1
|
Li H, Liu H, Wong KL, All AH. Lanthanide-doped upconversion nanoparticles as nanoprobes for bioimaging. Biomater Sci 2024; 12:4650-4663. [PMID: 39150405 DOI: 10.1039/d4bm00774c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Upconversion nanoparticles (UCNPs) are a class of nanomaterials composed of lanthanide ions with great potential for paraclinical applications, especially in laboratory and imaging sciences. UCNPs have tunable optical properties and the ability to convert long-wavelength (low energy) excitation light into short-wavelength (high energy) emission in the ultraviolet (UV)-visible and near-infrared (NIR) spectral regions. The core-shell structure of UCNPs can be customized through chemical synthesis to meet the needs of different applications. The surface of UCNPs can also be tailored by conjugating small molecules and/or targeting ligands to achieve high specificity and selectivity, which are indispensable elements in biomedical applications. Specifically, coatings can enhance the water dispersion, biocompatibility, and efficiency of UCNPs, thereby optimizing their functionality and boosting their performance. In this context, multimodal imaging can provide more accurate in vivo information when combined with nuclear imaging. This article intends to provide a comprehensive review of the core structure, structure optimization, surface modification, and various recent applications of UCNPs in biomolecular detection, cell imaging, tumor diagnosis, and deep tissue imaging. We also present and discuss some of their critical challenges, limitations, and potential future directions.
Collapse
Affiliation(s)
- Hengde Li
- Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon, Hong Kong SAR 999077, China.
| | - Haitao Liu
- Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon, Hong Kong SAR 999077, China.
| | - Ka-Leung Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China
| | - Angelo H All
- Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon, Hong Kong SAR 999077, China.
| |
Collapse
|
2
|
Chen H, Tian P, Guo J, Sun M, Zhu W, Li Z, Liu Z. Synergistic synthesis of gold nanoflowers as upconversion near-infrared nanoprobe energy acceptor and recognition unit for improved hydrogen sulfide sensing. Talanta 2024; 273:125908. [PMID: 38503119 DOI: 10.1016/j.talanta.2024.125908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/03/2024] [Accepted: 03/09/2024] [Indexed: 03/21/2024]
Abstract
A highly sensitive and selective upconversion near-infrared (NIR) fluorescence and colorimetric dual readout hydrogen sulfide (H2S) nanoprobe was constructed based on the excellent NIR fluorescence emission performance of upconversion nanomaterials (UCNPs), the specific recognition effect of synergistically synthesized gold nanoflowers (trypsin-stabled AuNFs (Try-AuNFs)) and the effective NIR fluorescence quenching capability. In this assay, the sensing strategy included three processes. First of all, the synthesized UCNPs can emit 803 nm NIR fluorescence when they were excited by 980 nm excitation light. Secondly, as a result of the principle of fluorescence resonance energy transfer (FRET), Try-AuNFs can effectively quench the NIR fluorescence of UCNPs at 803 nm, which can effectively improve the signal-to-background ratio of nanoprobes, thereby improving the sensitivity of the probes. Thirdly, in the presence of H2S, the Try protective layer on the surface of Try-AuNFs was specifically penetrated, which will subsequently cleave Try-AuNFs via the strong S-Au bond. As such, the NIR fluorescence of UCNPs will be restored, achieving high selectivity and sensitivity detection of H2S. Under optimized conditions, the linear response range of H2S was 0.1-300 μM, and the detection limit was 53 nM. It is worth noting that the Try on the surface of Try-AuNFs via the synergistic effect can increase the steric hindrance of the probe, and this can effectively prevent the interaction between the probe with biothiols (cysteine (Cys), homocysteine (Hcy)) and other natural amino acids (non-thiol-containing) with resultant in the high selectivity regarding the detection of H2S in human serum, which is unlikely to be achieved by AuNFs synthesized by the gold seed method (Se-AuNFs). This work not only provided a new type of UCNPs fluorescence quencher and recognition unit, but also exemplified that the use of the physical properties (steric hindrance) of protein ligands on the surface of nanoflowers can improve the specificity of the probe. This will provide new ideas for the design of other nanoprobes.
Collapse
Affiliation(s)
- Hongyu Chen
- Henan Key Laboratory of Rare Earth Functional Materials, International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, China.
| | - Peipei Tian
- Henan Key Laboratory of Rare Earth Functional Materials, International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, China
| | - Jiayi Guo
- Henan Key Laboratory of Rare Earth Functional Materials, International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, China
| | - Manman Sun
- College of Physics and Telecommunication Engineering, Zhoukou Normal University, Zhoukou 466001, China.
| | - Wenping Zhu
- Henan Key Laboratory of Rare Earth Functional Materials, International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, China
| | - Zhendong Li
- Henan Key Laboratory of Rare Earth Functional Materials, International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, China
| | - Zengchen Liu
- Henan Key Laboratory of Rare Earth Functional Materials, International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, China.
| |
Collapse
|
3
|
Ghazy A, Ylönen J, Subramaniyam N, Karppinen M. Atomic/molecular layer deposition of europium-organic thin films on nanoplasmonic structures towards FRET-based applications. NANOSCALE 2023; 15:15865-15870. [PMID: 37750381 PMCID: PMC10551872 DOI: 10.1039/d3nr04094a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/16/2023] [Indexed: 09/27/2023]
Abstract
We present a novel atomic/molecular layer deposition (ALD/MLD) process for europium-organic thin films based on Eu(thd)3 and 2-hydroxyquinoline-4-carboxylic acid (HQA) precursors. The process yields with appreciably high growth rate luminescent Eu-HQA thin films in which the organic HQA component acts as a sensitizer for the red Eu3+ luminescence, extending the excitation wavelength range up to ca. 400 nm. We moreover deposit these films on nanoplasmonic structures to achieve a twentyfold enhanced emission intensity. Finally, we demonstrate the FRET-type energy transfer process for our Eu-HQA coated nanoplasmonic structures in combination with commercial Alexa647 fluorophor, underlining their potential towards novel bioimaging applications.
Collapse
Affiliation(s)
- Amr Ghazy
- Department of Chemistry and Materials Science, Aalto University, FI-00076 Espoo, Finland.
| | | | | | - Maarit Karppinen
- Department of Chemistry and Materials Science, Aalto University, FI-00076 Espoo, Finland.
| |
Collapse
|
4
|
Recent advances in chromophore-assembled upconversion nanoprobes for chemo/biosensing. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Zhou Y, Mazur F, Fan Q, Chandrawati R. Synthetic nanoprobes for biological hydrogen sulfide detection and imaging. VIEW 2022. [DOI: 10.1002/viw.20210008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Yingzhu Zhou
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN) The University of New South Wales (UNSW Sydney) Sydney New South Wales Australia
| | - Federico Mazur
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN) The University of New South Wales (UNSW Sydney) Sydney New South Wales Australia
| | - Qingqing Fan
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN) The University of New South Wales (UNSW Sydney) Sydney New South Wales Australia
| | - Rona Chandrawati
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN) The University of New South Wales (UNSW Sydney) Sydney New South Wales Australia
| |
Collapse
|
6
|
Sun C, Gradzielski M. Advances in fluorescence sensing enabled by lanthanide-doped upconversion nanophosphors. Adv Colloid Interface Sci 2022; 300:102579. [PMID: 34924169 DOI: 10.1016/j.cis.2021.102579] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 01/02/2023]
Abstract
Lanthanide-doped upconversion nanoparticles (UCNPs), characterized by converting low-energy excitation to high-energy emission, have attracted considerable interest due to their inherent advantages of large anti-Stokes shifts, sharp and narrow multicolor emissions, negligible autofluorescence background interference, and excellent chemical- and photo-stability. These features make them promising luminophores for sensing applications. In this review, we give a comprehensive overview of lanthanide-doped upconversion nanophosphors including the fundamental principle for the construction of UCNPs with efficient upconversion luminescence (UCL), followed by state-of-the-art strategies for the synthesis and surface modification of UCNPs, and finally describing current advances in the sensing application of upconversion-based probes for the quantitative analysis of various analytes including pH, ions, molecules, bacteria, reactive species, temperature, and pressure. In addition, emerging sensing applications like photodetection, velocimetry, electromagnetic field, and voltage sensing are highlighted.
Collapse
Affiliation(s)
- Chunning Sun
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 124, 10623 Berlin, Germany.
| | - Michael Gradzielski
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 124, 10623 Berlin, Germany.
| |
Collapse
|
7
|
Liu W, Bu D, Zhang H, Zhang M, Ren H, Li Z, Yu M. A mitochondrial and lysosomal targeted ratiometric probe for detecting intracellular H 2S. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:101-105. [PMID: 34937075 DOI: 10.1039/d1ay01783g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Based on coumarin and benzopyran derivatives, a dual-wavelength excitation ratiometric fluorescent probe, HABA, was prepared to detect H2S. The HABA probe showed good selectivity and anti-interference abilities during H2S detection. Fluorescence co-localization experiments showed that HABA had excellent localization abilities toward mitochondria and lysosomes. More importantly, HABA can not only detect exogenous H2S, but it can also detect endogenous H2S, indicating that HABA has high application potential and value in the biological field.
Collapse
Affiliation(s)
- Wenjie Liu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Dandan Bu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Hongyan Zhang
- Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, Beijing Institute of Fashion Technology, Beijing 100029, China.
| | - Meng Zhang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Haohui Ren
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhanxian Li
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Mingming Yu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
8
|
Progress on the reaction-based methods for detection of endogenous hydrogen sulfide. Anal Bioanal Chem 2021; 414:2809-2839. [PMID: 34825272 DOI: 10.1007/s00216-021-03777-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/12/2021] [Accepted: 11/05/2021] [Indexed: 12/29/2022]
Abstract
Hydrogen sulfide (H2S) is a biologically signaling molecule that mediates a wide range of physiological functions, which is frequently misregulated in numerous pathological processes. As such, measurement of H2S holds great attention due to its unique physiological and pathophysiological roles. Currently, a variety of methods based on the H2S-involved reactions have been reported for detection of endogenous H2S, bearing the advantages of good specificity and high sensitivity. This review describes in detail the types of reactions, their mechanisms, and their applications in biological research, thus hopefully providing some guidelines to the researchers in this field for further investigation.
Collapse
|
9
|
Wang XL, Han X, Tang XY, Chen XJ, Li HJ. A Review of Off-On Fluorescent Nanoprobes: Mechanisms, Properties, and Applications. J Biomed Nanotechnol 2021; 17:1249-1272. [PMID: 34446130 DOI: 10.1166/jbn.2021.3117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
With the development of nanomaterials, fluorescent nanoprobes have attracted enormous attention in the fields of chemical sensing, optical materials, and biological detection. In this paper, the advantages of "off-on" fluorescent nanoprobes in disease detection, such as high sensitivity and short response time, are attentively highlighted. The characteristics, sensing mechanisms, and classifications of disease-related target substances, along with applications of these nanoprobes in cancer diagnosis and therapy are summarized systematically. In addition, the prospects of "off-on" fluorescent nanoprobe in disease detection are predicted. In this review, we presented information from all the papers published in the last 5 years discussing "off-on" fluorescent nanoprobes. This review was written in the hopes of being useful to researchers who are interested in further developing fluorescent nanoprobes. The characteristics of these nanoprobes are explained systematically, and data references and supports for biological analysis, clinical drug improvement, and disease detection have been provided appropriately.
Collapse
Affiliation(s)
- Xiao-Lin Wang
- School of Life Science, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China
| | - Xiao Han
- School of Life Science, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China
| | - Xiao-Ying Tang
- School of Life Science, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China
| | - Xiao-Jun Chen
- School of Life Science, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China
| | - Han-Jun Li
- School of Life Science, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
10
|
Liu S, Su X, Chu D, Ma C, Fu Y, Qu X, Lu J, Guan H. The effect of electrolytes on the electrochromic performance of nickel-substituted tungstophosphate and TiO 2 nanowire composite films. NEW J CHEM 2021. [DOI: 10.1039/d1nj00512j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A film based on POM and TiO2 nanowires in Li+-based media displays enhanced electrochromic performance compared to that in H+-based electrolyte.
Collapse
Affiliation(s)
- Shuping Liu
- College of Tourism and Cuisine
- Harbin University of Commerce
- Harbin City
- P. R. China
| | - Xiaowen Su
- College of Tourism and Cuisine
- Harbin University of Commerce
- Harbin City
- P. R. China
| | - Dongxue Chu
- JiLin Institute of Chemical Technology
- JiLin City
- P. R. China
| | - Chao Ma
- JiLin Institute of Chemical Technology
- JiLin City
- P. R. China
| | - Yu Fu
- JiLin Institute of Chemical Technology
- JiLin City
- P. R. China
| | - Xiaoshu Qu
- JiLin Institute of Chemical Technology
- JiLin City
- P. R. China
| | - Jiahui Lu
- College of Tourism and Cuisine
- Harbin University of Commerce
- Harbin City
- P. R. China
| | - Huanan Guan
- College of Tourism and Cuisine
- Harbin University of Commerce
- Harbin City
- P. R. China
| |
Collapse
|