1
|
DiCecco L, Tang T, Sone ED, Grandfield K. Exploring Biomineralization Processes Using In Situ Liquid Transmission Electron Microscopy: A Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407539. [PMID: 39523734 PMCID: PMC11735904 DOI: 10.1002/smll.202407539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Liquid transmission electron microscopy (TEM) is a newly established technique broadly used to study reactions in situ. Since its emergence, complex and multifaceted biomineralization processes have been revealed with real-time resolution, where classical and non-classical mineralization pathways have been dynamically observed primarily for Ca and Fe-based mineral systems in situ. For years, classical crystallization pathways have dominated theories on biomineralization progression despite observations of non-traditional routes involving precursor phases using traditional- and cryo-TEM. The new dynamic lens provided by liquid TEM is a key correlate to techniques limited to time-stamped, static observations - helping shift paradigms in biomineralization toward non-classical theories with dynamic mechanistic visualization. Liquid TEM provides new insights into fundamental biomineralization processes and essential physiological and pathological processes for a wide range of organisms. This review critically reviews a summary of recent in situ liquid TEM research related to the biomineralization field. Key liquid TEM preparation and imaging parameters are provided as a foundation for researchers while technical challenges are discussed. In future, the expansion of liquid TEM research in the biomineralization field will lead to transformative discoveries, providing complementary dynamic insights into biological systems.
Collapse
Affiliation(s)
- Liza‐Anastasia DiCecco
- Department of Materials Science and EngineeringMcMaster UniversityHamiltonONL8S 4L7Canada
- Department of Biomedical EngineeringPennsylvania State UniversityUniversity ParkPA16802USA
| | - Tengteng Tang
- Department of Materials Science and EngineeringMcMaster UniversityHamiltonONL8S 4L7Canada
- Center for Applied Biomechanics and Department of Mechanical and Aerospace EngineeringUniversity of VirginiaCharlottesvilleVA22911USA
| | - Eli D. Sone
- Institute of Biomedical EngineeringUniversity of TorontoTorontoONM5S 3G9Canada
- Materials Science and EngineeringUniversity of TorontoTorontoONM5S 3E4Canada
- Faculty of DentistryUniversity of TorontoTorontoONM5G 1G6Canada
| | - Kathryn Grandfield
- Department of Materials Science and EngineeringMcMaster UniversityHamiltonONL8S 4L7Canada
- School of Biomedical EngineeringMcMaster UniversityHamiltonONL8S 4L7Canada
| |
Collapse
|
2
|
Caffrey BJ, Pedrazo‐Tardajos A, Liberti E, Gaunt B, Kim JS, Kirkland AI. Liquid Phase Electron Microscopy of Bacterial Ultrastructure. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402871. [PMID: 39239997 PMCID: PMC11636060 DOI: 10.1002/smll.202402871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/05/2024] [Indexed: 09/07/2024]
Abstract
Recent advances in liquid phase scanning transmission electron microscopy (LP-STEM) have enabled the study of dynamic biological processes at nanometer resolutions, paving the way for live-cell imaging using electron microscopy. However, this technique is often hampered by the inherent thickness of whole cell samples and damage from electron beam irradiation. These restrictions degrade image quality and resolution, impeding biological interpretation. Using graphene encapsulation, scanning transmission electron microscopy (STEM), and energy-dispersive X-ray (EDX) spectroscopy to mitigate these issues provides unprecedented levels of intracellular detail in aqueous specimens. This study demonstrates the potential of LP-STEM to examine and identify internal cellular structures in thick biological samples. Specifically, it highlights the use of LP-STEM to investigate the radiation resistant, gram-positive bacterium, Deinococcus radiodurans using various imaging techniques.
Collapse
Affiliation(s)
- Brian J. Caffrey
- The Rosalind Franklin InstituteHarwell Science and Innovation CampusDidcotOX11 OQXUK
| | | | - Emanuela Liberti
- The Rosalind Franklin InstituteHarwell Science and Innovation CampusDidcotOX11 OQXUK
| | - Benjamin Gaunt
- The Rosalind Franklin InstituteHarwell Science and Innovation CampusDidcotOX11 OQXUK
- Nuffield Department of Women's & Reproductive HealthUniversity of OxfordJohn Radcliffe HospitalOxfordOX3 9DUUK
| | - Judy S. Kim
- The Rosalind Franklin InstituteHarwell Science and Innovation CampusDidcotOX11 OQXUK
- Department of MaterialsUniversity of OxfordOxfordOX1 3PHUK
| | - Angus I. Kirkland
- The Rosalind Franklin InstituteHarwell Science and Innovation CampusDidcotOX11 OQXUK
- Department of MaterialsUniversity of OxfordOxfordOX1 3PHUK
| |
Collapse
|
3
|
Seifer S, Kirchweger P, Edel KM, Elbaum M. Optimizing Contrast in Automated 4D STEM Cryotomography. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2024; 30:476-488. [PMID: 38885145 DOI: 10.1093/mam/ozae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/26/2024] [Accepted: 05/09/2024] [Indexed: 06/20/2024]
Abstract
4D STEM is an emerging approach to electron microscopy. While it was developed principally for high-resolution studies in materials science, the possibility to collect the entire transmitted flux makes it attractive for cryomicroscopy in application to life science and radiation-sensitive materials where dose efficiency is of utmost importance. We present a workflow to acquire tomographic tilt series of 4D STEM data sets using a segmented diode and an ultrafast pixelated detector, demonstrating the methods using a specimen of a T4 bacteriophage. Full integration with the SerialEM platform conveniently provides all the tools for grid navigation and automation of the data collection. Scripts are provided to convert the raw data to mrc format files and further to generate a variety of modes representing both scattering and phase contrasts, including incoherent and annular bright field, integrated center of mass, and parallax decomposition of a simulated integrated differential phase contrast. Principal component analysis of virtual annular detectors proves particularly useful, and axial contrast is improved by 3D deconvolution with an optimized point spread function. Contrast optimization enables visualization of irregular features such as DNA strands and thin filaments of the phage tails, which would be lost upon averaging or imposition of an inappropriate symmetry.
Collapse
Affiliation(s)
- Shahar Seifer
- Department of Chemical and Biological Physics, Weizmann Institute of Science, 234 Herzl St, Rehovot 7610001, Israel
| | - Peter Kirchweger
- Department of Chemical and Biological Physics, Weizmann Institute of Science, 234 Herzl St, Rehovot 7610001, Israel
| | - Karlina Maria Edel
- Department of Chemical and Biological Physics, Weizmann Institute of Science, 234 Herzl St, Rehovot 7610001, Israel
| | - Michael Elbaum
- Department of Chemical and Biological Physics, Weizmann Institute of Science, 234 Herzl St, Rehovot 7610001, Israel
| |
Collapse
|
4
|
Held RG, Liang J, Brunger AT. Nanoscale architecture of synaptic vesicles and scaffolding complexes revealed by cryo-electron tomography. Proc Natl Acad Sci U S A 2024; 121:e2403136121. [PMID: 38923992 PMCID: PMC11228483 DOI: 10.1073/pnas.2403136121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024] Open
Abstract
The spatial distribution of proteins and their arrangement within the cellular ultrastructure regulates the opening of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in response to glutamate release at the synapse. Fluorescence microscopy imaging revealed that the postsynaptic density (PSD) and scaffolding proteins in the presynaptic active zone (AZ) align across the synapse to form a trans-synaptic "nanocolumn," but the relation to synaptic vesicle release sites is uncertain. Here, we employ focused-ion beam (FIB) milling and cryoelectron tomography to image synapses under near-native conditions. Improved image contrast, enabled by FIB milling, allows simultaneous visualization of supramolecular nanoclusters within the AZ and PSD and synaptic vesicles. Surprisingly, membrane-proximal synaptic vesicles, which fuse to release glutamate, are not preferentially aligned with AZ or PSD nanoclusters. These synaptic vesicles are linked to the membrane by peripheral protein densities, often consistent in size and shape with Munc13, as well as globular densities bridging the synaptic vesicle and plasma membrane, consistent with prefusion complexes of SNAREs, synaptotagmins, and complexin. Monte Carlo simulations of synaptic transmission events using biorealistic models guided by our tomograms predict that clustering AMPARs within PSD nanoclusters increases the variability of the postsynaptic response but not its average amplitude. Together, our data support a model in which synaptic strength is tuned at the level of single vesicles by the spatial relationship between scaffolding nanoclusters and single synaptic vesicle fusion sites.
Collapse
Affiliation(s)
- Richard G. Held
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA94305
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA94305
- Department of Structural Biology, Stanford University, Stanford, CA94305
- Department of Photon Science, Stanford University, Stanford, CA94305
- HHMI, Stanford University, Stanford, CA94305
| | - Jiahao Liang
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA94305
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA94305
- Department of Structural Biology, Stanford University, Stanford, CA94305
- Department of Photon Science, Stanford University, Stanford, CA94305
- HHMI, Stanford University, Stanford, CA94305
| | - Axel T. Brunger
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA94305
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA94305
- Department of Structural Biology, Stanford University, Stanford, CA94305
- Department of Photon Science, Stanford University, Stanford, CA94305
- HHMI, Stanford University, Stanford, CA94305
| |
Collapse
|
5
|
Gibson W, Mulvey JT, Das S, Selmani S, Merham JG, Rakowski AM, Schwartz E, Hochbaum AI, Guan Z, Green JR, Patterson JP. Observing the Dynamics of an Electrochemically Driven Active Material with Liquid Electron Microscopy. ACS NANO 2024; 18:11898-11909. [PMID: 38648551 DOI: 10.1021/acsnano.4c01524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Electrochemical liquid electron microscopy has revolutionized our understanding of nanomaterial dynamics by allowing for direct observation of their electrochemical production. This technique, primarily applied to inorganic materials, is now being used to explore the self-assembly dynamics of active molecular materials. Our study examines these dynamics across various scales, from the nanoscale behavior of individual fibers to the micrometer-scale hierarchical evolution of fiber clusters. To isolate the influences of the electron beam and electrical potential on material behavior, we conducted thorough beam-sample interaction analyses. Our findings reveal that the dynamics of these active materials at the nanoscale are shaped by their proximity to the electrode and the applied electrical current. By integrating electron microscopy observations with reaction-diffusion simulations, we uncover that local structures and their formation history play a crucial role in determining assembly rates. This suggests that the emergence of nonequilibrium structures can locally accelerate further structural development, offering insights into the behavior of active materials under electrochemical conditions.
Collapse
Affiliation(s)
- Wyeth Gibson
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
- Center for Complex and Active Materials, University of California Irvine, Irvine, California 92697, United States
| | - Justin T Mulvey
- Center for Complex and Active Materials, University of California Irvine, Irvine, California 92697, United States
- Department of Materials Science and Engineering, University of California Irvine, Irvine, California 92697, United States
| | - Swetamber Das
- Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts 02125, United States
| | - Serxho Selmani
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
- Center for Complex and Active Materials, University of California Irvine, Irvine, California 92697, United States
| | - Jovany G Merham
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - Alexander M Rakowski
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - Eric Schwartz
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - Allon I Hochbaum
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
- Center for Complex and Active Materials, University of California Irvine, Irvine, California 92697, United States
- Department of Materials Science and Engineering, University of California Irvine, Irvine, California 92697, United States
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California 92697, United States
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, California 92697, United States
| | - Zhibin Guan
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
- Center for Complex and Active Materials, University of California Irvine, Irvine, California 92697, United States
- Department of Materials Science and Engineering, University of California Irvine, Irvine, California 92697, United States
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, California 92697, United States
- Department of Biomedical Engineering, University of California Irvine, Irvine, California 92697, United States
| | - Jason R Green
- Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts 02125, United States
- Department of Physics, University of Massachusetts Boston, Boston, Massachusetts 02125, United States
| | - Joseph P Patterson
- Department of Chemistry, University of California Irvine, Irvine, California 92697, United States
- Center for Complex and Active Materials, University of California Irvine, Irvine, California 92697, United States
- Department of Materials Science and Engineering, University of California Irvine, Irvine, California 92697, United States
| |
Collapse
|
6
|
Seifer S, Houben L, Elbaum M. Quantitative atomic cross section analysis by 4D-STEM and EELS. Ultramicroscopy 2024; 259:113936. [PMID: 38359631 DOI: 10.1016/j.ultramic.2024.113936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/23/2024] [Accepted: 02/04/2024] [Indexed: 02/17/2024]
Abstract
We demonstrate the use of a 4-dimensional scanning transmission electron microscope (4D-STEM) to extract atomic cross section information in amorphous materials. We measure the scattering amplitudes of 200 keV electrons in several representative specimens: amorphous carbon, silica, amorphous ice of pure water, and vitrified phosphate buffer solution. Diffraction patterns are recorded by 4D-STEM with or without energy filter at the zero-loss peak. In addition, Electron Energy Loss Spectroscopy (EELS) data are acquired at several thicknesses and energies. Mixed elastic and inelastic contributions for thick samples can be decoupled based on a convolution model. Measured differential cross sections between 1 and 3 mrad are due primarily to plasmon excitations and follow precisely a 1/θ2 angular distribution. The measured intensities match Inokuti's calculations of total dipole matrix elements for discrete dipole transitions alone, i.e., transitions to bound states of the atom and not to continuum states. We describe the fundamental mechanism of plasmon excitation in insulators as a two-step interaction process with a fast electron. First, a target electron in the specimen is excited, the probability for which follows from the availability of atomic transitions, with a strong dependence on the column of the periodic table. Second, the dielectric response of the material determines the energy loss. The energy of the loss peak depends primarily on the valence electrons. Elastic scattering is dominant at higher angles, and can be fitted conveniently to 1/θ3.7 with a linear dependence on atomic number for light atoms. In order to facilitate the interpretation of 4D STEM measurements in terms of material composition, we introduce two key parameters. Zeta is an analytical equivalent of classical STEM Z-contrast, determined by the ratio of elastic to inelastic scattering coefficients, while eta is the elastic coefficient divided by thickness. The two parameters may serve for identification of basic classes of materials in biological and other amorphous organic specimens.
Collapse
Affiliation(s)
- Shahar Seifer
- Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
| | - Lothar Houben
- Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Michael Elbaum
- Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
7
|
Pivak Y, Park J, Basak S, Eichel RA, Beker A, Rozene A, Pérez Garza HH, Sun H. High-resolution and analytical electron microscopy in a liquid flow cell via gas purging. Microscopy (Oxf) 2023; 72:520-524. [PMID: 37162280 DOI: 10.1093/jmicro/dfad023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/05/2023] [Accepted: 04/16/2023] [Indexed: 05/11/2023] Open
Abstract
Liquid-phase transmission electron microscopy (LPTEM) technique has been used to perform a wide range of in situ and operando studies. While most studies are based on the sample contrast change in the liquid, acquiring high qualitative results in the native liquid environment still poses a challenge. Herein, we present a novel and facile method to perform high-resolution and analytical electron microscopy studies in a liquid flow cell. This technique is based on removing the liquid from the observation area by a flow of gas. It is expected that the proposed approach can find broad applications in LPTEM studies.
Collapse
Affiliation(s)
- Yevheniy Pivak
- DENSsolutions B.V., Informaticalaan 12, Delft 2628 ZD, The Netherlands
| | - Junbeom Park
- Fundamental Electrochemistry (IEK-9), Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, Jülich 52425, Germany
| | - Shibabrata Basak
- Fundamental Electrochemistry (IEK-9), Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, Jülich 52425, Germany
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons , Forschungszentrum Jülich GmbH, Jülich 52425, Germany
| | - Rüdiger-Albert Eichel
- Fundamental Electrochemistry (IEK-9), Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, Jülich 52425, Germany
| | - Anne Beker
- DENSsolutions B.V., Informaticalaan 12, Delft 2628 ZD, The Netherlands
| | - Alejandro Rozene
- DENSsolutions B.V., Informaticalaan 12, Delft 2628 ZD, The Netherlands
| | | | - Hongyu Sun
- DENSsolutions B.V., Informaticalaan 12, Delft 2628 ZD, The Netherlands
| |
Collapse
|
8
|
Kirchweger P, Mullick D, Swain PP, Wolf SG, Elbaum M. Correlating cryo-super resolution radial fluctuations and dual-axis cryo-scanning transmission electron tomography to bridge the light-electron resolution gap. J Struct Biol 2023; 215:107982. [PMID: 37268154 DOI: 10.1016/j.jsb.2023.107982] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/05/2023] [Accepted: 05/24/2023] [Indexed: 06/04/2023]
Abstract
Visualization of organelles and their interactions with other features in the native cell remains a challenge in modern biology. We have introduced cryo-scanning transmission electron tomography (CSTET), which can access 3D volumes on the scale of 1 micron with a resolution of nanometers, making it ideal for this task. Here we introduce two relevant advances: (a) we demonstrate the utility of multi-color super-resolution radial fluctuation light microscopy under cryogenic conditions (cryo-SRRF), and (b) we extend the use of deconvolution processing for dual-axis CSTET data. We show that cryo-SRRF nanoscopy is able to reach resolutions in the range of 100 nm, using commonly available fluorophores and a conventional widefield microscope for cryo-correlative light-electron microscopy. Such resolution aids in precisely identifying regions of interest before tomographic acquisition and enhances precision in localizing features of interest within the 3D reconstruction. Dual-axis CSTET tilt series data and application of entropy regularized deconvolution during post-processing results in close-to-isotropic resolution in the reconstruction without averaging. The integration of cryo-SRRF with deconvolved dual-axis CSTET provides a versatile workflow for studying unique objects in a cell.
Collapse
Affiliation(s)
- Peter Kirchweger
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Debakshi Mullick
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Prabhu Prasad Swain
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel; School of Physical Sciences, UM-DAE Centre for Excellence in Basic Sciences, Mumbai 400098, India
| | - Sharon G Wolf
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Michael Elbaum
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
9
|
Liu S, Han X, Ophus C, Zhou S, Jiang YH, Sun Y, Zhao T, Yang F, Gu M, Tan YZ, Sun SG, Zheng H, Liao HG. Observing ion diffusion and reciprocating hopping motion in water. SCIENCE ADVANCES 2023; 9:eadf8436. [PMID: 37506205 PMCID: PMC10381929 DOI: 10.1126/sciadv.adf8436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 06/26/2023] [Indexed: 07/30/2023]
Abstract
When an ionic crystal dissolves in solvent, the positive and negative ions associated with solvent molecules release from the crystal. However, the existing form, interaction, and dynamics of ions in real solution are poorly understood because of the substantial experimental challenge. We observed the diffusion and aggregation of polyoxometalate (POM) ions in water by using liquid phase transmission electron microscopy. Real-time observation reveals an unexpected local reciprocating hopping motion of the ions in water, which may be caused by the short-range polymerized bridge of water molecules. We find that ion oligomers, existing as highly active clusters, undergo frequent splitting, aggregation, and rearrangement in dilute solution. The formation and dissociation of ion oligomers indicate a weak counterion-mediated interaction. Furthermore, POM ions with tetrahedral geometry show directional interaction compared with spherical ions, which presents structure-dependent dynamics.
Collapse
Affiliation(s)
- Sangui Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xinbao Han
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Colin Ophus
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Shiyuan Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - You-Hong Jiang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yue Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Tiqing Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Fei Yang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Meng Gu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuan-Zhi Tan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shi-Gang Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Haimei Zheng
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA
| | - Hong-Gang Liao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
10
|
Fritsch B, Körner A, Couasnon T, Blukis R, Taherkhani M, Benning LG, Jank MPM, Spiecker E, Hutzler A. Tailoring the Acidity of Liquid Media with Ionizing Radiation: Rethinking the Acid-Base Correlation beyond pH. J Phys Chem Lett 2023; 14:4644-4651. [PMID: 37167107 DOI: 10.1021/acs.jpclett.3c00593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Advanced in situ techniques based on electrons and X-rays are increasingly used to gain insights into fundamental processes in liquids. However, probing liquid samples with ionizing radiation changes the solution chemistry under observation. In this work, we show that a radiation-induced decrease in pH does not necessarily correlate to an increase in acidity of aqueous solutions. Thus, pH does not capture the acidity under irradiation. Using kinetic modeling of radiation chemistry, we introduce alternative measures of acidity (radiolytic acidity π* and radiolytic ion product KW*), that account for radiation-induced alterations of both H+ and OH- concentration. Moreover, we demonstrate that adding pH-neutral solutes such as LiCl, LiBr, or LiNO3 can trigger a significant change in π*. This provides a huge parameter space to tailor the acidity for in situ experiments involving ionizing radiation, as present in synchrotron facilities or during liquid-phase electron microscopy.
Collapse
Affiliation(s)
- Birk Fritsch
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Cauerstraße 1, 91058 Erlangen, Germany
- Department of Electrical, Electronic and Communication Engineering, Electron Devices (LEB), Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 6, 91058 Erlangen, Germany
- Department of Materials Science and Engineering, Institute of Micro- and Nanostructure Research (IMN) and Center for Nanoanalysis and Electron Microscopy (CENEM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 3, 91058 Erlangen, Germany
| | - Andreas Körner
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Cauerstraße 1, 91058 Erlangen, Germany
| | - Thaïs Couasnon
- Helmholtz-Zentrum Potsdam, Deutsches GeoForschungsZentrum (GFZ), Telegrafenberg, 14473 Potsdam, Germany
| | - Roberts Blukis
- Helmholtz-Zentrum Potsdam, Deutsches GeoForschungsZentrum (GFZ), Telegrafenberg, 14473 Potsdam, Germany
| | - Mehran Taherkhani
- Department of Electrical, Electronic and Communication Engineering, Electron Devices (LEB), Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 6, 91058 Erlangen, Germany
| | - Liane G Benning
- Helmholtz-Zentrum Potsdam, Deutsches GeoForschungsZentrum (GFZ), Telegrafenberg, 14473 Potsdam, Germany
- Department of Earth Sciences, Free University of Berlin, 12249 Berlin, Germany
| | - Michael P M Jank
- Department of Electrical, Electronic and Communication Engineering, Electron Devices (LEB), Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 6, 91058 Erlangen, Germany
- Fraunhofer Institute for Integrated Systems and Device Technology IISB, Schottkystraße 10, 91058 Erlangen, Germany
| | - Erdmann Spiecker
- Department of Materials Science and Engineering, Institute of Micro- and Nanostructure Research (IMN) and Center for Nanoanalysis and Electron Microscopy (CENEM), Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 3, 91058 Erlangen, Germany
| | - Andreas Hutzler
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Cauerstraße 1, 91058 Erlangen, Germany
| |
Collapse
|
11
|
Abstract
Recent advances in cryo-electron microscopy have marked only the beginning of the potential of this technique. To bring structure into cell biology, the modality of cryo-electron tomography has fast developed into a bona fide in situ structural biology technique where structures are determined in their native environment, the cell. Nearly every step of the cryo-focused ion beam-assisted electron tomography (cryo-FIB-ET) workflow has been improved upon in the past decade, since the first windows were carved into cells, unveiling macromolecular networks in near-native conditions. By bridging structural and cell biology, cryo-FIB-ET is advancing our understanding of structure-function relationships in their native environment and becoming a tool for discovering new biology.
Collapse
Affiliation(s)
- Lindsey N Young
- Department of Molecular Biology, University of California, San Diego, La Jolla, California, USA;
| | - Elizabeth Villa
- Department of Molecular Biology, University of California, San Diego, La Jolla, California, USA;
- Howard Hughes Medical Institute, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
12
|
Berger C, Dumoux M, Glen T, Yee NBY, Mitchels JM, Patáková Z, Darrow MC, Naismith JH, Grange M. Plasma FIB milling for the determination of structures in situ. Nat Commun 2023; 14:629. [PMID: 36746945 PMCID: PMC9902539 DOI: 10.1038/s41467-023-36372-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/26/2023] [Indexed: 02/08/2023] Open
Abstract
Structural biology studies inside cells and tissues require methods to thin vitrified specimens to electron transparency. Until now, focused ion beams based on gallium have been used. However, ion implantation, changes to surface chemistry and an inability to access high currents limit gallium application. Here, we show that plasma-coupled ion sources can produce cryogenic lamellae of vitrified human cells in a robust and automated manner, with quality sufficient for pseudo-atomic structure determination. Lamellae were produced in a prototype microscope equipped for long cryogenic run times (> 1 week) and with multi-specimen support fully compatible with modern-day transmission electron microscopes. We demonstrate that plasma ion sources can be used for structural biology within cells, determining a structure in situ to 4.9 Å, and characterise the resolution dependence on particle distance from the lamella edge. We describe a workflow upon which different plasmas can be examined to further streamline lamella fabrication.
Collapse
Affiliation(s)
- Casper Berger
- Structural Biology, The Rosalind Franklin Institute, Harwell Science & Innovation Campus, Didcot, OX11 0QS, United Kingdom.,Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, OX3 7BN, Oxford, United Kingdom
| | - Maud Dumoux
- Structural Biology, The Rosalind Franklin Institute, Harwell Science & Innovation Campus, Didcot, OX11 0QS, United Kingdom
| | - Thomas Glen
- Structural Biology, The Rosalind Franklin Institute, Harwell Science & Innovation Campus, Didcot, OX11 0QS, United Kingdom
| | - Neville B-Y Yee
- Artificial Intelligence & Informatics, The Rosalind Franklin Institute, Harwell Science & Innovation Campus, Didcot, OX11 0QS, United Kingdom
| | - John M Mitchels
- Thermo Fisher Scientific Brno s.r.o, Brno, 627 00, Czech Republic
| | - Zuzana Patáková
- Thermo Fisher Scientific Brno s.r.o, Brno, 627 00, Czech Republic
| | - Michele C Darrow
- Artificial Intelligence & Informatics, The Rosalind Franklin Institute, Harwell Science & Innovation Campus, Didcot, OX11 0QS, United Kingdom
| | - James H Naismith
- Structural Biology, The Rosalind Franklin Institute, Harwell Science & Innovation Campus, Didcot, OX11 0QS, United Kingdom.,Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, OX3 7BN, Oxford, United Kingdom
| | - Michael Grange
- Structural Biology, The Rosalind Franklin Institute, Harwell Science & Innovation Campus, Didcot, OX11 0QS, United Kingdom. .,Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, OX3 7BN, Oxford, United Kingdom.
| |
Collapse
|
13
|
Fritsch B, Zech TS, Bruns MP, Körner A, Khadivianazar S, Wu M, Zargar Talebi N, Virtanen S, Unruh T, Jank MPM, Spiecker E, Hutzler A. Radiolysis-Driven Evolution of Gold Nanostructures - Model Verification by Scale Bridging In Situ Liquid-Phase Transmission Electron Microscopy and X-Ray Diffraction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202803. [PMID: 35780494 PMCID: PMC9443456 DOI: 10.1002/advs.202202803] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/03/2022] [Indexed: 05/20/2023]
Abstract
Utilizing ionizing radiation for in situ studies in liquid media enables unique insights into nanostructure formation dynamics. As radiolysis interferes with observations, kinetic simulations are employed to understand and exploit beam-liquid interactions. By introducing an intuitive tool to simulate arbitrary kinetic models for radiation chemistry, it is demonstrated that these models provide a holistic understanding of reaction mechanisms. This is shown for irradiated HAuCl4 solutions allowing for quantitative prediction and tailoring of redox processes in liquid-phase transmission electron microscopy (LP-TEM). Moreover, it is demonstrated that kinetic modeling of radiation chemistry is applicable to investigations utilizing X-rays such as X-ray diffraction (XRD). This emphasizes that beam-sample interactions must be considered during XRD in liquid media and shows that reaction kinetics do not provide a threshold dose rate for gold nucleation relevant to LP-TEM and XRD. Furthermore, it is unveiled that oxidative etching of gold nanoparticles depends on both, precursor concentration, and dose rate. This dependency is exploited to probe the electron beam-induced shift in Gibbs free energy landscape by analyzing critical radii of gold nanoparticles.
Collapse
Affiliation(s)
- Birk Fritsch
- Electron Devices (LEB)Department of Electrical, Electronic and Communication EngineeringFriedrich‐Alexander‐Universität Erlangen‐NürnbergCauerstraße 691058ErlangenGermany
- Institute of Micro‐ and Nanostructure Research (IMN) and Center for Nanoanalysis and Electron Microscopy (CENEM)Department of Materials Science and EngineeringFriedrich‐Alexander‐Universität Erlangen‐NürnbergCauerstraße 391058ErlangenGermany
| | - Tobias S. Zech
- Institute for Crystallography and Structural Physics (ICSP)and Center for Nanoanalysis and Electron Microscopy (CENEM)Institute of Condensed Matter PhysicsDepartment of PhysicsFriedrich‐Alexander‐Universität Erlangen‐NürnbergStaudtstraße 391058ErlangenGermany
| | - Mark P. Bruns
- Surface Science and Corrosion (LKO)Department of Materials Science and EngineeringFriedrich‐Alexander‐Universität Erlangen‐NürnbergMartensstraße 791058ErlangenGermany
| | - Andreas Körner
- Forschungszentrum Jülich GmbHHelmholtz Institute Erlangen‐Nürnberg for Renewable Energy (IEK‐11)Cauerstraße 191058ErlangenGermany
| | - Saba Khadivianazar
- Electron Devices (LEB)Department of Electrical, Electronic and Communication EngineeringFriedrich‐Alexander‐Universität Erlangen‐NürnbergCauerstraße 691058ErlangenGermany
| | - Mingjian Wu
- Institute of Micro‐ and Nanostructure Research (IMN) and Center for Nanoanalysis and Electron Microscopy (CENEM)Department of Materials Science and EngineeringFriedrich‐Alexander‐Universität Erlangen‐NürnbergCauerstraße 391058ErlangenGermany
| | - Neda Zargar Talebi
- Electron Devices (LEB)Department of Electrical, Electronic and Communication EngineeringFriedrich‐Alexander‐Universität Erlangen‐NürnbergCauerstraße 691058ErlangenGermany
| | - Sannakaisa Virtanen
- Surface Science and Corrosion (LKO)Department of Materials Science and EngineeringFriedrich‐Alexander‐Universität Erlangen‐NürnbergMartensstraße 791058ErlangenGermany
| | - Tobias Unruh
- Institute for Crystallography and Structural Physics (ICSP)and Center for Nanoanalysis and Electron Microscopy (CENEM)Institute of Condensed Matter PhysicsDepartment of PhysicsFriedrich‐Alexander‐Universität Erlangen‐NürnbergStaudtstraße 391058ErlangenGermany
| | - Michael P. M. Jank
- Electron Devices (LEB)Department of Electrical, Electronic and Communication EngineeringFriedrich‐Alexander‐Universität Erlangen‐NürnbergCauerstraße 691058ErlangenGermany
- Fraunhofer Institute for Integrated Systems and Device Technology IISBSchottkystraße 1091058ErlangenGermany
| | - Erdmann Spiecker
- Institute of Micro‐ and Nanostructure Research (IMN) and Center for Nanoanalysis and Electron Microscopy (CENEM)Department of Materials Science and EngineeringFriedrich‐Alexander‐Universität Erlangen‐NürnbergCauerstraße 391058ErlangenGermany
| | - Andreas Hutzler
- Electron Devices (LEB)Department of Electrical, Electronic and Communication EngineeringFriedrich‐Alexander‐Universität Erlangen‐NürnbergCauerstraße 691058ErlangenGermany
- Forschungszentrum Jülich GmbHHelmholtz Institute Erlangen‐Nürnberg for Renewable Energy (IEK‐11)Cauerstraße 191058ErlangenGermany
| |
Collapse
|
14
|
Brown HG, Hanssen E. MeasureIce: accessible on-the-fly measurement of ice thickness in cryo-electron microscopy. Commun Biol 2022; 5:817. [PMID: 35965271 PMCID: PMC9376182 DOI: 10.1038/s42003-022-03698-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 07/11/2022] [Indexed: 11/12/2022] Open
Abstract
Ice thickness is arguably one of the most important factors limiting the resolution of protein structures determined by cryo-electron microscopy (cryo-EM). The amorphous atomic structure of the ice that stabilizes and protects biological samples in cryo-EM grids also imprints some additional noise in cryo-EM images. Ice that is too thick jeopardizes the success of particle picking and reconstruction of the biomolecule in the worst case and, at best, deteriorates eventual map resolution. Minimizing the thickness of the ice layer and thus the magnitude of its noise contribution is thus imperative in cryo-EM grid preparation. In this paper we introduce MeasureIce, a simple, easy to use ice thickness measurement tool for screening and selecting acquisition areas of cryo-EM grids. We show that it is possible to simulate thickness-image intensity look-up tables, also usable in SerialEM and Leginon, using elementary scattering physics and thereby adapt the tool to any microscope without time consuming experimental calibration. We benchmark our approach using two alternative techniques: the "ice channel" technique and tilt-series tomography. We also demonstrate the utility of ice thickness measurement for selecting holes in gold grids containing an Equine apoferritin sample, achieving a 1.88 Ångstrom resolution in subsequent refinement of the atomic map.
Collapse
Affiliation(s)
- Hamish G Brown
- Ian Holmes Imaging Center, Bio21 Molecular Science & Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia.
| | - Eric Hanssen
- Ian Holmes Imaging Center, Bio21 Molecular Science & Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology and ARC Industrial Transformation Training Center for Cryo-electron Microscopy of Membrane Proteins, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
15
|
Dickerson JL, Lu PH, Hristov D, Dunin-Borkowski RE, Russo CJ. Imaging biological macromolecules in thick specimens: The role of inelastic scattering in cryoEM. Ultramicroscopy 2022; 237:113510. [PMID: 35367900 PMCID: PMC9355893 DOI: 10.1016/j.ultramic.2022.113510] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/24/2022] [Accepted: 03/06/2022] [Indexed: 11/17/2022]
Abstract
We investigate potential improvements in using electron cryomicroscopy to image thick specimens with high-resolution phase contrast imaging. In particular, using model experiments, electron scattering theory, Monte Carlo and multislice simulations, we determine the potential for improving electron cryomicrographs of proteins within a cell using chromatic aberration (Cc) correction. We show that inelastically scattered electrons lose a quantifiable amount of spatial coherence as they transit the specimen, yet can be used to enhance the signal from thick biological specimens (in the 1000 to 5000 Å range) provided they are imaged close to focus with an achromatic lens. This loss of information quantified here, which we call "specimen induced decoherence", is a fundamental limit on imaging biological molecules in situ. We further show that with foreseeable advances in transmission electron microscope technology, it should be possible to directly locate and uniquely identify sub-100 kDa proteins without the need for labels, in a vitrified specimen taken from a cell.
Collapse
Affiliation(s)
- Joshua L Dickerson
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Peng-Han Lu
- Ernst Ruska-Centrum für Mikroskopie und Spektroskopie mit Elektronen, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Dilyan Hristov
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Rafal E Dunin-Borkowski
- Ernst Ruska-Centrum für Mikroskopie und Spektroskopie mit Elektronen, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Christopher J Russo
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
16
|
Basha A, Levi G, Amrani T, Li Y, Ankonina G, Shekhter P, Kornblum L, Goldfarb I, Kohn A. Elastic and inelastic mean free paths for scattering of fast electrons in thin-film oxides. Ultramicroscopy 2022; 240:113570. [PMID: 35700667 DOI: 10.1016/j.ultramic.2022.113570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/23/2022] [Accepted: 06/03/2022] [Indexed: 10/18/2022]
Abstract
Quantitative transmission electron microscopy (TEM) often requires accurate knowledge of sample thickness for determining defect density, structure factors, sample dimensions, electron beam and X-ray photons signal broadening. The most common thickness measurement is by Electron Energy Loss Spectroscopy which can be applied effectively to crystalline and amorphous materials. The drawback is that sample thickness is measured in units of Inelastic Mean Free Path (MFP) which depends on the material, the electron energy and the collection angle of the spectrometer. Furthermore, the Elastic MFP is an essential parameter for selecting optimal sample thickness to reduce dynamical scatterings, such as for short-range-order characterization of amorphous materials. Finally, the Inelastic to Elastic MFP ratio can predict the dominant mechanism for radiation damage due to the electron beam. We implement a fast and precise method for the extraction of inelastic and elastic MFP values in technologically important oxide thin films. The method relies on the crystalline Si substrate for calibration. The Inelastic MFP of Si was measured as a function of collection semi-angle (β) by combining Energy-Filtered TEM thickness maps followed by perpendicular cross-sectioning of the sample by Focused-Ion-Beam. For example, we measured a total Inelastic MFP (β∼157 mrad) in Si of 145 ± 10 nm for 200 keV electrons. The MFP of the thin oxide films is determined by their ratio at their interface with Si or SiO2. The validity of this method was verified by direct TEM observation of cross-to-cross sectioning of TEM samples. The high precision of this method was enabled mainly by implementing a wedge preparation technique, which provides large sampling areas with uniform thickness. We measured the Elastic and Inelastic Mean Free Paths for 200 keV and 80 keV electrons as a function of collection angle for: SiO2 (Thermal, CVD), low-κ SiOCH, Al2O3, TiO2, ZnO, Ta2O5 and HfO2. The measured MFP values were compared to calculations based on models of Wenzel, Malis and Iakoubovskii. These models deviate from measurements by up to 30%, especially for 80 keV electrons. Hence, we propose functional relations for the Elastic MFP and Inelastic MFP in oxides with respect to the mass density and effective atomic number, which reduce deviations by a factor of 2-3. In addition, the effects of sample cooling on the measurements and sample stability are examined.
Collapse
Affiliation(s)
- Adham Basha
- Department of Materials Science and Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Ramat Aviv, Tel Aviv 6997801, Israel
| | - George Levi
- Department of Materials Science and Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Ramat Aviv, Tel Aviv 6997801, Israel
| | - Tamir Amrani
- Department of Materials Science and Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Ramat Aviv, Tel Aviv 6997801, Israel
| | - Yang Li
- Andrew and Erna Viterbi Faculty of Electrical and Computer Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Guy Ankonina
- Andrew and Erna Viterbi Faculty of Electrical and Computer Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Pini Shekhter
- Tel Aviv University Center for Nanoscience and Nanotechnology, Tel Aviv University, Ramat Aviv, Tel Aviv 6997801, Israel
| | - Lior Kornblum
- Andrew and Erna Viterbi Faculty of Electrical and Computer Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Ilan Goldfarb
- Department of Materials Science and Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Ramat Aviv, Tel Aviv 6997801, Israel
| | - Amit Kohn
- Department of Materials Science and Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Ramat Aviv, Tel Aviv 6997801, Israel.
| |
Collapse
|
17
|
Huber ST, Sarajlic E, Huijink R, Weis F, Evers WH, Jakobi AJ. Nanofluidic chips for cryo-EM structure determination from picoliter sample volumes. eLife 2022; 11:72629. [PMID: 35060902 PMCID: PMC8786315 DOI: 10.7554/elife.72629] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/07/2021] [Indexed: 01/25/2023] Open
Abstract
Cryogenic electron microscopy has become an essential tool for structure determination of biological macromolecules. In practice, the difficulty to reliably prepare samples with uniform ice thickness still represents a barrier for routine high-resolution imaging and limits the current throughput of the technique. We show that a nanofluidic sample support with well-defined geometry can be used to prepare cryo-EM specimens with reproducible ice thickness from picoliter sample volumes. The sample solution is contained in electron-transparent nanochannels that provide uniform thickness gradients without further optimisation and eliminate the potentially destructive air-water interface. We demonstrate the possibility to perform high-resolution structure determination with three standard protein specimens. Nanofabricated sample supports bear potential to automate the cryo-EM workflow, and to explore new frontiers for cryo-EM applications such as time-resolved imaging and high-throughput screening.
Collapse
Affiliation(s)
- Stefan T Huber
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology
| | | | | | - Felix Weis
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL)
| | - Wiel H Evers
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology
| | - Arjen J Jakobi
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology
| |
Collapse
|
18
|
Martynowycz MW, Clabbers MTB, Unge J, Hattne J, Gonen T. Benchmarking the ideal sample thickness in cryo-EM. Proc Natl Acad Sci U S A 2021; 118:e2108884118. [PMID: 34873060 PMCID: PMC8670461 DOI: 10.1073/pnas.2108884118] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2021] [Indexed: 12/14/2022] Open
Abstract
The relationship between sample thickness and quality of data obtained is investigated by microcrystal electron diffraction (MicroED). Several electron microscopy (EM) grids containing proteinase K microcrystals of similar sizes from the same crystallization batch were prepared. Each grid was transferred into a focused ion beam and a scanning electron microscope in which the crystals were then systematically thinned into lamellae between 95- and 1,650-nm thick. MicroED data were collected at either 120-, 200-, or 300-kV accelerating voltages. Lamellae thicknesses were expressed in multiples of the corresponding inelastic mean free path to allow the results from different acceleration voltages to be compared. The quality of the data and subsequently determined structures were assessed using standard crystallographic measures. Structures were reliably determined with similar quality from crystalline lamellae up to twice the inelastic mean free path. Lower resolution diffraction was observed at three times the mean free path for all three accelerating voltages, but the data quality was insufficient to yield structures. Finally, no coherent diffraction was observed from lamellae thicker than four times the calculated inelastic mean free path. This study benchmarks the ideal specimen thickness with implications for all cryo-EM methods.
Collapse
Affiliation(s)
- Michael W Martynowycz
- HHMI, University of California, Los Angeles, CA 90095
- Department of Biological Chemistry, University of California, Los Angeles, CA 90095
| | - Max T B Clabbers
- Department of Biological Chemistry, University of California, Los Angeles, CA 90095
| | - Johan Unge
- Department of Biological Chemistry, University of California, Los Angeles, CA 90095
| | - Johan Hattne
- HHMI, University of California, Los Angeles, CA 90095
- Department of Biological Chemistry, University of California, Los Angeles, CA 90095
| | - Tamir Gonen
- HHMI, University of California, Los Angeles, CA 90095;
- Department of Biological Chemistry, University of California, Los Angeles, CA 90095
- Department of Physiology, University of California, Los Angeles, CA 90095
| |
Collapse
|
19
|
Kang S, Kim JH, Lee M, Yu JW, Kim J, Kang D, Baek H, Bae Y, Kim BH, Kang S, Shim S, Park SJ, Lee WB, Hyeon T, Sung J, Park J. Real-space imaging of nanoparticle transport and interaction dynamics by graphene liquid cell TEM. SCIENCE ADVANCES 2021; 7:eabi5419. [PMID: 34860549 PMCID: PMC8641935 DOI: 10.1126/sciadv.abi5419] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 10/14/2021] [Indexed: 05/21/2023]
Abstract
Thermal motion of colloidal nanoparticles and their cohesive interactions are of fundamental importance in nanoscience but are difficult to access quantitatively, primarily due to the lack of the appropriate analytical tools to investigate the dynamics of individual particles at nanoscales. Here, we directly monitor the stochastic thermal motion and coalescence dynamics of gold nanoparticles smaller than 5 nm, using graphene liquid cell (GLC) transmission electron microscopy (TEM). We also present a novel model of nanoparticle dynamics, providing a unified, quantitative explanation of our experimental observations. The nanoparticles in a GLC exhibit non-Gaussian, diffusive motion, signifying dynamic fluctuation of the diffusion coefficient due to the dynamically heterogeneous environment surrounding nanoparticles, including organic ligands on the nanoparticle surface. Our study shows that the dynamics of nanoparticle coalescence is controlled by two elementary processes: diffusion-limited encounter complex formation and the subsequent coalescence of the encounter complex through rotational motion, where surface-passivating ligands play a critical role.
Collapse
Affiliation(s)
- Sungsu Kang
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Ji-Hyun Kim
- Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea
- Center for Chemical Dynamics in Living Cells, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Minyoung Lee
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji Woong Yu
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Joodeok Kim
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Dohun Kang
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Hayeon Baek
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Yuna Bae
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Byung Hyo Kim
- Department of Organic Materials and Fiber Engineering, Soongsil University, Seoul 06978, Republic of Korea
| | - Seulki Kang
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Sangdeok Shim
- Department of Chemistry, Sunchon National University, Suncheon 57922, Republic of Korea
| | - So-Jung Park
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Won Bo Lee
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Taeghwan Hyeon
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Jaeyoung Sung
- Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea
- Center for Chemical Dynamics in Living Cells, Chung-Ang University, Seoul 06974, Republic of Korea
- Corresponding author. (J.P.); (J.S.)
| | - Jungwon Park
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- Institute of Engineering Research, Seoul National University, Seoul 08826, Republic of Korea
- Corresponding author. (J.P.); (J.S.)
| |
Collapse
|
20
|
A cryo-TSEM with temperature cycling capability allows deep sublimation of ice to uncover fine structures in thick cells. Sci Rep 2021; 11:21406. [PMID: 34725450 PMCID: PMC8560947 DOI: 10.1038/s41598-021-00979-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 10/18/2021] [Indexed: 11/08/2022] Open
Abstract
The scanning electron microscope (SEM) has been reassembled into a new type of cryo-electron microscope (cryo-TSEM) by installing a new cryo-transfer holder and anti-contamination trap, which allowed simultaneous acquisition of both transmission images (STEM images) and surface images (SEM images) in the frozen state. The ultimate temperatures of the holder and the trap reached − 190 °C and − 210 °C, respectively, by applying a liquid nitrogen slush. The STEM images at 30 kV were comparable to, or superior to, the images acquired with conventional transmission electron microscope (100 kV TEM) in contrast and sharpness. The unroofing method was used to observe membrane cytoskeletons instead of the frozen section and the FIB methods. Deep sublimation of ice surrounding unroofed cells by regulating temperature enabled to emerge intracellular fine structures in thick frozen cells. Hence, fine structures in the vicinity of the cell membrane such as the cytoskeleton, polyribosome chains and endoplasmic reticulum (ER) became visible. The ER was distributed as a wide, flat structure beneath the cell membrane, forming a large spatial network with tubular ER.
Collapse
|
21
|
Barry E, Burns R, Chen W, De Hoe GX, De Oca JMM, de Pablo JJ, Dombrowski J, Elam JW, Felts AM, Galli G, Hack J, He Q, He X, Hoenig E, Iscen A, Kash B, Kung HH, Lewis NHC, Liu C, Ma X, Mane A, Martinson ABF, Mulfort KL, Murphy J, Mølhave K, Nealey P, Qiao Y, Rozyyev V, Schatz GC, Sibener SJ, Talapin D, Tiede DM, Tirrell MV, Tokmakoff A, Voth GA, Wang Z, Ye Z, Yesibolati M, Zaluzec NJ, Darling SB. Advanced Materials for Energy-Water Systems: The Central Role of Water/Solid Interfaces in Adsorption, Reactivity, and Transport. Chem Rev 2021; 121:9450-9501. [PMID: 34213328 DOI: 10.1021/acs.chemrev.1c00069] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The structure, chemistry, and charge of interfaces between materials and aqueous fluids play a central role in determining properties and performance of numerous water systems. Sensors, membranes, sorbents, and heterogeneous catalysts almost uniformly rely on specific interactions between their surfaces and components dissolved or suspended in the water-and often the water molecules themselves-to detect and mitigate contaminants. Deleterious processes in these systems such as fouling, scaling (inorganic deposits), and corrosion are also governed by interfacial phenomena. Despite the importance of these interfaces, much remains to be learned about their multiscale interactions. Developing a deeper understanding of the molecular- and mesoscale phenomena at water/solid interfaces will be essential to driving innovation to address grand challenges in supplying sufficient fit-for-purpose water in the future. In this Review, we examine the current state of knowledge surrounding adsorption, reactivity, and transport in several key classes of water/solid interfaces, drawing on a synergistic combination of theory, simulation, and experiments, and provide an outlook for prioritizing strategic research directions.
Collapse
Affiliation(s)
- Edward Barry
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Applied Materials Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Center for Molecular Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States
| | - Raelyn Burns
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Applied Materials Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States
| | - Wei Chen
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Center for Molecular Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Guilhem X De Hoe
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Center for Molecular Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Joan Manuel Montes De Oca
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Juan J de Pablo
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - James Dombrowski
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 United States
| | - Jeffrey W Elam
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Applied Materials Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Center for Molecular Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States
| | - Alanna M Felts
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 United States
| | - Giulia Galli
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - John Hack
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Qiming He
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Center for Molecular Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Xiang He
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States
| | - Eli Hoenig
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Aysenur Iscen
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 United States
| | - Benjamin Kash
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Harold H Kung
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 United States
| | - Nicholas H C Lewis
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Chong Liu
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Xinyou Ma
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Anil Mane
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Applied Materials Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States
| | - Alex B F Martinson
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Center for Molecular Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States
| | - Karen L Mulfort
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States
| | - Julia Murphy
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Kristian Mølhave
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Technical University of Denmark, Anker Engelunds Vej 1 Bygning 101A, Kgs. Lyngby, Lyngby, Hovedstaden 2800, DK Denmark
| | - Paul Nealey
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Yijun Qiao
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Center for Molecular Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States
| | - Vepa Rozyyev
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Applied Materials Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States
| | - George C Schatz
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 United States
| | - Steven J Sibener
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Dmitri Talapin
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - David M Tiede
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States
| | - Matthew V Tirrell
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Center for Molecular Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Andrei Tokmakoff
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Gregory A Voth
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Zhongyang Wang
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Zifan Ye
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| | - Murat Yesibolati
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Technical University of Denmark, Anker Engelunds Vej 1 Bygning 101A, Kgs. Lyngby, Lyngby, Hovedstaden 2800, DK Denmark
| | - Nestor J Zaluzec
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Photon Sciences Directorate, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States
| | - Seth B Darling
- Advanced Materials for Energy-Water Systems (AMEWS) Energy Frontier Research Center (EFRC), Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Center for Molecular Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439 United States.,Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637 United States
| |
Collapse
|
22
|
Wu H, Su H, Joosten RRM, Keizer ADA, van Hazendonk LS, Wirix MJM, Patterson JP, Laven J, de With G, Friedrich H. Mapping and Controlling Liquid Layer Thickness in Liquid-Phase (Scanning) Transmission Electron Microscopy. SMALL METHODS 2021; 5:e2001287. [PMID: 34927906 DOI: 10.1002/smtd.202001287] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/18/2021] [Indexed: 06/14/2023]
Abstract
Liquid-Phase (Scanning) Transmission Electron Microscopy (LP-(S)TEM) has become an essential technique to monitor nanoscale materials processes in liquids in real-time. Due to the pressure difference between the liquid and the microscope vacuum, bending of the silicon nitride (SiNx ) membrane windows generally occurs. This causes a spatially varying liquid layer thickness that makes interpretation of LP-(S)TEM results difficult due to a locally varying achievable resolution and diffusion limitations. To mediate these difficulties, it is shown: 1) how to quantitatively map liquid layer thickness for any liquid at less than 0.01 e- Å-2 total dose; 2) how to dynamically modulate the liquid thickness by tuning the internal pressure in the liquid cell, co-determined by the Laplace pressure and the external pressure. It is demonstrated that reproducible inward bulging of the window membranes can be realized, leading to an ultra-thin liquid layer in the central window area for high-resolution imaging. Furthermore, it is shown that the liquid thickness can be dynamically altered in a programmed way, thereby potentially overcoming the diffusion limitations towards achieving bulk solution conditions. The presented approaches provide essential ways to measure and dynamically adjust liquid thickness in LP-(S)TEM experiments, enabling new experiment designs and better control of solution chemistry.
Collapse
Affiliation(s)
- Hanglong Wu
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry Eindhoven University of Technology, PO box 513, Eindhoven, MB, 5600, The Netherlands
| | - Hao Su
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry Eindhoven University of Technology, PO box 513, Eindhoven, MB, 5600, The Netherlands
| | - Rick R M Joosten
- Center for Multiscale Electron Microscopy, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, PO box 513, Eindhoven, MB, 5600, The Netherlands
| | - Arthur D A Keizer
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry Eindhoven University of Technology, PO box 513, Eindhoven, MB, 5600, The Netherlands
| | - Laura S van Hazendonk
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry Eindhoven University of Technology, PO box 513, Eindhoven, MB, 5600, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO box 513, Eindhoven, MB, 5600, The Netherlands
| | - Maarten J M Wirix
- Materials & Structural Analysis, Thermo Fisher Scientific, Achtseweg Noord 5, Eindhoven, 5651 GG, The Netherlands
| | - Joseph P Patterson
- Department of Chemistry, University of California, Irvine, CA, 92697, USA
| | - Jozua Laven
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry Eindhoven University of Technology, PO box 513, Eindhoven, MB, 5600, The Netherlands
| | - Gijsbertus de With
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry Eindhoven University of Technology, PO box 513, Eindhoven, MB, 5600, The Netherlands
| | - Heiner Friedrich
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry Eindhoven University of Technology, PO box 513, Eindhoven, MB, 5600, The Netherlands
- Center for Multiscale Electron Microscopy, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, PO box 513, Eindhoven, MB, 5600, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO box 513, Eindhoven, MB, 5600, The Netherlands
| |
Collapse
|
23
|
Gibson W, Patterson JP. Liquid Phase Electron Microscopy Provides Opportunities in Polymer Synthesis and Manufacturing. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02710] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Wyeth Gibson
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Joseph P. Patterson
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, California 92697-2025, United States
| |
Collapse
|
24
|
Fritsch B, Hutzler A, Wu M, Khadivianazar S, Vogl L, Jank MPM, März M, Spiecker E. Accessing local electron-beam induced temperature changes during in situ liquid-phase transmission electron microscopy. NANOSCALE ADVANCES 2021; 3:2466-2474. [PMID: 36134158 PMCID: PMC9419575 DOI: 10.1039/d0na01027h] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/18/2021] [Indexed: 05/26/2023]
Abstract
A significant electron-beam induced heating effect is demonstrated for liquid-phase transmission electron microscopy at low electron flux densities using Au nanoparticles as local nanothermometers. The obtained results are in agreement with theoretical considerations. Furthermore, the impact of beam-induced heating on radiolysis chemistry is estimated and the consequences of the effect are discussed.
Collapse
Affiliation(s)
- Birk Fritsch
- Electron Devices (LEB), Department of Electrical, Electronic and Communication Engineering, Friedrich-Alexander University Erlangen-Nürnberg (FAU) Cauerstraße 6 91058 Erlangen Germany
| | - Andreas Hutzler
- Electron Devices (LEB), Department of Electrical, Electronic and Communication Engineering, Friedrich-Alexander University Erlangen-Nürnberg (FAU) Cauerstraße 6 91058 Erlangen Germany
| | - Mingjian Wu
- Institute of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM), Interdisciplinary Center for Nanostructured Films (IZNF), Department of Materials Science and Engineering, Friedrich-Alexander University Erlangen-Nürnberg (FAU) Cauerstraße 3 91058 Erlangen Germany
| | - Saba Khadivianazar
- Electron Devices (LEB), Department of Electrical, Electronic and Communication Engineering, Friedrich-Alexander University Erlangen-Nürnberg (FAU) Cauerstraße 6 91058 Erlangen Germany
| | - Lilian Vogl
- Institute of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM), Interdisciplinary Center for Nanostructured Films (IZNF), Department of Materials Science and Engineering, Friedrich-Alexander University Erlangen-Nürnberg (FAU) Cauerstraße 3 91058 Erlangen Germany
| | - Michael P M Jank
- Fraunhofer Institute for Integrated Systems and Device Technology IISB Schottkystraße 10 91058 Erlangen Germany
| | - Martin März
- Electron Devices (LEB), Department of Electrical, Electronic and Communication Engineering, Friedrich-Alexander University Erlangen-Nürnberg (FAU) Cauerstraße 6 91058 Erlangen Germany
- Fraunhofer Institute for Integrated Systems and Device Technology IISB Schottkystraße 10 91058 Erlangen Germany
| | - Erdmann Spiecker
- Institute of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM), Interdisciplinary Center for Nanostructured Films (IZNF), Department of Materials Science and Engineering, Friedrich-Alexander University Erlangen-Nürnberg (FAU) Cauerstraße 3 91058 Erlangen Germany
| |
Collapse
|
25
|
Yesibolati MN, Mortensen KI, Sun H, Brostrøm A, Tidemand-Lichtenberg S, Mølhave K. Unhindered Brownian Motion of Individual Nanoparticles in Liquid-Phase Scanning Transmission Electron Microscopy. NANO LETTERS 2020; 20:7108-7115. [PMID: 32678608 DOI: 10.1021/acs.nanolett.0c02352] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Liquid-phase transmission electron microscopy (LPTEM) offers label-free imaging of nanoparticle (NP) processes in liquid with sub-nanometer spatial and millisecond temporal resolution. However, LPTEM studies have reported only on NPs moving orders of magnitude slower than expected from bulk aqueous liquid conditions, likely due to strong interactions with the LPTEM liquid-enclosing membranes. We demonstrate how scanning transmission electron microscope (STEM) imaging can be used to measure the motion of individual NPs and agglomerates, which are not hindered by such interactions. Only at low electron flux do we find that individual NPs exhibit Brownian motion consistent with optical control experiments and theoretical predictions for unhindered passive diffusive motion in bulk liquids. For increasing electron flux, we find increasingly faster than passive motion that still appears effectively Brownian. We discuss the possible origins of this beam-sample interaction. This establishes conditions for the use of STEM as a reliable tool for imaging nanoscale hydrodynamics in situ TEM.
Collapse
Affiliation(s)
- Murat Nulati Yesibolati
- DTU Nanolab, National Centre for Nano Fabrication and Characterization, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Kim I Mortensen
- DTU Health Tech, Department of Health Technology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Hongyu Sun
- DTU Nanolab, National Centre for Nano Fabrication and Characterization, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Anders Brostrøm
- DTU Nanolab, National Centre for Nano Fabrication and Characterization, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Sofie Tidemand-Lichtenberg
- DTU Nanolab, National Centre for Nano Fabrication and Characterization, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Kristian Mølhave
- DTU Nanolab, National Centre for Nano Fabrication and Characterization, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|