. Total Synthesis of the Hexacyclic Sesterterpenoid Niduterpenoid B via Structural Reorganization Strategy. J Am Chem Soc 2024; 146:25445-25450. [PMID: 39235150 DOI: 10.1021/jacs.4c09555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
To date, it remains challenging to precisely and efficiently construct structurally intriguing polycarbocycles with densely packed stereocenters in organic synthesis. Niduterpenoid B, a naturally occurring ERα inhibitor, exemplifies this complexity with its intricate polycyclic network comprising 5 cyclopentane and 1 cyclopropane rings, featuring 13 contiguous stereocenters, including 4 all-carbon quaternary centers. In this work, we describe the first total synthesis of niduterpenoid B using a structural reorganization strategy. Key features include the following: (1) an efficient methoxy-controlled cascade reaction that precisely forges a highly functionalized tetraquinane (A-D rings) bearing sterically hindered contiguous quaternary stereocenters; (2) a rhodium-catalyzed [1 + 2] cycloaddition that facilitates the construction of a strained 3/5 bicycle (E-F rings) angularly fused with ring D.
Collapse
Affiliation(s)
- Yuan Xue
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- School of Pharmaceutical Sciences, School of Chemistry and Chemical Engineering, Frontier Scientific Center of Transformative Molecules, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Si-Hua Hou
- School of Pharmaceutical Sciences, School of Chemistry and Chemical Engineering, Frontier Scientific Center of Transformative Molecules, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiang Zhang
- School of Pharmaceutical Sciences, School of Chemistry and Chemical Engineering, Frontier Scientific Center of Transformative Molecules, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fu-Min Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiao-Ming Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yong-Qiang Tu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- School of Pharmaceutical Sciences, School of Chemistry and Chemical Engineering, Frontier Scientific Center of Transformative Molecules, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
5
|
Galitz A, Vargas S, Thomas OP, Reddy MM, Wörheide G, Erpenbeck D. Genomics of Terpene Biosynthesis in Dictyoceratid Sponges (Porifera) - What Do We (Not) Know? Chem Biodivers 2024; 21:e202400549. [PMID: 39177427 DOI: 10.1002/cbdv.202400549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/04/2024] [Indexed: 08/24/2024]
Abstract
Sponges are recognized as promising sources for novel bioactive metabolites. Among them are terpenoid metabolites that constitute key biochemical defense mechanisms in several sponge taxa. Despite their significance, the genetic basis for terpenoid biosynthesis in sponges remains poorly understood. Dictyoceratida comprise demosponges well-known for their bioactive terpenoids. In this study, we explored the currently available genomic data for insights into the metabolic pathways of dictyoceratid terpenoids. We first identified prenyltransferase (PT) and terpene cyclase (TC) enzymes essential for the terpenoid biosynthetic processes in the terrestrial realm by analyzing available transcriptomic and genomic data of Dictyoceratida sponges and 10 other sponge species. All Dictyoceratida sponges displayed various PTs involved in either sesqui- or diterpene, steroid and carotenoid production. Additionally, it was possible to identify a potential candidate for a dictyoceratid sesterterpene PT. However, analogs of common terrestrial TCs were absent, suggesting the existence of a distinct or convergently evolved sponge-specific TC. Our study aims to contribute to the foundational understanding of terpene biosynthesis in sponges, unveiling the currently evident genetic components for terpenoid production in species not previously studied. Simultaneously, it aims to identify the known and unknown factors, as a starting point for biochemical and genetic investigations in sponge terpenoid production.
Collapse
Affiliation(s)
- Adrian Galitz
- Department of Earth- and Environmental Sciences, Palaeontology & Geobiology, Ludwig-Maximilians-Universität München, 80333, Munich, Germany
| | - Sergio Vargas
- Department of Earth- and Environmental Sciences, Palaeontology & Geobiology, Ludwig-Maximilians-Universität München, 80333, Munich, Germany
| | - Olivier P Thomas
- School of Biological and Chemical Sciences and Ryan Institute, University of Galway, H91TK33, Galway, Ireland
| | - Maggie M Reddy
- School of Biological and Chemical Sciences and Ryan Institute, University of Galway, H91TK33, Galway, Ireland
- Department of Biological Sciences, University of Cape Town, Private Bag X3, 7701, Rondebosch, South Africa
| | - Gert Wörheide
- Department of Earth- and Environmental Sciences, Palaeontology & Geobiology, Ludwig-Maximilians-Universität München, 80333, Munich, Germany
- GeoBio-Center, Ludwig-Maximilians-Universität München, 80333, Munich, Germany
- SNSB-Bavarian State Collection of Palaeontology and Geology, 80333, Munich, Germany
| | - Dirk Erpenbeck
- Department of Earth- and Environmental Sciences, Palaeontology & Geobiology, Ludwig-Maximilians-Universität München, 80333, Munich, Germany
- GeoBio-Center, Ludwig-Maximilians-Universität München, 80333, Munich, Germany
| |
Collapse
|
6
|
He S, Zou Q, Zhang Q, Luo Y, Yan D, He J, Liu Y, Cui H. Glasesterterpenoids A-C: three sesterterpenoids with 7-cyclohexyldecahydronaphthalene carbon skeleton isolated from the root of Lindera glauca. Chin J Nat Med 2024; 22:864-868. [PMID: 39326980 DOI: 10.1016/s1875-5364(24)60657-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Indexed: 09/28/2024]
Abstract
Three novel sesterterpenoids glasesterterpenoids A-C (1-3), featuring an unprecedented 7-cyclohexyldecahydronaphthalene carbon skeleton, were isolated from the root of Lindera glauca (L. glauca). Their structures were elucidated by quantum chemical calculations and spectroscopic methods. The biogenetic pathway for 1-3 is proposed. In the bioassay, glasesterterpenoid C exhibited DNA topoisomerase 1 (Top1) inhibitory activity compared with the positive control, camptothecin. These findings represent the first examples of sesterterpenoids with a 7-cyclohexyldecahydronaphthalene carbon skeleton from the root of L. glauca.
Collapse
Affiliation(s)
- Shiting He
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Qinghui Zou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Qi Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yingming Luo
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Die Yan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Jingxin He
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yena Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Hui Cui
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| |
Collapse
|
7
|
Xu M, Xu H, Lei Z, Xing B, Dickschat JS, Yang D, Ma M. Structural Insights Into the Terpene Cyclization Domains of Two Fungal Sesterterpene Synthases and Enzymatic Engineering for Sesterterpene Diversification. Angew Chem Int Ed Engl 2024; 63:e202405140. [PMID: 38584136 DOI: 10.1002/anie.202405140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Little is known about the structures and catalytic mechanisms of sesterterpene synthases (StTSs), which greatly hinders the structure-based engineering of StTSs for structural diversity expansion of sesterterpenes. We here report on the crystal structures of the terpene cyclization (TC) domains of two fungal StTSs: sesterfisherol synthase (NfSS) and sesterbrasiliatriene synthase (PbSS). Both TC structures contain benzyltriethylammonium chloride (BTAC), pyrophosphate (PPi), and magnesium ions (Mg2+), clearly defining the catalytic active sites. A combination of theory and experiments including carbocationic intermediates modeling, site-directed mutagenesis, and isotope labeling provided detailed insights into the structural basis for their catalytic mechanisms. Structure-based engineering of NfSS and PbSS resulted in the formation of 20 sesterterpenes including 13 new compounds and four pairs of epimers with different configurations at C18. These results expand the structural diversity of sesterterpenes and provide important insights for future synthetic biology research.
Collapse
Affiliation(s)
- Meng Xu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Houchao Xu
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121, Bonn, Germany
| | - Zhenyu Lei
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Baiying Xing
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Jeroen S Dickschat
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121, Bonn, Germany
| | - Donghui Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Ming Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| |
Collapse
|
8
|
Liu S, Wang W, Liu Q, Yao M, Liao L, Gao S, Yu Y, Yang X. Emerindanols A and B: Two Bipolyhydroindenol Sesterterpenes with 5/6-6/5 Coupled Ring System Discovered by Genome Mining. Org Lett 2024; 26:4475-4479. [PMID: 38767291 DOI: 10.1021/acs.orglett.4c01272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Genome mining of Emericella sp. XL-029 achieved a new type E sesterterpene synthase, EmES, which affored a novel bipolyhydroindenol sesterterpene, emerindanol A. Heterologous coexpression with the upstream P450 oxidase revealed C-4 hydroxylated product, emerindanol B. Notably, emerindanols A and B represented the first sesterterpenes featuring a unique 5/6-6/5 coupled ring system. EmES was postulated to initiate through C1-IV-V pathway and convert the fused ring intermediate into the final coupled ring product through a spiro skeleton.
Collapse
Affiliation(s)
- Shuzhi Liu
- School of Pharmaceutical Sciences, South-Central Minzu University, 182 Minzu Road, Wuhan 430074, China
| | - Wenjing Wang
- School of Pharmaceutical Sciences, South-Central Minzu University, 182 Minzu Road, Wuhan 430074, China
| | - Qingpei Liu
- School of Pharmaceutical Sciences, South-Central Minzu University, 182 Minzu Road, Wuhan 430074, China
| | - Ming Yao
- School of Pharmaceutical Sciences, South-Central Minzu University, 182 Minzu Road, Wuhan 430074, China
| | - Liangxiu Liao
- School of Pharmaceutical Sciences, South-Central Minzu University, 182 Minzu Road, Wuhan 430074, China
| | - Shuaibiao Gao
- School of Pharmaceutical Sciences, South-Central Minzu University, 182 Minzu Road, Wuhan 430074, China
| | - Yi Yu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, School of Pharmaceutical Sciences, Wuhan University, 185 East Lake Road, Wuhan 430071, China
| | - Xiaolong Yang
- School of Pharmaceutical Sciences, South-Central Minzu University, 182 Minzu Road, Wuhan 430074, China
| |
Collapse
|
9
|
Luo P, Huang JH, Lv JM, Wang GQ, Hu D, Gao H. Biosynthesis of fungal terpenoids. Nat Prod Rep 2024; 41:748-783. [PMID: 38265076 DOI: 10.1039/d3np00052d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Covering: up to August 2023Terpenoids, which are widely distributed in animals, plants, and microorganisms, are a large group of natural products with diverse structures and various biological activities. They have made great contributions to human health as therapeutic agents, such as the anti-cancer drug paclitaxel and anti-malarial agent artemisinin. Accordingly, the biosynthesis of this important class of natural products has been extensively studied, which generally involves two major steps: hydrocarbon skeleton construction by terpenoid cyclases and skeleton modification by tailoring enzymes. Additionally, fungi (Ascomycota and Basidiomycota) serve as an important source for the discovery of terpenoids. With the rapid development of sequencing technology and bioinformatics approaches, genome mining has emerged as one of the most effective strategies to discover novel terpenoids from fungi. To date, numerous terpenoid cyclases, including typical class I and class II terpenoid cyclases as well as emerging UbiA-type terpenoid cyclases, have been identified, together with a variety of tailoring enzymes, including cytochrome P450 enzymes, flavin-dependent monooxygenases, and acyltransferases. In this review, our aim is to comprehensively present all fungal terpenoid cyclases identified up to August 2023, with a focus on newly discovered terpenoid cyclases, especially the emerging UbiA-type terpenoid cyclases, and their related tailoring enzymes from 2015 to August 2023.
Collapse
Affiliation(s)
- Pan Luo
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education of China, Jinan University, Guangzhou 510632, China.
| | - Jia-Hua Huang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education of China, Jinan University, Guangzhou 510632, China.
| | - Jian-Ming Lv
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education of China, Jinan University, Guangzhou 510632, China.
| | - Gao-Qian Wang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education of China, Jinan University, Guangzhou 510632, China.
| | - Dan Hu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education of China, Jinan University, Guangzhou 510632, China.
| | - Hao Gao
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education of China, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
10
|
Gu B, Goldfuss B, Dickschat JS. Two Sesterterpene Synthases from Lentzea atacamensis Demonstrate the Role of Conformational Variability in Terpene Biosynthesis. Angew Chem Int Ed Engl 2024; 63:e202401539. [PMID: 38372063 DOI: 10.1002/anie.202401539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/20/2024]
Abstract
Mining of two multiproduct sesterterpene synthases from Lentzea atacamensis resulted in the identification of the synthases for lentzeadiene (LaLDS) and atacamatriene (LaATS). The main product of LaLDS (lentzeadiene) is a new compound, while one of the side products (lentzeatetraene) is the enantiomer of brassitetraene B and the other side product (sestermobaraene F) is known from a surprisingly distantly related sesterterpene synthase. LaATS produces six new compounds, one of which is the enantiomer of the known sesterterpene Bm1. Notably, for both enzymes the products cannot all be explained from one and the same starting conformation of geranylfarnesyl diphosphate, demonstrating the requirement of conformational flexibility of the substrate in the enzymes' active sites. For lentzeadiene an intriguing thermal [1,5]-sigmatropic rearrangement was discovered, reminiscent of the biosynthesis of vitamin D3. All enzyme reactions and the [1,5]-sigmatropic rearrangement were investigated through isotopic labeling experiments and DFT calculations. The results also emphasize the importance of conformational changes during terpene cyclizations.
Collapse
Affiliation(s)
- Binbin Gu
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Bernd Goldfuss
- Department for Chemistry, University of Cologne, Greinstraße 4, 50939, Cologne, Germany
| | - Jeroen S Dickschat
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| |
Collapse
|
11
|
Wang X, Zhang J, Lu X, Bai Y, Wang G. Two diversities meet in the rhizosphere: root specialized metabolites and microbiome. J Genet Genomics 2024; 51:467-478. [PMID: 37879496 DOI: 10.1016/j.jgg.2023.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/15/2023] [Accepted: 10/15/2023] [Indexed: 10/27/2023]
Abstract
Plants serve as rich repositories of diverse chemical compounds collectively referred to as specialized metabolites. These compounds are of importance for adaptive processes, including interactions with various microbes both beneficial and harmful. Considering microbes as bioreactors, the chemical diversity undergoes dynamic changes when root-derived specialized metabolites (RSMs) and microbes encounter each other in the rhizosphere. Recent advancements in sequencing techniques and molecular biology tools have not only accelerated the elucidation of biosynthetic pathways of RSMs but also unveiled the significance of RSMs in plant-microbe interactions. In this review, we provide a comprehensive description of the effects of RSMs on microbe assembly in the rhizosphere and the influence of corresponding microbial changes on plant health, incorporating the most up-to-date information available. Additionally, we highlight open questions that remain for a deeper understanding of and harnessing the potential of RSM-microbe interactions to enhance plant adaptation to the environment. Finally, we propose a pipeline for investigating the intricate associations between root exometabolites and the rhizomicrobiome.
Collapse
Affiliation(s)
- Xiaochen Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Jingying Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan 572025, China
| | - Xinjun Lu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan 572025, China
| | - Yang Bai
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan 572025, China; College of Advanced Agricultural Sciences, Chinese Academy of Sciences, Beijing 100049, China.
| | - Guodong Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
12
|
Li T, Li H, Zhou TT, Zheng Y, Li SH. Syntheses of Linear Biosynthetic C 25-Precursors of Leucosceptroids. J Org Chem 2024; 89:3652-3656. [PMID: 38353480 DOI: 10.1021/acs.joc.3c02796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
An efficient synthetic approach was developed and applied to the syntheses of four linear biosynthetic C25-precursors of leucosceptroids. The synthesis features a Julia-Kocienski olefination and a late-stage bioinspired photo-oxidation as key steps. The immunosuppressive effects of all synthetic compounds on mouse T cells and macrophage RAW264.7 were determined.
Collapse
Affiliation(s)
- Tao Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
| | - Hao Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
| | - Ting-Ting Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yu Zheng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P. R. China
| | - Sheng-Hong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P. R. China
| |
Collapse
|
13
|
Shen Y, Chen C, Zhao Z, Liang Y, Li Q, Xia X, Wu P, He F, Tong Q, Zhu H, Zhang Y. Bipoladien A, a Sesterterpenoid Containing an Undescribed 5/8/5/7 Carbon Skeleton from Bipolaris maydis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3549-3559. [PMID: 38325810 DOI: 10.1021/acs.jafc.3c08134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Bipoladiens A-E (1-5), five new ophiobolin-derived sesterterpenoids, and a known compound 6 (bipolaricin R) were isolated from the cultures of the phytopathogenic fungus Bipolaris maydis. Their structures and absolute configurations were elucidated based on comprehensive spectroscopic analyses, HRESIMS, electronic circular dichroism (ECD) calculations, and single-crystal X-ray diffraction analyses. Notably, compound 1 has an undescribed tetracyclic 5/8/5/7 fused carbon skeleton, and compound 2 possesses a rare multicyclic caged ring system. The biosynthetic pathway of 1 was proposed starting from 6 via a series of oxidation and cyclization reactions. Compound 6 showed excellent antiproliferation and apoptosis induction effects against A549 cell line. Additionally, compounds 5 and 6 exhibited noticeable antimicrobial ability against Bacillus cereus, Staphylococcus aureus, and Staphylococcus epidermidis. These findings not only developed the chemical and bioactivities diversities of ophiobolin-sesterterpenoid but also provided an idea to boost the application of natural products in the control of food pathogens.
Collapse
Affiliation(s)
- Yong Shen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Chunmei Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Ziming Zhao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yu Liang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Qin Li
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Xian Xia
- Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, College of Life Science, Hubei Normal University, Huangshi 435002, People's Republic of China
| | - Peng Wu
- Hubei Topgene Biotechnology Technical Research Institute Co., Ltd., Wuhan 430064, People's Republic of China
| | - Feng He
- Hubei Topgene Biotechnology Technical Research Institute Co., Ltd., Wuhan 430064, People's Republic of China
| | - Qingyi Tong
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Hucheng Zhu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| |
Collapse
|
14
|
Yan D, Arakelyan J, Wan T, Raina R, Chan TK, Ahn D, Kushnarev V, Cheung TK, Chan HC, Choi I, Ho PY, Hu F, Kim Y, Lau HL, Law YL, Leung CS, Tong CY, Wong KK, Yim WL, Karnaukhov NS, Kong RY, Babak MV, Matsuda Y. Genomics-driven derivatization of the bioactive fungal sesterterpenoid variecolin: Creation of an unnatural analogue with improved anticancer properties. Acta Pharm Sin B 2024; 14:421-432. [PMID: 38261827 PMCID: PMC10793096 DOI: 10.1016/j.apsb.2023.08.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/25/2023] [Accepted: 08/24/2023] [Indexed: 01/25/2024] Open
Abstract
A biosynthetic gene cluster for the bioactive fungal sesterterpenoids variecolin (1) and variecolactone (2) was identified in Aspergillus aculeatus ATCC 16872. Heterologous production of 1 and 2 was achieved in Aspergillus oryzae by expressing the sesterterpene synthase VrcA and the cytochrome P450 VrcB. Intriguingly, the replacement of VrcB with homologous P450s from other fungal terpenoid pathways yielded three new variecolin analogues (5-7). Analysis of the compounds' anticancer activity in vitro and in vivo revealed that although 5 and 1 had comparable activities, 5 was associated with significantly reduced toxic side effects in cancer-bearing mice, indicating its potentially broader therapeutic window. Our study describes the first tests of variecolin and its analogues in animals and demonstrates the utility of synthetic biology for creating molecules with improved biological activities.
Collapse
Affiliation(s)
- Dexiu Yan
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
- iGEM Team “VarieCure”, City University of Hong Kong, Hong Kong SAR, China
| | - Jemma Arakelyan
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
- iGEM Team “VarieCure”, City University of Hong Kong, Hong Kong SAR, China
| | - Teng Wan
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
- iGEM Team “VarieCure”, City University of Hong Kong, Hong Kong SAR, China
| | - Ritvik Raina
- iGEM Team “VarieCure”, City University of Hong Kong, Hong Kong SAR, China
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Tsz Ki Chan
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
- iGEM Team “VarieCure”, City University of Hong Kong, Hong Kong SAR, China
| | - Dohyun Ahn
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
- iGEM Team “VarieCure”, City University of Hong Kong, Hong Kong SAR, China
| | - Vladimir Kushnarev
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Tsz Kiu Cheung
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
- iGEM Team “VarieCure”, City University of Hong Kong, Hong Kong SAR, China
| | - Ho Ching Chan
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
- iGEM Team “VarieCure”, City University of Hong Kong, Hong Kong SAR, China
| | - Inseo Choi
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
- iGEM Team “VarieCure”, City University of Hong Kong, Hong Kong SAR, China
| | - Pui Yi Ho
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
- iGEM Team “VarieCure”, City University of Hong Kong, Hong Kong SAR, China
| | - Feijun Hu
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
- iGEM Team “VarieCure”, City University of Hong Kong, Hong Kong SAR, China
| | - Yujeong Kim
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
- iGEM Team “VarieCure”, City University of Hong Kong, Hong Kong SAR, China
| | - Hill Lam Lau
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
- iGEM Team “VarieCure”, City University of Hong Kong, Hong Kong SAR, China
| | - Ying Lo Law
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
- iGEM Team “VarieCure”, City University of Hong Kong, Hong Kong SAR, China
| | - Chi Seng Leung
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
- iGEM Team “VarieCure”, City University of Hong Kong, Hong Kong SAR, China
| | - Chun Yin Tong
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
- iGEM Team “VarieCure”, City University of Hong Kong, Hong Kong SAR, China
| | - Kai Kap Wong
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
- iGEM Team “VarieCure”, City University of Hong Kong, Hong Kong SAR, China
| | - Wing Lam Yim
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
- iGEM Team “VarieCure”, City University of Hong Kong, Hong Kong SAR, China
| | - Nikolay S. Karnaukhov
- Moscow Clinical Research Center Named After A.S. Loginov, Moscow 111123, Russian Federation
| | - Richard Y.C. Kong
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
- iGEM Team “VarieCure”, City University of Hong Kong, Hong Kong SAR, China
| | - Maria V. Babak
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
- iGEM Team “VarieCure”, City University of Hong Kong, Hong Kong SAR, China
| | - Yudai Matsuda
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
- iGEM Team “VarieCure”, City University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
15
|
Zheng CY, Zhao JX, Yuan CH, Peng X, Geng M, Ai J, Fan YY, Yue JM. Unprecedented sesterterpenoids, orientanoids A-C: discovery, bioinspired total synthesis and antitumor immunity. Chem Sci 2023; 14:13410-13418. [PMID: 38033907 PMCID: PMC10685275 DOI: 10.1039/d3sc04238c] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/05/2023] [Indexed: 12/02/2023] Open
Abstract
Sesterterpenoids are a very rare class of important natural products. Three new skeletal spiro sesterterpenoids, named orientanoids A-C (1-3), were isolated from Hedyosmum orientale. Their structures were determined by a combination of spectroscopic data, X-ray crystallography, and total synthesis. To obtain adequate materials for biological research, the bioinspired total syntheses of 1-3 were effectively achieved in 7-8 steps in overall yields of 2.3-6.4% from the commercially available santonin without using any protecting groups. In addition, this work also revised the stereochemistry of hedyosumins B (6) and C (10) as 11R-configuration. Tumor-associated macrophages (TAMs) have emerged as important therapeutic targets in cancer therapy. The in-depth biological evaluation revealed that these sesterterpenoids antagonized the protumoral and immunosuppressive functional phenotype of macrophages in vitro. Among them, the most potent and major compound 1 inhibited protumoral M2-like macrophages and activated cytotoxic CD8+ T cells, and consequently inhibited tumor growth in vivo.
Collapse
Affiliation(s)
- Cheng-Yu Zheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Science No. 19A Yuquan Road Beijing 100049 China
| | - Jin-Xin Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
| | - Chang-Hao Yuan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Science No. 19A Yuquan Road Beijing 100049 China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences Hangzhou 310024 China
| | - Xia Peng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
| | - Meiyu Geng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Science No. 19A Yuquan Road Beijing 100049 China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences Hangzhou 310024 China
| | - Jing Ai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Science No. 19A Yuquan Road Beijing 100049 China
| | - Yao-Yue Fan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Science No. 19A Yuquan Road Beijing 100049 China
| | - Jian-Min Yue
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- Research Units of Discovery of New Drug Lead Molecules, Chinese Academy of Medical Sciences Shanghai 201203 China
- University of Chinese Academy of Science No. 19A Yuquan Road Beijing 100049 China
| |
Collapse
|
16
|
Jing SX, Fu R, Li CH, Hugelshofer CL, Shi YM, Luo SH, Liu YC, Liu Y, Li SH. Discovery of Unusual Sesterterpenoids from Colquhounia coccinea var. mollis and Their Metabolic Implications. JOURNAL OF NATURAL PRODUCTS 2023; 86:2468-2473. [PMID: 37939268 DOI: 10.1021/acs.jnatprod.3c00553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Three unusual sesterterpenoids featuring unprecedented rearranged colquhounane (C25) and tetranorcolquhounane (C21) frameworks, colquhounoids E (1) and F (3) and norcolquhounoid F (2), were isolated from a Lamiaceae medicinal plant Colquhounia coccinea var. mollis. Their structures were elucidated by spectroscopic analysis and quantum chemical calculations. A biomimetic inspired regioselective cyclopropane cleavage was achieved under acidic conditions. The immunosuppressive activities of these new sesterterpenoids were also evaluated.
Collapse
Affiliation(s)
- Shu-Xi Jing
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Ran Fu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Chun-Huan Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Cedric L Hugelshofer
- Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, California 94080, United States
| | - Yi-Ming Shi
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Shi-Hong Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Yan-Chun Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Yan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Sheng-Hong Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| |
Collapse
|
17
|
Wang Y, Yang J, Hu L, Bai R, Wang T, Xing X, Chen L, Ding G. LC-MS/MS-Guided Molecular Networking for Targeted Discovery of Undescribed and Bioactive Ophiobolins from Bipolaris eleusines. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:11982-11992. [PMID: 37523321 DOI: 10.1021/acs.jafc.3c03352] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
An integrated purification procedure through the LC-MS/MS-based molecular networking strategy combined with bioactive evaluation was first ushered for discovering bioactive ophiobolins from Bipolaris eleusines. Ophiobolins were mainly dispersed in five clusters, which were classified based on different ring systems and functional groups. Nine undescribed ophiobolins (1-6 and 9-11) and an undescribed natural product (8) along with two known analogs (7 and 12) were isolated in target. The undescribed structures were characterized by HR-ESI-MS, NMR spectra, and X-ray diffraction experiments. Compounds 3-12 exhibited strong phytotoxic effects on green foxtails by producing visible lesions, and compounds 1-10 and 12 displayed different levels of cytotoxic activities against cancer cell lines B16, Hep G2, and MCF-7, from which the possible structure-activity relationships were then suggested. The results have supported that bioactivity-guided molecular networking is an efficient strategy to expedite the discovery of undescribed bioactive natural products.
Collapse
Affiliation(s)
- Yanduo Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, People's Republic of China
| | - Jian Yang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| | - Ling Hu
- Ningbo Academy of Inspection and Quarantine, Ningbo 315000, China
| | - Ruibin Bai
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| | - Tielin Wang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, People's Republic of China
| | - Xiaoke Xing
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, People's Republic of China
| | - Lin Chen
- Comprehensive Utilization of Edible and Medicinal Plant Resources Engineering Technology Research Center, Zhengzhou Key Laboratory of Synthetic Biology of Natural Products, Zhengzhou Key Laboratory of Medicinal Resources Research, Huanghe Science and Technology College, Zhengzhou 450006, People's Republic of China
| | - Gang Ding
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, People's Republic of China
| |
Collapse
|
18
|
Gago F. Computational Approaches to Enzyme Inhibition by Marine Natural Products in the Search for New Drugs. Mar Drugs 2023; 21:100. [PMID: 36827141 PMCID: PMC9961086 DOI: 10.3390/md21020100] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/03/2023] Open
Abstract
The exploration of biologically relevant chemical space for the discovery of small bioactive molecules present in marine organisms has led not only to important advances in certain therapeutic areas, but also to a better understanding of many life processes. The still largely untapped reservoir of countless metabolites that play biological roles in marine invertebrates and microorganisms opens new avenues and poses new challenges for research. Computational technologies provide the means to (i) organize chemical and biological information in easily searchable and hyperlinked databases and knowledgebases; (ii) carry out cheminformatic analyses on natural products; (iii) mine microbial genomes for known and cryptic biosynthetic pathways; (iv) explore global networks that connect active compounds to their targets (often including enzymes); (v) solve structures of ligands, targets, and their respective complexes using X-ray crystallography and NMR techniques, thus enabling virtual screening and structure-based drug design; and (vi) build molecular models to simulate ligand binding and understand mechanisms of action in atomic detail. Marine natural products are viewed today not only as potential drugs, but also as an invaluable source of chemical inspiration for the development of novel chemotypes to be used in chemical biology and medicinal chemistry research.
Collapse
Affiliation(s)
- Federico Gago
- Department of Biomedical Sciences & IQM-CSIC Associate Unit, School of Medicine and Health Sciences, University of Alcalá, E-28805 Madrid, Alcalá de Henares, Spain
| |
Collapse
|
19
|
Jiang L, Lv K, Zhu G, Lin Z, Zhang X, Xing C, Yang H, Zhang W, Wang Z, Liu C, Qu X, Hsiang T, Zhang L, Liu X. Norditerpenoids biosynthesized by variediene synthase-associated P450 machinery along with modifications by the host cell Aspergillus oryzae. Synth Syst Biotechnol 2022; 7:1142-1147. [PMID: 36101897 PMCID: PMC9440366 DOI: 10.1016/j.synbio.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 11/19/2022] Open
Abstract
The chemical diversity of terpenoids is typically established by terpene synthase-catalyzed cyclization and diversified by post-tailoring modifications. Fungal bifunctional terpene synthase (BFTS) associated P450 enzymes have shown significant catalytic potentials through the development of various new terpenoids with different biological activities. This study discovered the BFTS and its related gene cluster from the plant endophytic fungus Didymosphaeria variabile 17020. Heterologous expression of the BFTS in Saccharomyces cerevisiae resulted in the characterization of a major product diterpene variediene (1), along with two new minor products neovariediene and neoflexibilene. Further heterologous expression of the BFTS and one cytochrome P450 enzyme VndE (CYP6138B1) in Aspergillus oryzae NSAR1 led to the identification of seven norditerpenoids (19 carbons) with a structurally unique 5/5 bicyclic ring system. Interestingly, in vivo experiments suggested that the cyclized terpene variediene (1) was modified by VndE along with the endogenous enzymes from the host cell A. oryzae through serial chemical conversions, followed by multi-site hydroxylation via A. oryzae endogenous enzymes. Our work revealed that the two-enzymes biosynthetic system and host cell machinery could produce structurally unique terpenoids.
Collapse
|
20
|
Shin AY, Lee HS, Lee J. Isolation of Scalimides A-L: β-Alanine-Bearing Scalarane Analogs from the Marine Sponge Spongia sp. Mar Drugs 2022; 20:726. [PMID: 36422004 PMCID: PMC9695134 DOI: 10.3390/md20110726] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/17/2022] [Accepted: 11/17/2022] [Indexed: 09/29/2023] Open
Abstract
A chemical investigation of a methanol extract of Spongia sp., a marine sponge collected from the Philippines, identified 12 unreported scalarane-type alkaloids-scalimides A-L (1-12)-together with two previously described scalarin derivatives. The elucidation of the structure of the scalaranes based on the interpretation of their NMR and HRMS data revealed that 1-12 featured a β-alanine-substituted E-ring but differed from each other through variations in their oxidation states and substitutions occurring at C16, C24, and C25. Evaluation of the antimicrobial activity of 1-12 against several Gram-positive and Gram-negative bacteria showed that 10 and 11 were active against Micrococcus luteus and Bacillus subtilis, respectively, with MIC values ranging from 4 to 16 μg/mL.
Collapse
Affiliation(s)
- A-Young Shin
- Korea Institute of Ocean Science & Technology (KIOST), Busan 49111, Republic of Korea
| | - Hyi-Seung Lee
- Korea Institute of Ocean Science & Technology (KIOST), Busan 49111, Republic of Korea
- Department of Marine Biotechnology, University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Jihoon Lee
- Korea Institute of Ocean Science & Technology (KIOST), Busan 49111, Republic of Korea
- Department of Marine Biotechnology, University of Science & Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
21
|
Research Progress on Fungal Sesterterpenoids Biosynthesis. J Fungi (Basel) 2022; 8:jof8101080. [PMID: 36294645 PMCID: PMC9605422 DOI: 10.3390/jof8101080] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022] Open
Abstract
Sesterterpenes are 25-carbon terpenoids formed by the cyclization of dimethyl allyl diphosphate (DMAPP) and isopentenyl diphosphate (IPP) as structural units by sesterterpenes synthases. Some (not all) sesterterpenoids are modified by cytochrome P450s (CYP450s), resulting in more intricate structures. These compounds have significant physiological activities and pharmacological effects in anti-inflammatory, antibacterial, antitumour, and hypolipidemic communities. Despite being a rare class of terpenoids, sesterterpenoids derived from fungi show a wide range of structural variations. The discovered fungal sesterterpenoid synthases are composed of C-terminal prenyltransferase (PT) and N-terminal terpene synthase (TS) domains, which were given the name PTTSs. PTTSs have the capacities to catalyze chain lengthening and cyclization concurrently. This review summarizes all 52 fungal PTTSs synthases and their biosynthetic pathways involving 100 sesterterpenoids since the discovery of the first PTTSs synthase from fungi in 2013.
Collapse
|
22
|
Jiang L, Yang H, Zhang X, Li X, Lv K, Zhang W, Zhu G, Liu C, Wang Y, Hsiang T, Zhang L, Liu X. Schultriene and nigtetraene: two sesterterpenes characterized from pathogenetic fungi via genome mining approach. Appl Microbiol Biotechnol 2022; 106:6047-6057. [PMID: 36040489 DOI: 10.1007/s00253-022-12125-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 01/01/2023]
Abstract
Fungal bifunctional terpene synthases (BFTSs) have been reported to contribute to the biosynthesis of a variety of di/sesterterpenes via different carbocation transportation pathways. Genome mining of new BFTSs from unique fungal resources will, theoretically, allow for the identification of new terpenes. In this study, we surveyed the distribution of BFTSs in our in-house collection of 430 pathogenetic fungi and preferred two BFTSs (CsSS and NnNS), long distance from previously characterized BFTSs and located in relatively independent branches, based on the established phylogenetic tree. The heterologous expression of the two BFTSs in Aspergillus oryzae and Saccharomyces cerevisiae led to the identification of two new sesterterpenes separately, 5/12/5 tricyclic type-A sesterterpene (schultriene, 1) for CsSS and 5/11 bicyclic type-B sesterterpene (nigtetraene, 2) for NnNS. In addition, to the best of our knowledge, 2 is the first 5/11 bicyclic type-B characterized sesterterpene to date. On the basis of this, the plausible cyclization mechanisms of 1 and 2 were proposed based on density functional theory calculations. These new enzymes and their corresponding terpenes suggest that the chemical spaces produced by BFTSs remain large and also provide important evidences for further protein engineering for new terpenes and for understanding of cyclization mechanism catalyzed by BFTSs. KEY POINTS: • Genome mining of two BFTSs yields two new sesterterpenoids correspondingly. • Identification of the first 5/11 ring system type-B product. • Parse out the rational cyclization mechanism of isolated sesterterpenoids.
Collapse
Affiliation(s)
- Lan Jiang
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai, China
| | - Huanting Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai, China
| | - Xue Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai, China
| | - Xiaoying Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai, China
| | - Kangjie Lv
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai, China
| | - Weiyan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai, China
| | - Guoliang Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai, China
| | - Chengwei Liu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Yongheng Wang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, Canada
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai, China
| | - Xueting Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai, China.
| |
Collapse
|
23
|
Majer T, Bhattarai K, Straetener J, Pohlmann J, Cahill P, Zimmermann MO, Hübner MP, Kaiser M, Svenson J, Schindler M, Brötz-Oesterhelt H, Boeckler FM, Gross H. Discovery of Ircinianin Lactones B and C-Two New Cyclic Sesterterpenes from the Marine Sponge Ircinia wistarii. Mar Drugs 2022; 20:532. [PMID: 36005535 PMCID: PMC9410537 DOI: 10.3390/md20080532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Two new ircinianin-type sesterterpenoids, ircinianin lactone B and ircinianin lactone C (7 and 8), together with five known entities from the ircinianin compound family (1, 3-6) were isolated from the marine sponge Ircinia wistarii. Ircinianin lactones B and C (7 and 8) represent new ircinianin terpenoids with a modified oxidation pattern. Despite their labile nature, the structures could be established using a combination of spectroscopic data, including HRESIMS and 1D/2D NMR techniques, as well as computational chemistry and quantum-mechanical calculations. In a broad screening approach for biological activity, the class-defining compound ircinianin (1) showed moderate antiprotozoal activity against Plasmodium falciparum (IC50 25.4 μM) and Leishmania donovani (IC50 16.6 μM).
Collapse
Affiliation(s)
- Thomas Majer
- Department of Pharmaceutical Biology, Pharmaceutical Institute, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Keshab Bhattarai
- Department of Pharmaceutical Biology, Pharmaceutical Institute, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Jan Straetener
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Justus Pohlmann
- Institute for Medical Virology and Epidemiology, Section Molecular Virology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Patrick Cahill
- Cawthron Institute, 98 Halifax Street East, Nelson 7010, New Zealand
| | - Markus O. Zimmermann
- Lab for Molecular Design and Pharmaceutical Biophysics, Department of Pharmacy and Biochemistry, Institute of Pharmaceutical Sciences, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Marc P. Hübner
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53127 Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland
- Faculty of Science, University of Basel, Petersplatz 1, 4002 Basel, Switzerland
| | - Johan Svenson
- Cawthron Institute, 98 Halifax Street East, Nelson 7010, New Zealand
| | - Michael Schindler
- Institute for Medical Virology and Epidemiology, Section Molecular Virology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Heike Brötz-Oesterhelt
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’, University of Tübingen, 72076 Tübingen, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| | - Frank M. Boeckler
- Lab for Molecular Design and Pharmaceutical Biophysics, Department of Pharmacy and Biochemistry, Institute of Pharmaceutical Sciences, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Interfaculty Institute for Biomedical Informatics (IBMI), University of Tübingen, Sand 14, 72076 Tübingen, Germany
| | - Harald Gross
- Department of Pharmaceutical Biology, Pharmaceutical Institute, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’, University of Tübingen, 72076 Tübingen, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| |
Collapse
|
24
|
Ge J, Liu Z, Zhong Z, Wang L, Zhuo X, Li J, Jiang X, Ye XY, Xie T, Bai R. Natural terpenoids with anti-inflammatory activities: Potential leads for anti-inflammatory drug discovery. Bioorg Chem 2022; 124:105817. [DOI: 10.1016/j.bioorg.2022.105817] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/17/2022] [Accepted: 04/15/2022] [Indexed: 12/19/2022]
|
25
|
Chen Z, Chen X, Tang Y, Zhou Y, Deng H, He J, Liu Y, Zhao Z, Cui H. Linderasesterterpenoids A and B: Two 7-Cyclohexyldecahydroazulene Carbon Skeleton Sesterterpenoids Isolated from the Root of Lindera glauca. Org Lett 2022; 24:3717-3720. [PMID: 35559688 DOI: 10.1021/acs.orglett.2c01364] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two novel sesterterpenoids linderasesterterpenoids A (1) and B (2) with an unprecedented 7-cyclohexyldecahydroazulene carbon skeleton isolated from the root of Lindera glauca. Their structures were elucidated by X-ray diffraction, quantum chemical calculations, and spectroscopic methods. The biogenetic pathway for 1 and 2 is proposed. In the bioassay, linderasesterterpenoids A and B showed good inhibitory activities against LPS-induced NO production in RAW 264.7 cells compared to a positive control.
Collapse
Affiliation(s)
- Zelin Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xiaocong Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yuqian Tang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yuwei Zhou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Huimei Deng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Jingxin He
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yena Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Zhongxiang Zhao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Hui Cui
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| |
Collapse
|
26
|
Kuang QX, Lei LR, Li QZ, Peng W, Wang YM, Dai YF, Wang D, Gu YC, Deng Y, Guo DL. Investigation of the Anti-Inflammatory Activity of Fusaproliferin Analogues Guided by Transcriptome Analysis. Front Pharmacol 2022; 13:881182. [PMID: 37124719 PMCID: PMC10136769 DOI: 10.3389/fphar.2022.881182] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/21/2022] [Indexed: 12/21/2022] Open
Abstract
Background: Excessive inflammation results in severe tissue damage as well as serious acute or chronic disorders, and extensive research has focused on finding new anti-inflammatory hit compounds with safety and efficacy profiles from natural products. As promising therapeutic entities for the treatment of inflammation-related diseases, fusaproliferin and its analogs have attracted great interest. However, the underlying anti-inflammatory mechanism is still poorly understood and deserves to be further investigated.Methods: For the estimation of the anti-inflammatory activity of fusaproliferin (1) and its analogs (2-4)in vitro and in vivo, lipopolysaccharide (LPS)-induced RAW264.7 macrophages and zebrafish embryos were employed. Then, transcriptome analysis was applied to guide subsequent western blot analysis of critical proteins in related signaling pathways. Surface plasmon resonance assays (SPR) combined with molecular docking analyses were finally applied to evaluate the affinity interactions between 1-4 and TLR4 and provide a possible interpretation of the downregulation of related signaling pathways.Results: 1-4 significantly attenuated the production of inflammatory messengers, including nitric oxide (NO), reactive oxygen species (ROS), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β), as well as nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), in LPS-induced RAW264.7 macrophages. Transcriptome analyses based on RNA-seq indicated the ability of compound 1 to reverse LPS stimulation and the nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPKs) signaling pathways contribute to the anti-inflammatory process. Experimental verification at the protein level revealed that 1 can inhibit the activation of inhibitor of NF-κB kinase (IKK), degradation of inhibitor of NF-κB (IκB), and phosphorylation of NF-κB and reduce nuclear translocation of NF-κB. 1 also decreased the phosphorylation of MAPKs, including p38, extracellular regulated protein kinases (ERK), and c-Jun N-terminal kinase (JNK). SPR assays and molecular docking results indicated that 1-4 exhibited affinity for the TLR4 protein with KD values of 23.5–29.3 μM.Conclusion: Fusaproliferin and its analogs can be hit compounds for the treatment of inflammation-associated diseases.
Collapse
Affiliation(s)
- Qi-Xuan Kuang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li-Rong Lei
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qing-Zhou Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wan Peng
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Yu-Mei Wang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi-Fei Dai
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Dong Wang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu-Cheng Gu
- Syngenta Jealott’s Hill International Research Centre, Berkshire, United Kingdom
| | - Yun Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Yun Deng, ; Da-Le Guo,
| | - Da-Le Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Yun Deng, ; Da-Le Guo,
| |
Collapse
|
27
|
Jiang T, Dai X, Gao T, Wang L, Yang F, Zhang Y, Wang N, Huang G, Cao J. Ancepsone A, a New Cheilanthane Sesterterpene from Aleuritopteris anceps. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Chen Q, Yuan G, Yuan T, Zeng H, Zou ZR, Tu ZC, Gao J, Zou Y. Set of Cytochrome P450s Cooperatively Catalyzes the Synthesis of a Highly Oxidized and Rearranged Diterpene-Class Sordarinane Architecture. J Am Chem Soc 2022; 144:3580-3589. [PMID: 35170947 DOI: 10.1021/jacs.1c12427] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cytochrome P450s are one of the most versatile oxidases that catalyze significant and unique chemical transformations for the construction of complex structural frameworks during natural product biosynthesis. Here, we discovered a set of P450s, including SdnB, SdnH, SdnF, and SdnE, that cooperatively catalyzes the reshaping of the inert cycloaraneosene framework to form a highly oxidized and rearranged sordarinane architecture. Among them, SdnB is confirmed to be the first P450 (or oxidase) that cleaves the C-C bond of the epoxy residue to yield formyl groups in pairs. SdnF selectively oxidizes one generated formyl group to a carboxyl group and accelerates the final Diels-Alder cyclization to furnish the sordarinane architecture. Our work greatly enriches the enzyme functions of the P450 superfamily, supplies the missing skills of the P450 synthetic toolbox, and supports them as biocatalysts in further applications toward the synthesis of new chemical entities.
Collapse
Affiliation(s)
- Qibin Chen
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Guanyin Yuan
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Tao Yuan
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Huiting Zeng
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Zheng-Rong Zou
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Zong-Cai Tu
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Jie Gao
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Yi Zou
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
29
|
Chen Y, Li D, Ling Y, Liu Y, Zuo Z, Gan L, Luo S, Hua J, Chen D, Xu F, Li M, Guo K, Liu Y, Gershenzon J, Li S. A Cryptic Plant Terpene Cyclase Producing Unconventional 18‐ and 14‐Membered Macrocyclic C
25
and C
20
Terpenoids with Immunosuppressive Activity. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yue‐Gui Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu 611137 P. R. China
- State Key Laboratory of Phytochemistry and Plant Resources in West China & Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany, Chinese Academy of, Sciences Kunming 650201 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - De‐Sen Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu 611137 P. R. China
- State Key Laboratory of Phytochemistry and Plant Resources in West China & Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany, Chinese Academy of, Sciences Kunming 650201 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yi Ling
- State Key Laboratory of Phytochemistry and Plant Resources in West China & Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany, Chinese Academy of, Sciences Kunming 650201 P. R. China
| | - Yan‐Chun Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China & Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany, Chinese Academy of, Sciences Kunming 650201 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Zhi‐Li Zuo
- State Key Laboratory of Phytochemistry and Plant Resources in West China & Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany, Chinese Academy of, Sciences Kunming 650201 P. R. China
| | - Li‐She Gan
- School of Biotechnology and Health Sciences Wuyi University Jiangmen 529020 P. R. China
| | - Shi‐Hong Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China & Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany, Chinese Academy of, Sciences Kunming 650201 P. R. China
| | - Juan Hua
- State Key Laboratory of Phytochemistry and Plant Resources in West China & Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany, Chinese Academy of, Sciences Kunming 650201 P. R. China
| | - Ding‐Yuan Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China & Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany, Chinese Academy of, Sciences Kunming 650201 P. R. China
| | - Fan Xu
- School of Biotechnology and Health Sciences Wuyi University Jiangmen 529020 P. R. China
| | - Man Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China & Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany, Chinese Academy of, Sciences Kunming 650201 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Kai Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu 611137 P. R. China
| | - Yan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu 611137 P. R. China
- State Key Laboratory of Phytochemistry and Plant Resources in West China & Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany, Chinese Academy of, Sciences Kunming 650201 P. R. China
| | | | - Sheng‐Hong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu 611137 P. R. China
- State Key Laboratory of Phytochemistry and Plant Resources in West China & Yunnan Key Laboratory of Natural Medicinal Chemistry Kunming Institute of Botany, Chinese Academy of, Sciences Kunming 650201 P. R. China
| |
Collapse
|
30
|
Chen YG, Li DS, Ling Y, Liu YC, Zuo ZL, Gan LS, Luo SH, Hua J, Chen DY, Xu F, Li M, Guo K, Liu Y, Gershenzon J, Li SH. A Cryptic Plant Terpene Cyclase Producing Unconventional 18- and 14-Membered Macrocyclic C 25 and C 20 Terpenoids with Immunosuppressive Activity. Angew Chem Int Ed Engl 2021; 60:25468-25476. [PMID: 34580976 DOI: 10.1002/anie.202110842] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/20/2021] [Indexed: 11/09/2022]
Abstract
A versatile terpene synthase (LcTPS2) producing unconventional macrocyclic terpenoids was characterized from Leucosceptrum canum. Engineered Escherichia coli and Nicotiana benthamiana expressing LcTPS2 produced six 18-/14-membered sesterterpenoids including five new ones and two 14-membered diterpenoids. These products represent the first macrocyclic sesterterpenoids from plants and the largest sesterterpenoid ring system identified to date. Two variants F516A and F516G producing approximately 3.3- and 2.5-fold, respectively, more sesterterpenoids than the wild-type enzyme were engineered. Both 18- and 14-membered ring sesterterpenoids displayed significant inhibitory activity on the IL-2 and IFN-γ production of T cells probably via inhibition of the MAPK pathway. The findings will contribute to the development of efficient biocatalysts to create bioactive macrocyclic sesterterpenoids, and also herald a new potential in the well-trodden territory of plant terpenoid biosynthesis.
Collapse
Affiliation(s)
- Yue-Gui Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, and, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China.,State Key Laboratory of Phytochemistry and Plant Resources in West China &, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of, Sciences, Kunming, 650201, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - De-Sen Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, and, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China.,State Key Laboratory of Phytochemistry and Plant Resources in West China &, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of, Sciences, Kunming, 650201, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yi Ling
- State Key Laboratory of Phytochemistry and Plant Resources in West China &, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of, Sciences, Kunming, 650201, P. R. China
| | - Yan-Chun Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China &, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of, Sciences, Kunming, 650201, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhi-Li Zuo
- State Key Laboratory of Phytochemistry and Plant Resources in West China &, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of, Sciences, Kunming, 650201, P. R. China
| | - Li-She Gan
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, P. R. China
| | - Shi-Hong Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China &, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of, Sciences, Kunming, 650201, P. R. China
| | - Juan Hua
- State Key Laboratory of Phytochemistry and Plant Resources in West China &, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of, Sciences, Kunming, 650201, P. R. China
| | - Ding-Yuan Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China &, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of, Sciences, Kunming, 650201, P. R. China
| | - Fan Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, P. R. China
| | - Man Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China &, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of, Sciences, Kunming, 650201, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Kai Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, and, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China
| | - Yan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, and, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China.,State Key Laboratory of Phytochemistry and Plant Resources in West China &, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of, Sciences, Kunming, 650201, P. R. China
| | | | - Sheng-Hong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, and, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P. R. China.,State Key Laboratory of Phytochemistry and Plant Resources in West China &, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of, Sciences, Kunming, 650201, P. R. China
| |
Collapse
|
31
|
Morarescu O, Grinco M, Kulciţki V, Shova S, Ungur N. An Alternative Approach towards C-12 Functionalized Scalaranic Sesterterpenoids Synthesis of 17-Oxo-20-norscalaran-12α,19- O-lactone. Mar Drugs 2021; 19:md19110636. [PMID: 34822507 PMCID: PMC8625711 DOI: 10.3390/md19110636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022] Open
Abstract
Scalarane sesterterpenoids emerged as interesting bioactive natural products which were isolated extensively from marine sponges and shell-less mollusks. Some representatives were also reported recently from superior plants. Many scalarane sesterterpenoids displayed a wide spectrum of valuable properties, such as antifeedant, antimicrobial, antifungal, antitubercular, antitumor, anti-HIV properties, cytotoxicity and stimulation of nerve growth factor synthesis, as well as anti-inflammatory activity. Due to their important biological properties, many efforts have been undertaken towards the chemical synthesis of natural scalaranes. The main synthetic challenges are connected to their complex polycyclic framework, chiral centers and different functional groups, in particular the oxygenated functional groups at the C-12 position, which are prerequisites of the biological activity of many investigated scalaranes. The current work addresses this problem and the synthesis of 17-oxo-20-norscalaran-12α,19-O-lactone is described. It was performed via the 12α-hydroxy-ent-isocopal-13(14)-en-15-al obtained from (-)-sclareol as an accessible starting material. The tetracyclic lactone framework was built following an addition strategy, which includes the intramolecular Michael addition of a diterpenic acetoacetic ester and an intramolecular aldol condensation reaction as key synthetic steps. The structure and stereochemistry of the target compound have been proven by X-Ray diffraction method.
Collapse
Affiliation(s)
- Olga Morarescu
- Laboratory of Chemistry of Natural and Biologically Active Compounds, Institute of Chemistry, 3 Academiei Str., MD 2028 Chişinău, Moldova; (O.M.); (M.G.); (V.K.)
| | - Marina Grinco
- Laboratory of Chemistry of Natural and Biologically Active Compounds, Institute of Chemistry, 3 Academiei Str., MD 2028 Chişinău, Moldova; (O.M.); (M.G.); (V.K.)
| | - Veaceslav Kulciţki
- Laboratory of Chemistry of Natural and Biologically Active Compounds, Institute of Chemistry, 3 Academiei Str., MD 2028 Chişinău, Moldova; (O.M.); (M.G.); (V.K.)
| | - Sergiu Shova
- CEEC Institute, Ningbo University of Technology, No. 201, Fenghua Road, Ningbo City 315211, China;
- Department of Inorganic Polymers, “Petru Poni” Institute of Macromolecular Chemistry, 41A Aleea Gr. Ghica Voda, 700487 Iasi, Romania
| | - Nicon Ungur
- Laboratory of Chemistry of Natural and Biologically Active Compounds, Institute of Chemistry, 3 Academiei Str., MD 2028 Chişinău, Moldova; (O.M.); (M.G.); (V.K.)
- Correspondence: ; Tel.: +373-22-739-775; Fax: +373-22-725-490
| |
Collapse
|
32
|
Li DS, Hua J, Luo SH, Liu YC, Chen YG, Ling Y, Guo K, Liu Y, Li SH. An extremely promiscuous terpenoid synthase from the Lamiaceae plant Colquhounia coccinea var. mollis catalyzes the formation of sester-/di-/sesqui-/mono-terpenoids. PLANT COMMUNICATIONS 2021; 2:100233. [PMID: 34746763 PMCID: PMC8554039 DOI: 10.1016/j.xplc.2021.100233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/03/2021] [Accepted: 08/10/2021] [Indexed: 05/05/2023]
Abstract
Terpenoids are the largest class of natural products with complex structures and extensive bioactivities; their scaffolds are generated by diverse terpenoid synthases (TPSs) from a limited number of isoprenoid diphosphate precursors. Promiscuous TPSs play important roles in the evolution of terpenoid chemodiversity, but they remain largely unappreciated. Here, an extremely promiscuous terpenoid synthase (CcTPS1) of the TPS-b subfamily was cloned and functionally characterized from a leaf-specific transcriptome of the Lamiaceae plant Colquhounia coccinea var. mollis. CcTPS1 is the first sester-/di-/sesqui-/mono-TPS identified from the plant kingdom, accepting C25/C20/C15/C10 diphosphate substrates to generate a panel of sester-/di-/sesqui-/mono-terpenoids. Engineered Escherichia coli expressing CcTPS1 produced three previously unreported terpenoids (two sesterterpenoids and a diterpenoid) with rare cyclohexane-containing skeletons, along with four sesquiterpenoids and one monoterpenoid. Their structures were elucidated by extensive nuclear magnetic resonance spectroscopy. Nicotiana benthamiana transiently expressing CcTPS1 also produced the diterpenoid and sesquiterpenoids, demonstrating the enzyme's promiscuity in planta. Its highly leaf-specific expression pattern combined with detectable terpenoid products in leaves of C. coccinea var. mollis and N. benthamiana expressing CcTPS1 suggested that CcTPS1 was mainly responsible for diterpenoid and sesquiterpenoid biosynthesis in plants. CcTPS1 expression and the terpenoid products could be induced by methyl jasmonate, suggesting their possible role in plant-environment interaction. CcTPS1 was localized to the cytosol and may differ from mono-TPSs in subcellular compartmentalization and substrate tolerance. These findings will greatly aid our understanding of plant TPS evolution and terpenoid chemodiversity; they also highlight the enormous potential of transcriptome mining and heterologous expression for the exploration of unique enzymes and natural products hidden in plants.
Collapse
Affiliation(s)
- De-Sen Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Juan Hua
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shengyang 110866, P. R. China
| | - Shi-Hong Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shengyang 110866, P. R. China
| | - Yan-Chun Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
| | - Yue-Gui Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yi Ling
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
| | - Kai Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Yan Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
- State Key Laboratory of Southwestern Chinese Medicine Resources and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Sheng-Hong Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China
- State Key Laboratory of Southwestern Chinese Medicine Resources and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| |
Collapse
|
33
|
Chen Q, Li J, Ma Y, Yuan W, Zhang P, Wang G. Occurrence and biosynthesis of plant sesterterpenes (C25), a new addition to terpene diversity. PLANT COMMUNICATIONS 2021; 2:100184. [PMID: 34746758 PMCID: PMC8553974 DOI: 10.1016/j.xplc.2021.100184] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/03/2021] [Accepted: 03/28/2021] [Indexed: 05/21/2023]
Abstract
Terpenes, the largest group of plant-specialized metabolites, have received considerable attention for their highly diverse biological activities. Monoterpenes (C10), sesquiterpenes (C15), diterpenes (C20), and triterpenes (C30) have been extensively investigated at both the biochemical and molecular levels over the past two decades. Sesterterpenes (C25), an understudied terpenoid group, were recently described by plant scientists at the molecular level. This review summarizes the plant species that produce sesterterpenes and describes recent developments in the field of sesterterpene biosynthesis, placing a special focus on the catalytic mechanism and evolution of geranylfarnesyl diphosphate synthase and sesterterpene synthase. Finally, we propose several questions to be addressed in future studies, which may help to elucidate sesterterpene metabolism in plants.
Collapse
Affiliation(s)
- Qingwen Chen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianxu Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yihua Ma
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Weiliang Yuan
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Peng Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Guodong Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- Corresponding author
| |
Collapse
|
34
|
Kim MC, Winter JM, Asolkar RN, Boonlarppradab C, Cullum R, Fenical W. Marinoterpins A-C: Rare Linear Merosesterterpenoids from Marine-Derived Actinomycete Bacteria of the Family Streptomycetaceae. J Org Chem 2021; 86:11140-11148. [PMID: 33844925 PMCID: PMC8383307 DOI: 10.1021/acs.joc.1c00262] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Indexed: 12/16/2022]
Abstract
The chemical examination of two undescribed marine actinobacteria has yielded three rare merosesterterpenoids, marinoterpins A-C (1-3, respectively). These compounds were isolated from the culture broth extracts of two marine-derived actinomycetes associated with the family Streptomycetaceae, (our strains were CNQ-253 and AJS-327). The structures of the new compounds were determined by extensive interpretation of 1D and 2D NMR, MS, and combined spectroscopic data. These compounds represent new chemical motifs, combining quinoline-N-oxides with a linear sesterterpenoid side chain. Additionally, consistent in all three metabolites is the rare occurrence of two five-ring ethers, which were derived from an apparent cyclization of methyl group carbons to adjacent hydroxy-bearing methylene groups in the sesterterpenoid side chain. Genome scanning of AJS-327 allowed for the identification of the marinoterpin (mrt) biosynthetic cluster, which consists of 16 open-reading frames that code for a sesterterpene pyrophosphate synthase, prenyltransferase, type II polyketide synthase, anthranilate:CoA-ligase, and several tailoring enzymes apparently responsible for installing the N-oxide and bis-tetrahydrofuran ring motifs.
Collapse
Affiliation(s)
- Min Cheol Kim
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| | - Jaclyn M. Winter
- Department
of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Ratnakar N. Asolkar
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| | - Chollaratt Boonlarppradab
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| | - Reiko Cullum
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| | - William Fenical
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
- Skaggs
School of Pharmacy and Pharmaceutical Science, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
35
|
Huang ZY, Ye RY, Yu HL, Li AT, Xu JH. Mining methods and typical structural mechanisms of terpene cyclases. BIORESOUR BIOPROCESS 2021; 8:66. [PMID: 38650244 PMCID: PMC10992375 DOI: 10.1186/s40643-021-00421-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/24/2021] [Indexed: 12/13/2022] Open
Abstract
Terpenoids, formed by cyclization and/or permutation of isoprenes, are the most diverse and abundant class of natural products with a broad range of significant functions. One family of the critical enzymes involved in terpenoid biosynthesis is terpene cyclases (TCs), also known as terpene synthases (TSs), which are responsible for forming the ring structure as a backbone of functionally diverse terpenoids. With the recent advances in biotechnology, the researches on terpene cyclases have gradually shifted from the genomic mining of novel enzyme resources to the analysis of their structures and mechanisms. In this review, we summarize both the new methods for genomic mining and the structural mechanisms of some typical terpene cyclases, which are helpful for the discovery, engineering and application of more and new TCs.
Collapse
Affiliation(s)
- Zheng-Yu Huang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, China
| | - Ru-Yi Ye
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, China
| | - Hui-Lei Yu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, China
| | - Ai-Tao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
36
|
Guo K, Liu Y, Li SH. The untapped potential of plant sesterterpenoids: chemistry, biological activities and biosynthesis. Nat Prod Rep 2021; 38:2293-2314. [PMID: 34114591 DOI: 10.1039/d1np00021g] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: 1969 up to 2021Sesterterpenoids, biosynthetically derived from the precursor, namely geranylfarnesyl diphosphate (GFDP) are amongst the rarest of all isoprenoids with approximately 1300 compounds known. Most sesterterpenoids originate from marine organisms (especially sponges), while only about 15% of these compounds are isolated from several families of plants such as Lamiaceae, Gentianaceae, and Nartheciaceae. Many plant sesterterpenoids possess highly oxygenated and complex cyclic skeletons and exhibit remarkable biological activities involving cytotoxic, anti-inflammatory, antimicrobial, and antifeedant properties. Thus, due to their intrinsic chemical complexity and intriguing biological profiles, plant sesterterpenoids have attracted continuing interest from both chemists and biologists. However, the biosynthesis and distribution of sesterterpenoids in the plant kingdom still remain elusive, although substantial progress has been achieved in recent years. This review provides an overall coverage of sesterterpenoids originating from plant sources, followed by a classification of their chemical skeletons, which summarizes the distribution, chemistry, biological activities, biosynthesis and evolution of plant sesterterpenoids, aiming at strengthening the research efforts toward the untapped great potential of these unique natural product resources.
Collapse
Affiliation(s)
- Kai Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China.
| | - Yan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China. and State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China.
| | - Sheng-Hong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China. and State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, P. R. China.
| |
Collapse
|
37
|
Jiang L, Zhang X, Sato Y, Zhu G, Minami A, Zhang W, Ozaki T, Zhu B, Wang Z, Wang X, Lv K, Zhang J, Wang Y, Gao S, Liu C, Hsiang T, Zhang L, Oikawa H, Liu X. Genome-Based Discovery of Enantiomeric Pentacyclic Sesterterpenes Catalyzed by Fungal Bifunctional Terpene Synthases. Org Lett 2021; 23:4645-4650. [DOI: 10.1021/acs.orglett.1c01361] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Lan Jiang
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai 200237, China
| | - Xue Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai 200237, China
| | - Yuya Sato
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Guoliang Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai 200237, China
| | - Atsushi Minami
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Weiyan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai 200237, China
| | - Taro Ozaki
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Bin Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai 200237, China
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, and Laboratory of Pharmaceutical Crystal Engineering & Technology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhixin Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai 200237, China
| | - Xinye Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai 200237, China
| | - Kangjie Lv
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai 200237, China
| | - Jingyu Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai 200237, China
| | - Yongheng Wang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Shushan Gao
- Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chengwei Liu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai 200237, China
| | - Hideaki Oikawa
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Xueting Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai 200237, China
| |
Collapse
|