1
|
Suurmond CE, Leeuwenburgh SCG, van den Beucken JJJP. Modelling bone metastasis in spheroids to study cancer progression and screen cisplatin efficacy. Cell Prolif 2024; 57:e13693. [PMID: 38899562 PMCID: PMC11503253 DOI: 10.1111/cpr.13693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Most bone metastases are caused by primary breast or prostate cancer cells settling in the bone microenvironment, affecting normal bone physiology and function and reducing 5-year survival rates to 10% and 6%, respectively. To expedite clinical availability of novel and effective bone metastases treatments, reliable and predictive in vitro models are urgently required to screen for novel therapies as current in vitro 2D planar mono-culture models do not accurately predict the clinical efficacy. We herein engineered a novel human in vitro 3D co-culture model based on spheroids to study dynamic cellular quantities of (breast or prostate) cancer cells and human bone marrow stromal cells and screen chemotherapeutic efficacy and specificity of the common anticancer drug cisplatin. Bone metastatic spheroids (BMSs) were formed rapidly within 24 h, while the morphology of breast versus prostate cancer BMS differed in terms of size and circularity upon prolonged culture periods. Prestaining cell types prior to BMS formation enabled confocal imaging and quantitative image analysis of in-spheroid cellular dynamics for up to 7 days of BMS culture. We found that cancer cells in BMS proliferated faster and were less susceptible to cisplatin treatment compared to 2D control cultures. Based on these findings and the versatility of our methodology, BMS represent a feasible 3D in vitro model for screening of new bone cancer metastases therapies.
Collapse
|
2
|
Wang R, Liu H, Antal B, Wolterbeek HT, Denkova AG. Ultrasmall Gold Nanoparticles Radiolabeled with Iodine-125 as Potential New Radiopharmaceutical. ACS APPLIED BIO MATERIALS 2024; 7:1240-1249. [PMID: 38323544 PMCID: PMC10880057 DOI: 10.1021/acsabm.3c01158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/08/2024]
Abstract
The relatively high linear energy transfer of Auger electrons, which can cause clustered DNA damage and hence efficient cell death, makes Auger emitters excellent candidates for attacking metastasized tumors. Moreover, gammas or positrons are usually emitted along with the Auger electrons, providing the possibility of theragnostic applications. Despite the promising properties of Auger electrons, only a few radiopharmaceuticals employing Auger emitters have been developed so far. This is most likely explained by the short ranges of these electrons, requiring the delivery of the Auger emitters to crucial cell parts such as the cell nucleus. In this work, we combined the Auger emitter 125I and ultrasmall gold nanoparticles to prepare a novel radiopharmaceutical. The 125I labeled gold nanoparticles were shown to accumulate at the cell nucleus, leading to a high tumor-killing efficiency in both 2D and 3D tumor cell models. The results from this work indicate that ultrasmall nanoparticles, which passively accumulate at the cell nucleus, have the potential to be applied in targeted radionuclide therapy. Even better tumor-killing efficiency can be expected if tumor-targeting moieties are conjugated to the nanoparticles.
Collapse
Affiliation(s)
- Runze Wang
- Applied
Radiation and Isotopes, Department of Radiation Science and Technology,
Faculty of Applied Sciences, Delft University
of Technology, Mekelweg 15, 2629 JB Delft, The Netherlands
| | - Huanhuan Liu
- Department
of Medical Imaging, Henan Provincial People’s
Hospital & the People’s Hospital of Zhengzhou University, Zhengzhou 450003, P. R. China
| | - Bas Antal
- Applied
Radiation and Isotopes, Department of Radiation Science and Technology,
Faculty of Applied Sciences, Delft University
of Technology, Mekelweg 15, 2629 JB Delft, The Netherlands
| | - Hubert Th. Wolterbeek
- Applied
Radiation and Isotopes, Department of Radiation Science and Technology,
Faculty of Applied Sciences, Delft University
of Technology, Mekelweg 15, 2629 JB Delft, The Netherlands
| | - Antonia G. Denkova
- Applied
Radiation and Isotopes, Department of Radiation Science and Technology,
Faculty of Applied Sciences, Delft University
of Technology, Mekelweg 15, 2629 JB Delft, The Netherlands
| |
Collapse
|
3
|
Hydroxyapatite Biobased Materials for Treatment and Diagnosis of Cancer. Int J Mol Sci 2022; 23:ijms231911352. [PMID: 36232652 PMCID: PMC9569977 DOI: 10.3390/ijms231911352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/22/2022] Open
Abstract
Great advances in cancer treatment have been undertaken in the last years as a consequence of the development of new antitumoral drugs able to target cancer cells with decreasing side effects and a better understanding of the behavior of neoplastic cells during invasion and metastasis. Specifically, drug delivery systems (DDS) based on the use of hydroxyapatite nanoparticles (HAp NPs) are gaining attention and merit a comprehensive review focused on their potential applications. These are derived from the intrinsic properties of HAp (e.g., biocompatibility and biodegradability), together with the easy functionalization and easy control of porosity, crystallinity and morphology of HAp NPs. The capacity to tailor the properties of DLS based on HAp NPs has well-recognized advantages for the control of both drug loading and release. Furthermore, the functionalization of NPs allows a targeted uptake in tumoral cells while their rapid elimination by the reticuloendothelial system (RES) can be avoided. Advances in HAp NPs involve not only their use as drug nanocarriers but also their employment as nanosystems for magnetic hyperthermia therapy, gene delivery systems, adjuvants for cancer immunotherapy and nanoparticles for cell imaging.
Collapse
|
4
|
Liu J, Yang CQ, Chen Q, Yu TY, Zhang SL, Guo WH, Luo LH, Zhao G, Yin DC, Zhang CY. MiR-4458-loaded gelatin nanospheres target COL11A1 for DDR2/SRC signaling pathway inactivation to suppress the progression of estrogen receptor-positive breast cancer. Biomater Sci 2022; 10:4596-4611. [PMID: 35792605 DOI: 10.1039/d2bm00543c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
RNA interference is a promising way to treat cancer and the construction of a stable drug delivery system is critically important for its application. Gelatin nanospheres (GNs) comprise a biodegradable drug vehicle with excellent biocompatibility, but there are limited studies on its delivery and role in the stabilization of miRNA and siRNA. Breast cancer is the most diagnosed type of female cancer worldwide. Abnormal miRNA expression is closely related to the occurrence and progression of estrogen receptor-positive (ER+) breast cancer. In this study, miR-4458 was upregulated in ER+ breast cancer and could inhibit MCF-7 cell viability, colony formation, migration, and invasion. Collagen type XI alpha 1 (COL11A1) was identified as a directly interacting protein of miR-4458 and an important component of the extracellular matrix. High COL11A1 expression was positively correlated with poor prognosis, lower overall survival, disease-free survival, and a late tumor-node-metastasis stage. COL11A1 knockdown could inhibit MCF-7 cell migration and invasion. GNs were used to load a miR-4458 mimic or COL11A1 siRNA (si-COL11A1) to achieve sustained and controlled release in xenograft nude mice. Their tumor volume was decreased, tumor cell apoptosis was promoted, and hepatic metastasis was significantly inhibited. Moreover, the DDR2/SRC signaling pathway was inactivated after transfection with the miR-4458 mimic and si-COL11A1. In conclusion, GNs can be potentially used to deliver siRNA or miRNA, and miR-4458 and COL11A1 can be possible targets for ER+ breast cancer treatment.
Collapse
Affiliation(s)
- Jie Liu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China.
| | - Chang-Qing Yang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China.
| | - Qiang Chen
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China
| | - Tong-Yao Yu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China.
| | - Shi-Long Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China.
| | - Wei-Hong Guo
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China.
| | - Li-Heng Luo
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China.
| | - Gang Zhao
- The First Hospital of Jilin University, 130021, Changchun, China.
| | - Da-Chuan Yin
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China.
| | - Chen-Yan Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China.
| |
Collapse
|
5
|
Xia Y, Li B, Zhang F, Wu Q, Wen S, Jiang N, Liu D, Huang C, Liu S. Hydroxyapatite nanoparticles promote mitochondrial-based pyroptosis via activating calcium homeostasis and redox imbalance in vascular smooth muscle cells. NANOTECHNOLOGY 2022; 33:5101. [PMID: 35344944 DOI: 10.1088/1361-6528/ac61ca] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 03/27/2022] [Indexed: 02/05/2023]
Abstract
Hydroxyapatite nanoparticles (HAP) have been widely used in various fields because of their natural biological origin and functional properties. The emerging evidence on their toxicities has attracted research interest. HAP-induced vascular smooth muscle cell (VSMC) damage is a key step in vascular calcification (VC), particularly in patients with chronic kidney disease. However, the injury effects and mechanism of action of HAP on VSMCs have not been extensively investigated. This study comprehensively characterized commercially available HAP and investigated its adverse biological effects in cultured A7R5 cells.In vitroexperiments revealed that internalized HAP was localized in lysosomes, followed by the release of Ca2+owing to the low pH microenvironment. Upon Ca2+homeostasis, Ca2+enters the mitochondria, leading to the simultaneous generation of reactive oxygen species (ROS). ROS subsequently attack mitochondrial transmembrane potentials, promote mitochondrial ROS production, and oxidize mitochondrial DNA (Ox-mtDNA). Mitochondrial permeability-transition pores open, followed by the release of more Ox-mtDNA from the mitochondria into the cytosol due to the redox imbalance. This activates NLRP3/caspase-1/gasdermin D-dependent pyroptosis and finally excretes inflammatory factors to induce VC; an antioxidant could rescue this process. It has been suggested that HAP could induce an imbalance in intracellular Ca2+homeostasis in A7R5 cells, followed by the promotion of mitochondrial dysfunction and cell pyroptosis, finally enhancing VC. To detect thein vivotoxicity of HAP, mice were treated with Cy7-labelled HAP NPs for 24 h.In vivoresults also demonstrated that HAP accumulated in the kidneys, accompined with increased Ca concentration, upregulated oxidative stress-related factor and kidney damage. Overall, our research elucidates the mechanism of calcium homeostasis and redox imbalance, providing insights into the prevention of HAP-induced cell death.
Collapse
Affiliation(s)
- Yubin Xia
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, People's Republic of China
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, People's Republic of China
- The First Affiliated Hospital of Shantou University Medical College, Shantou 515100, People's Republic of China
| | - Bohou Li
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, People's Republic of China
| | - Fengxia Zhang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, People's Republic of China
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, People's Republic of China
| | - Qiong Wu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, People's Republic of China
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, People's Republic of China
| | - Sichun Wen
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, People's Republic of China
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, People's Republic of China
| | - Nan Jiang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, People's Republic of China
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, People's Republic of China
| | - Ding Liu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, People's Republic of China
| | - Cong Huang
- The First Affiliated Hospital of Shantou University Medical College, Shantou 515100, People's Republic of China
| | - Shuangxin Liu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, People's Republic of China
- Department of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, People's Republic of China
| |
Collapse
|
6
|
Munir MU, Salman S, Javed I, Bukhari SNA, Ahmad N, Shad NA, Aziz F. Nano-hydroxyapatite as a delivery system: overview and advancements. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2021; 49:717-727. [PMID: 34907839 DOI: 10.1080/21691401.2021.2016785] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nano-hydroxyapatite is being investigated as vital components of implants and dental and tissue engineering devices. It is found as a bone replacement due to its non-toxicity and cytocompatibility with dental tissues and bone. The reality that nanocrystalline hydroxyapatite can be made of porous granules and scaffolds. Additionally, it has a massive loading potential indicating its use as a transporter for drugs or a regulated drug release mechanism in pharmaceutical research. This review aims to present existing nano-hydroxyapatite research developments as a drug carrier employed in bone tissue disorders locally and deliver poorly soluble drugs with reduced bioavailability. We have discussed the nano-hydroxyapatite role in the delivery of drugs (i.e. anti-resorptive, anti-cancer, and antibiotics), proteins, genetic material, and radionuclides.
Collapse
Affiliation(s)
- Muhammad Usman Munir
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Sajal Salman
- Faculty of Pharmacy, University of Central Punjab, Lahore, Pakistan
| | - Ibrahim Javed
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Australia
| | - Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Naveed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Naveed Akhter Shad
- National Institute of Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Farooq Aziz
- Department of Physics, University of Sahiwal, Sahiwal, Pakistan
| |
Collapse
|
7
|
Pensado-López A, Fernández-Rey J, Reimunde P, Crecente-Campo J, Sánchez L, Torres Andón F. Zebrafish Models for the Safety and Therapeutic Testing of Nanoparticles with a Focus on Macrophages. NANOMATERIALS 2021; 11:nano11071784. [PMID: 34361170 PMCID: PMC8308170 DOI: 10.3390/nano11071784] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/11/2022]
Abstract
New nanoparticles and biomaterials are increasingly being used in biomedical research for drug delivery, diagnostic applications, or vaccines, and they are also present in numerous commercial products, in the environment and workplaces. Thus, the evaluation of the safety and possible therapeutic application of these nanomaterials has become of foremost importance for the proper progress of nanotechnology. Due to economical and ethical issues, in vitro and in vivo methods are encouraged for the testing of new compounds and/or nanoparticles, however in vivo models are still needed. In this scenario, zebrafish (Danio rerio) has demonstrated potential for toxicological and pharmacological screenings. Zebrafish presents an innate immune system, from early developmental stages, with conserved macrophage phenotypes and functions with respect to humans. This fact, combined with the transparency of zebrafish, the availability of models with fluorescently labelled macrophages, as well as a broad variety of disease models offers great possibilities for the testing of new nanoparticles. Thus, with a particular focus on macrophage-nanoparticle interaction in vivo, here, we review the studies using zebrafish for toxicological and biodistribution testing of nanoparticles, and also the possibilities for their preclinical evaluation in various diseases, including cancer and autoimmune, neuroinflammatory, and infectious diseases.
Collapse
Affiliation(s)
- Alba Pensado-López
- Department of Zoology, Genetics and Physical Anthropology, Campus de Lugo, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (A.P.-L.); (J.F.-R.)
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain;
| | - Juan Fernández-Rey
- Department of Zoology, Genetics and Physical Anthropology, Campus de Lugo, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (A.P.-L.); (J.F.-R.)
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain;
| | - Pedro Reimunde
- Department of Physiotherapy, Medicine and Biomedical Sciences, Universidade da Coruña, Campus de Oza, 15006 A Coruña, Spain;
- Department of Neurosurgery, Hospital Universitario Lucus Augusti, 27003 Lugo, Spain
| | - José Crecente-Campo
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain;
| | - Laura Sánchez
- Department of Zoology, Genetics and Physical Anthropology, Campus de Lugo, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (A.P.-L.); (J.F.-R.)
- Correspondence: (L.S.); (F.T.A.)
| | - Fernando Torres Andón
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain;
- Correspondence: (L.S.); (F.T.A.)
| |
Collapse
|
8
|
Al-Thani HF, Shurbaji S, Yalcin HC. Zebrafish as a Model for Anticancer Nanomedicine Studies. Pharmaceuticals (Basel) 2021; 14:625. [PMID: 34203407 PMCID: PMC8308643 DOI: 10.3390/ph14070625] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/13/2022] Open
Abstract
Nanomedicine is a new approach to fight against cancer by the development of anticancer nanoparticles (NPs) that are of high sensitivity, specificity, and targeting ability to detect cancer cells, such as the ability of Silica NPs in targeting epithelial cancer cells. However, these anticancer NPs require preclinical testing, and zebrafish is a useful animal model for preclinical studies of anticancer NPs. This model affords a large sample size, optical imaging, and easy genetic manipulation that aid in nanomedicine studies. This review summarizes the numerous advantages of the zebrafish animal model for such investigation, various techniques for inducing cancer in zebrafish, and discusses the methods to assess cancer development in the model and to test for the toxicity of the anticancer drugs and NPs. In addition, it summarizes the recent studies that used zebrafish as a model to test the efficacy of several different anticancer NPs in treating cancer.
Collapse
Affiliation(s)
- Hissa F Al-Thani
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Samar Shurbaji
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
| | - Huseyin C Yalcin
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
9
|
Saraiva SM, Gutiérrez-Lovera C, Martínez-Val J, Lores S, Bouzo BL, Díez-Villares S, Alijas S, Pensado-López A, Vázquez-Ríos AJ, Sánchez L, de la Fuente M. Edelfosine nanoemulsions inhibit tumor growth of triple negative breast cancer in zebrafish xenograft model. Sci Rep 2021; 11:9873. [PMID: 33972572 PMCID: PMC8110995 DOI: 10.1038/s41598-021-87968-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/29/2021] [Indexed: 12/18/2022] Open
Abstract
Triple negative breast cancer (TNBC) is known for being very aggressive, heterogeneous and highly metastatic. The standard of care treatment is still chemotherapy, with adjacent toxicity and low efficacy, highlighting the need for alternative and more effective therapeutic strategies. Edelfosine, an alkyl-lysophospholipid, has proved to be a promising therapy for several cancer types, upon delivery in lipid nanoparticles. Therefore, the objective of this work was to explore the potential of edelfosine for the treatment of TNBC. Edelfosine nanoemulsions (ET-NEs) composed by edelfosine, Miglyol 812 and phosphatidylcholine as excipients, due to their good safety profile, presented an average size of about 120 nm and a neutral zeta potential, and were stable in biorelevant media. The ability of ET-NEs to interrupt tumor growth in TNBC was demonstrated both in vitro, using a highly aggressive and invasive TNBC cell line, and in vivo, using zebrafish embryos. Importantly, ET-NEs were able to penetrate through the skin barrier of MDA-MB 231 xenografted zebrafish embryos, into the yolk sac, leading to an effective decrease of highly aggressive and invasive tumoral cells' proliferation. Altogether the results demonstrate the potential of ET-NEs for the development of new therapeutic approaches for TNBC.
Collapse
Affiliation(s)
- Sofia M Saraiva
- Nano-Oncology and Translational Therapeutics Unit, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital of Santiago de Compostela (CHUS), SERGAS, Santiago de Compostela, Spain
- Cancer Network Research (CIBERONC), Madrid, Spain
| | - Carlha Gutiérrez-Lovera
- Department of Zoology, Genetics and Physical Anthropology, Campus of Lugo, University of Santiago de Compostela, Lugo, Spain
| | - Jeannette Martínez-Val
- Department of Zoology, Genetics and Physical Anthropology, Campus of Lugo, University of Santiago de Compostela, Lugo, Spain
| | - Sainza Lores
- Nano-Oncology and Translational Therapeutics Unit, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital of Santiago de Compostela (CHUS), SERGAS, Santiago de Compostela, Spain
| | - Belén L Bouzo
- Nano-Oncology and Translational Therapeutics Unit, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital of Santiago de Compostela (CHUS), SERGAS, Santiago de Compostela, Spain
| | - Sandra Díez-Villares
- Nano-Oncology and Translational Therapeutics Unit, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital of Santiago de Compostela (CHUS), SERGAS, Santiago de Compostela, Spain
- Cancer Network Research (CIBERONC), Madrid, Spain
| | - Sandra Alijas
- Nano-Oncology and Translational Therapeutics Unit, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital of Santiago de Compostela (CHUS), SERGAS, Santiago de Compostela, Spain
| | - Alba Pensado-López
- Department of Zoology, Genetics and Physical Anthropology, Campus of Lugo, University of Santiago de Compostela, Lugo, Spain
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Abi Judit Vázquez-Ríos
- Nano-Oncology and Translational Therapeutics Unit, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital of Santiago de Compostela (CHUS), SERGAS, Santiago de Compostela, Spain
- Cancer Network Research (CIBERONC), Madrid, Spain
| | - Laura Sánchez
- Department of Zoology, Genetics and Physical Anthropology, Campus of Lugo, University of Santiago de Compostela, Lugo, Spain
| | - María de la Fuente
- Nano-Oncology and Translational Therapeutics Unit, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital of Santiago de Compostela (CHUS), SERGAS, Santiago de Compostela, Spain.
- Cancer Network Research (CIBERONC), Madrid, Spain.
| |
Collapse
|
10
|
NMR spectroscopy to study the fate of metallodrugs in cells. Curr Opin Chem Biol 2021; 61:214-226. [PMID: 33882391 DOI: 10.1016/j.cbpa.2021.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 11/21/2022]
Abstract
Metal-based drugs can modulate various biological processes and exhibit a rich variety of properties that foster their use in biomedicine and chemical biology. On the way to intracellular targets, ligand exchange and redox reactions can take place, thus making metallodrug speciation in vivo a challenging task. Advances in NMR spectroscopy have made it possible to move from solution to live-cell studies and elucidate the transport of metallodrugs and interactions with macromolecular targets in a physiological setting. In turn, the electronic properties and supramolecular chemistry of metal complexes can be exploited to characterize drug delivery nanosystems by NMR. The recent evolution of in-cell NMR methodology is presented with special emphasis on metal-related processes. Applications to paradigmatic cases of platinum and gold drugs are highlighted.
Collapse
|
11
|
Rong J, He Y, Tang J, Qiao R, Lin S. "Fishing" nano-bio interactions at the key biological barriers. NANOSCALE 2021; 13:5954-5964. [PMID: 33734277 DOI: 10.1039/d1nr00328c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Understanding nano-bio interactions is pivotal to the safe implementation of nanotechnology for both biological and environmental applications. Zebrafish as a model organism provides unique opportunities to dissect nano-bio interactions occurring at different biological barriers. In this review, we focus on four key biological barriers, namely cell membrane, blood-brain barrier (BBB), skin and gill epithelia, and gastrointestinal tract (GIT), and highlight recent advancement achieved by using zebrafish to conduct both visualized observations and mechanistic investigations on a diversity of nano-bio interactions.
Collapse
Affiliation(s)
- Jinyu Rong
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, Shanghai 200092, China.
| | | | | | | | | |
Collapse
|
12
|
Li Z, Zheng W, Wang H, Cheng Y, Fang Y, Wu F, Sun G, Sun G, Lv C, Hui B. Application of Animal Models in Cancer Research: Recent Progress and Future Prospects. Cancer Manag Res 2021; 13:2455-2475. [PMID: 33758544 PMCID: PMC7979343 DOI: 10.2147/cmar.s302565] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/25/2021] [Indexed: 12/18/2022] Open
Abstract
Animal models refers to the animal experimental objects and related materials that can simulate human body established in medical research. As the second-largest disease in terms of morbidity and mortality after cardiovascular disease, cancer has always been the focus of human attention all over the world, which makes it a research hotspot in the medical field. At the same time, more and more animal models have been constructed and used in cancer research. With the deepening of research, the construction methods of cancer animal models are becoming more and more diverse, including chemical induction, xenotransplantation, gene programming, and so on. In recent years, patient-derived xenotransplantation (PDX) model has become a research hotspot because it can retain the microenvironment of the primary tumor and the basic characteristics of cells. Animal models can be used not only to study the biochemical and physiological processes of the occurrence and development of cancer in objects but also for the screening of cancer drugs and the exploration of gene therapy. In this paper, several main tumor animal models and the application progress of animal models in tumor research are systematically reviewed. Finally, combined with the latest progress and development trend in this field, the future research of tumor animal model was prospected.
Collapse
Affiliation(s)
- Zhitao Li
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Wubin Zheng
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Hanjin Wang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Ye Cheng
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Yijiao Fang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Fan Wu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Guoqiang Sun
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Guangshun Sun
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Chengyu Lv
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Bingqing Hui
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|