1
|
Jiang H, Torigoe T, Kuninobu Y. Boronyl-Group-Assisted Decatungstate-Catalyzed Benzylic C(sp 3)-H Alkylation. Org Lett 2024; 26:4853-4856. [PMID: 38837750 DOI: 10.1021/acs.orglett.4c01043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Boronic acid synthesis primarily involves the introduction of boronyl groups. However, an alternative route that involves the functionalization of boronic acids has not received much attention. This study describes the catalytic C(sp3)-H alkylation of ortho-tolylboronic acids utilizing the interaction between a free boronyl group [-B(OH)2] and a decatungstate photocatalyst [W10O32]4-. The boronyl groups of the alkylated products could be converted without isolation of the alkylated product.
Collapse
Affiliation(s)
- Hui Jiang
- Department of Interdisciplinary Engineering Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan
| | - Takeru Torigoe
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, Kyoto 606-8585, Japan
| | - Yoichiro Kuninobu
- Department of Interdisciplinary Engineering Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan
| |
Collapse
|
2
|
Jin Y, Ramadoss B, Asako S, Ilies L. Noncovalent interaction with a spirobipyridine ligand enables efficient iridium-catalyzed C-H activation. Nat Commun 2024; 15:2886. [PMID: 38632241 PMCID: PMC11024094 DOI: 10.1038/s41467-024-46893-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/14/2024] [Indexed: 04/19/2024] Open
Abstract
Exploitation of noncovalent interactions for recognition of an organic substrate has received much attention for the design of metal catalysts in organic synthesis. The CH-π interaction is especially of interest for molecular recognition because both the C-H bonds and the π electrons are fundamental properties of organic molecules. However, because of their weak nature, these interactions have been less utilized for the control of organic reactions. We show here that the CH-π interaction can be used to kinetically accelerate catalytic C-H activation of arenes by directly recognizing the π-electrons of the arene substrates with a spirobipyridine ligand. Computation and a ligand kinetic isotope effect study provide evidence for the CH-π interaction between the ligand backbone and the arene substrate. The rational exploitation of weak noncovalent interactions between the ligand and the substrate will open new avenues for ligand design in catalysis.
Collapse
Affiliation(s)
- Yushu Jin
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | | | - Sobi Asako
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan.
| | - Laurean Ilies
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan.
| |
Collapse
|
3
|
Yuan Z, Britton R. Development and application of decatungstate catalyzed C-H 18F- and 19F-fluorination, fluoroalkylation and beyond. Chem Sci 2023; 14:12883-12897. [PMID: 38023504 PMCID: PMC10664588 DOI: 10.1039/d3sc04027e] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Over the past few decades, photocatalytic C-H functionalization reactions have received increasing attention due to the often mild reaction conditions and complementary selectivities to conventional functionalization processes. Now, photocatalytic C-H functionalization is a widely employed tool, supporting activities ranging from complex molecule synthesis to late-stage structure-activity relationship studies. In this perspective, we will discuss our efforts in developing a photocatalytic decatungstate catalyzed C-H fluorination reaction as well as its practical application realized through collaborations with industry partners at Hoffmann-La Roche and Merck, and extension to radiofluorination with radiopharmaceutical chemists and imaging experts at TRIUMF and the BC Cancer Agency. Importantly, we feel that our efforts address a question of utility posed by Professor Tobias Ritter in "Late-Stage Fluorination: Fancy Novelty or Useful Tool?" (ACIE, 2015, 54, 3216). In addition, we will discuss decatungstate catalyzed C-H fluoroalkylation and the interesting electrostatic effects observed in decatungstate-catalyzed C-H functionalization. We hope this perspective will inspire other researchers to explore the use of decatungstate for the purposes of photocatalytic C-H functionalization and further advance the exploitation of electrostatic effects for both rate acceleration and directing effects in these reactions.
Collapse
Affiliation(s)
- Zheliang Yuan
- Department of Chemistry, Simon Fraser University Burnaby British Columbia V5A 1S2 Canada
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University Jinhua Zhejiang 321004 China
| | - Robert Britton
- Department of Chemistry, Simon Fraser University Burnaby British Columbia V5A 1S2 Canada
| |
Collapse
|
4
|
Kuninobu Y. Non-Covalent Interaction-Controlled Site-Selective C-H Transformations. CHEM REC 2023; 23:e202300149. [PMID: 37236150 DOI: 10.1002/tcr.202300149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/18/2023] [Indexed: 05/28/2023]
Abstract
Site-selective C-H transformations are important to obtain desired compounds as single products in a highly efficient manner. However, it is generally difficult to achieve such transformations because organic substrates contain many C-H bonds with similar reactivities. Therefore, the development of practical and efficient methods for controlling site selectivity is highly desirable. The most frequently used strategy is "directing group method". Although this method is highly effective and promotes site-selective reactions, it has several limitations. Our group recently reported other methods to achieve site-selective C-H transformations using non-covalent interactions between a substrate and a reagent or a catalyst and a substrate (non-covalent method). In this personal account, the background of site-selective C-H transformations, our reaction design to achieve site-selective C-H transformations, and recently reported reactions are explained.
Collapse
Affiliation(s)
- Yoichiro Kuninobu
- Institute for Materials Chemistry and Engineering, Interdisciplinary Engineering Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka, 816-8580, Japan
| |
Collapse
|
5
|
Marcos-Atanes D, Vidal C, Navo CD, Peccati F, Jiménez-Osés G, Mascareñas JL. Iridium-Catalyzed ortho-Selective Borylation of Aromatic Amides Enabled by 5-Trifluoromethylated Bipyridine Ligands. Angew Chem Int Ed Engl 2023; 62:e202214510. [PMID: 36602092 DOI: 10.1002/anie.202214510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/06/2023]
Abstract
Iridium-catalyzed borylations of aromatic C-H bonds are highly attractive transformations because of the diversification possibilities offered by the resulting boronates. These transformations are best carried out using bidentate bipyridine or phenanthroline ligands, and tend to be governed by steric factors, therefore resulting in the competitive functionalization of meta and/or para positions. We have now discovered that a subtle change in the bipyridine ligand, namely, the introduction of a CF3 substituent at position 5, enables a complete change of regioselectivity in the borylation of aromatic amides, allowing the synthesis of a wide variety of ortho-borylated derivatives. Importantly, thorough computational studies suggest that the exquisite regio- and chemoselectivity stems from unusual outer-sphere interactions between the amide group of the substrate and the CF3 -substituted aryl ring of the bipyridine ligand.
Collapse
Affiliation(s)
- Daniel Marcos-Atanes
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, A Coruña, Spain
| | - Cristian Vidal
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, A Coruña, Spain
| | - Claudio D Navo
- CIC bioGUNE, Basque Research and Technology Alliance, BRTA, Bizkaia Technology Park, 48162, Derio, Spain
| | - Francesca Peccati
- CIC bioGUNE, Basque Research and Technology Alliance, BRTA, Bizkaia Technology Park, 48162, Derio, Spain
| | - Gonzalo Jiménez-Osés
- CIC bioGUNE, Basque Research and Technology Alliance, BRTA, Bizkaia Technology Park, 48162, Derio, Spain.,Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain
| | - José L Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, A Coruña, Spain
| |
Collapse
|
6
|
Segawa Y, Nagase M, Saito Y, Kato K, Itami K. C-H Borylation of Arenes: Steric-controlled <i>Para</i>-selectivity and Application to Molecular Nanocarbons. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Mai Nagase
- Department of Structural Molecular Science, SOKENDAI
| | - Yutaro Saito
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo
| | - Kenta Kato
- Department of Applied Chemistry, Waseda University
| | | |
Collapse
|
7
|
Gillespie J, Fanourakis A, Phipps RJ. Strategies That Utilize Ion Pairing Interactions to Exert Selectivity Control in the Functionalization of C-H Bonds. J Am Chem Soc 2022; 144:18195-18211. [PMID: 36178308 PMCID: PMC9562467 DOI: 10.1021/jacs.2c08752] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Indexed: 11/30/2022]
Abstract
Electrostatic attraction between two groups of opposite charge, typically known as ion-pairing, offers unique opportunities for the design of systems to enable selectivity control in chemical reactions. Catalysis using noncovalent interactions is an established and vibrant research area, but it is noticeable that hydrogen bonding interactions are still the main interaction of choice in system design. Opposite charges experience the powerful force of Coulombic attraction and have the ability to exert fundamental influence on the outcome of reactions that involve charged reagents, intermediates or catalysts. In this Perspective, we will examine how ion-pairing interactions have been used to control selectivity in C-H bond functionalization processes. This broad class of reactions provides an interesting and thought-provoking lens through which to examine the application of ion-pairing design strategies because it is one that encompasses great mechanistic diversity, poses significant selectivity challenges, and perhaps most importantly is of immense interest to synthetic chemists in both industry and academia. We survey reactions that proceed via radical and ionic mechanisms alongside those that involve transition metal catalysis and will deal with control of site-selectivity and enantioselectivity. We anticipate that as this emerging area develops, it will become an ever-more important design strategy for selectivity control.
Collapse
Affiliation(s)
| | | | - Robert J. Phipps
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
8
|
Norman JP, Neufeldt SR. The Road Less Traveled: Unconventional Site Selectivity in Palladium-Catalyzed Cross-Couplings of Dihalogenated N-Heteroarenes. ACS Catal 2022; 12:12014-12026. [PMID: 36741273 PMCID: PMC9894105 DOI: 10.1021/acscatal.2c03743] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The vast majority (≥90%) of literature reports agree on the regiochemical outcomes of Pd-catalyzed cross-coupling reactions for most classes of dihalogenated N-heteroarenes. Despite a well-established mechanistic rationale for typical selectivity, several examples reveal that changes to the catalyst can switch site selectivity, leading to the unconventional product. In this Perspective, we survey these unusual cases in which divergent selectivity is controlled by ligands or catalyst speciation. In some cases, the mechanistic origin of inverted selectivity has been established, but in others the mechanism remains unknown. This Perspective concludes with a discussion of remaining challenges and opportunities for the field of site-selective cross-coupling. These include developing a better understanding of oxidative addition mechanisms, understanding the role of catalyst speciation on selectivity, establishing an explanation for the influence of ring substituents on regiochemical outcome, inverting selectivity for some "stubborn" classes of substrates, and minimizing unwanted over-reaction of di- and polyhalogenated substrates.
Collapse
Affiliation(s)
- Jacob P. Norman
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Sharon R. Neufeldt
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| |
Collapse
|
9
|
Bisht R, Haldar C, Hassan MMM, Hoque ME, Chaturvedi J, Chattopadhyay B. Metal-catalysed C-H bond activation and borylation. Chem Soc Rev 2022; 51:5042-5100. [PMID: 35635434 DOI: 10.1039/d1cs01012c] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Transition metal-catalysed direct borylation of hydrocarbons via C-H bond activation has received a remarkable level of attention as a popular reaction in the synthesis of organoboron compounds owing to their synthetic versatility. While controlling the site-selectivity was one of the most challenging issues in these C-H borylation reactions, enormous efforts of several research groups proved instrumental in dealing with selectivity issues that presently reached an impressive level for both proximal and distal C-H bond borylation reactions. For example, in the case of ortho C-H bond borylation reactions, innovative methodologies have been developed either by the modification of the directing groups attached with the substrates or by creating new catalytic systems via the design of new ligand frameworks. Whereas meta and para selective C-H borylations remained a formidable challenge, numerous innovative concepts have been developed within a very short period of time by the development of new catalytic systems with the employment of various noncovalent interactions. Moreover, significant advancements have occurred for aliphatic C(sp3)-H borylations as well as enantioselective borylations. In this review article, we aim to discuss and summarize the different approaches and findings related to the development of directed proximal ortho, distal meta/para, aliphatic (racemic and enantioselective) borylation reactions since 2014. Additionally, considering the C-H borylation reaction as one of the most important mainstream reactions, various applications of this C-H borylation reaction toward the synthesis of natural products, therapeutics, and applications in materials chemistry will be summarized in the last part of this review article.
Collapse
Affiliation(s)
- Ranjana Bisht
- Center of Bio-Medical Research, Division of Molecular Synthesis & Drug Discovery, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India.
| | - Chabush Haldar
- Center of Bio-Medical Research, Division of Molecular Synthesis & Drug Discovery, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India.
| | - Mirja Md Mahamudul Hassan
- Center of Bio-Medical Research, Division of Molecular Synthesis & Drug Discovery, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India.
| | - Md Emdadul Hoque
- Center of Bio-Medical Research, Division of Molecular Synthesis & Drug Discovery, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India.
| | - Jagriti Chaturvedi
- Center of Bio-Medical Research, Division of Molecular Synthesis & Drug Discovery, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India.
| | - Buddhadeb Chattopadhyay
- Center of Bio-Medical Research, Division of Molecular Synthesis & Drug Discovery, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India.
| |
Collapse
|
10
|
Kuninobu Y. Creation of Transition Metal Catalysts with Substrate Recognition Moiety and Development of Regioselective and Substrate Specific Reactions. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yoichiro Kuninobu
- Institute for Materials Chemistry and Engineering, Kyushu University
| |
Collapse
|
11
|
|
12
|
Fernández-Figueiras A, Ravutsov MA, Simeonov SP. Site-Selective C-H Functionalization of Arenes Enabled by Noncovalent Interactions. ACS OMEGA 2022; 7:6439-6448. [PMID: 35252639 PMCID: PMC8892649 DOI: 10.1021/acsomega.1c05830] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/31/2022] [Indexed: 06/01/2023]
Abstract
The direct metal-catalyzed C-H functionalization of arenes has emerged as a powerful tool for streamlining the synthesis of complex molecular scaffolds. However, despite the different chemical environments, the energy values of all C-H bonds are within a fairly narrow range; hence, the regioselective C-H bond functionalization poses a great challenge. The use of covalently bound directing groups is to date the most exploited approach to achieve regioselective C-H functionalization of arenes. However, the required installation and removal of those groups is a serious drawback. Recently, new strategies for regioselective metal-catalyzed distal C-H functionalization of arenes based on noncovalent forces (hydrogen bonds, Lewis acid-base interactions, ionic or electrostatic forces, etc.) have been developed to tackle these issues. Nowadays, these approaches have already showcased impressive advances. Therefore, the aim of this mini-review is to cover chronologically how these groundbreaking strategies evolved over the past decade.
Collapse
Affiliation(s)
- Adolfo Fernández-Figueiras
- Institute
of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy
of Sciences, Acad. G. Bonchev St., bl. 9, 1113 Sofia, Bulgaria
| | - Martin A. Ravutsov
- Institute
of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy
of Sciences, Acad. G. Bonchev St., bl. 9, 1113 Sofia, Bulgaria
| | - Svilen P. Simeonov
- Institute
of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy
of Sciences, Acad. G. Bonchev St., bl. 9, 1113 Sofia, Bulgaria
- Research
Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| |
Collapse
|
13
|
Zeng J, Torigoe T, Kuninobu Y. Control of Site-Selectivity in Hydrogen Atom Transfer by Electrostatic Interaction: Proximal-Selective C(sp3)–H Alkylation of 2-Methylanilinium Salts Using a Decatungstate Photocatalyst. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00278] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jialin Zeng
- Department of Molecular and Material Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan
| | - Takeru Torigoe
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan
- Department of Interdisciplinary Engineering Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan
| | - Yoichiro Kuninobu
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan
- Department of Interdisciplinary Engineering Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan
| |
Collapse
|
14
|
Bastidas JRM, Chhabra A, Feng Y, Oleskey TJ, Smith MR, Maleczka RE. Steric Shielding Effects Induced by Intramolecular C-H⋯O Hydrogen Bonding: Remote Borylation Directed by Bpin Groups. ACS Catal 2022; 12:2694-2705. [PMID: 36685107 PMCID: PMC9854017 DOI: 10.1021/acscatal.1c05701] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Regioselectivities in catalytic C-H borylations (CHBs) have been rationalized using simplistic steric models and correlations with nuclear magnetic resonance (NMR) chemical shifts. However, regioselectivity can be significant for important substrate classes where none would be expected from these arguments. In this study, intramolecular hydrogen bonding (IMHB) can lead to steric shielding effects that can direct Ir-catalyzed CHB regiochemistry. Bpin (Bpin = pinacol boronic ester)/arene IMHB can promote remote borylations of N-borylated anilines, 2-amino-N-alkylpyridine, tetrahydroquinolines, indoles, and 1-borylated naphthalenes. Experimental and computational studies support molecular geometries with the Bpin orientation controlled by a C-H⋯O IMHB. IMHB-directed remote CHB appeared operative in the C6 borylation of 3-aminoindazole (seven-membered IMHB) and C6 borylation of an osimertinib analogue where a pyrimidine IMHB creates the steric shield. This study informs researchers to evaluate not only inter- but also intramolecular noncovalent interactions as potential drivers of remote CHB regioselectivity.
Collapse
Affiliation(s)
- Jose R Montero Bastidas
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Arzoo Chhabra
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Yilong Feng
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Thomas J Oleskey
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Milton R Smith
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Robert E Maleczka
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
15
|
Ramadoss B, Jin Y, Asako S, Ilies L. Remote steric control for undirected meta-selective C-H activation of arenes. Science 2022; 375:658-663. [PMID: 35143323 DOI: 10.1126/science.abm7599] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Regioselective functionalization of arenes remains a challenging problem in organic synthesis. Steric interactions are often used to block sites adjacent to a given substituent, but they do not distinguish the remaining remote sites. We report a strategy based on remote steric control, whereby a roof-like ligand protects the distant para site in addition to the ortho sites, and thereby enables selective activation of meta carbon-hydrogen (C-H) bonds in the absence of ortho or para substituents. We demonstrate this concept for iridium-catalyzed meta-selective borylation of various monosubstituted arenes, including complex drug molecules. This strategy has the potential to expand the toolbox of C-H bond functionalization to previously nondifferentiable reaction sites.
Collapse
Affiliation(s)
- Boobalan Ramadoss
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yushu Jin
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Sobi Asako
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Laurean Ilies
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
16
|
Tsutsumi R, Taguchi R, Yamanaka M. Chiral Bipyridine Ligand with Flexible Molecular Recognition Site: Development and Application to Copper‐Catalyzed Asymmetric Borylation of α,β‐Unsaturated Ketones. ChemCatChem 2022. [DOI: 10.1002/cctc.202101278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ryosuke Tsutsumi
- Department of Chemistry and Research Center for Smart Molecules Faculty of Science Rikkyo University 3-34-1 Nishi-Ikebukuro Toshima-ku, Tokyo 171-8501 Japan
| | - Rika Taguchi
- Department of Chemistry and Research Center for Smart Molecules Faculty of Science Rikkyo University 3-34-1 Nishi-Ikebukuro Toshima-ku, Tokyo 171-8501 Japan
| | - Masahiro Yamanaka
- Department of Chemistry and Research Center for Smart Molecules Faculty of Science Rikkyo University 3-34-1 Nishi-Ikebukuro Toshima-ku, Tokyo 171-8501 Japan
| |
Collapse
|
17
|
Zhao LL, Wu Y, Huang S, Zhang Z, Liu W, Yan X. Ortho-Selective Hydrogen Isotope Exchange of Phenols and Benzyl Alcohols by Mesoionic Carbene-Iridium Catalyst. Org Lett 2021; 23:9297-9302. [PMID: 34792358 DOI: 10.1021/acs.orglett.1c03685] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydrogen isotope exchange reactions of phenols and benzyl alcohols have been achieved by a mesoionic carbene-iridium catalyst with high ortho selectivity and high functional group tolerance. Control experiments indicated that acetate is crucial to realize the ortho selectivity, whereas density functional theory calculations supported an outer-sphere direction with hydrogen bonding between acetate and the hydroxyl group.
Collapse
Affiliation(s)
- Liang-Liang Zhao
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Yixin Wu
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Shiqing Huang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Zengyu Zhang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Wei Liu
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Xiaoyu Yan
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| |
Collapse
|
18
|
Pachisia S, Gupta R. Supramolecular catalysis: the role of H-bonding interactions in substrate orientation and activation. Dalton Trans 2021; 50:14951-14966. [PMID: 34617524 DOI: 10.1039/d1dt02131a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogen bonding plays significant roles in various biological processes during substrate orientation and binding and therefore assists in assorted organic transformations. However, replicating the intricate selection of hydrogen bonds, as observed in nature, in synthetic complexes has met with only limited success. Despite this fact, recent times have seen the emergence of several notable examples where hydrogen bonds have been introduced in synthetic complexes. A few such examples have also illustrated the substantial role played by the hydrogen bonds in influencing and often controlling the catalytic outcome. This perspective presents selected examples illustrating the significance of hydrogen bonds offered by the coordination and the organometallic complexes that aid in providing the desired orientation to a substrate adjacent to a catalytic metal center and remarkably assisting in the catalysis.
Collapse
Affiliation(s)
- Sanya Pachisia
- Department of Chemistry, University of Delhi, Delhi - 110007, India.
| | - Rajeev Gupta
- Department of Chemistry, University of Delhi, Delhi - 110007, India.
| |
Collapse
|
19
|
Nagashima Y, Ishigaki S, Tanaka J, Tanaka K. Acceleration Mechanisms of C–H Bond Functionalization Catalyzed by Electron-Deficient CpRh(III) Complexes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03454] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yuki Nagashima
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Shiho Ishigaki
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Jin Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Ken Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
20
|
|
21
|
Trouvé J, Zardi P, Al-Shehimy S, Roisnel T, Gramage-Doria R. Enzyme-like Supramolecular Iridium Catalysis Enabling C-H Bond Borylation of Pyridines with meta-Selectivity. Angew Chem Int Ed Engl 2021; 60:18006-18013. [PMID: 33704892 DOI: 10.1002/anie.202101997] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Indexed: 01/14/2023]
Abstract
The use of secondary interactions between substrates and catalysts is a promising strategy to discover selective transition metal catalysts for atom-economy C-H bond functionalization. The most powerful catalysts are found via trial-and-error screening due to the low association constants between the substrate and the catalyst in which small stereo-electronic modifications within them can lead to very different reactivities. To circumvent these limitations and to increase the level of reactivity prediction in these important reactions, we report herein a supramolecular catalyst harnessing Zn⋅⋅⋅N interactions that binds to pyridine-like substrates as tight as it can be found in some enzymes. The distance and spatial geometry between the active site and the substrate binding site is ideal to target unprecedented meta-selective iridium-catalyzed C-H bond borylations with enzymatic Michaelis-Menten kinetics, besides unique substrate selectivity and dormant reactivity patterns.
Collapse
Affiliation(s)
| | - Paolo Zardi
- Univ Rennes, CNRS, ISCR-UMR6226, 35000, Rennes, France
| | | | | | | |
Collapse
|
22
|
Olivo G, Capocasa G, Del Giudice D, Lanzalunga O, Di Stefano S. New horizons for catalysis disclosed by supramolecular chemistry. Chem Soc Rev 2021; 50:7681-7724. [PMID: 34008654 DOI: 10.1039/d1cs00175b] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The adoption of a supramolecular approach in catalysis promises to address a number of unmet challenges, ranging from activity (unlocking of novel reaction pathways) to selectivity (alteration of the innate selectivity of a reaction, e.g. selective functionalization of C-H bonds) and regulation (switch ON/OFF, sequential catalysis, etc.). Supramolecular tools such as reversible association and recognition, pre-organization of reactants and stabilization of transition states upon binding offer a unique chance to achieve the above goals disclosing new horizons whose potential is being increasingly recognized and used, sometimes reaching the degree of ripeness for practical use. This review summarizes the main developments that have opened such new frontiers, with the aim of providing a guide to researchers approaching the field. We focus on artificial supramolecular catalysts of defined stoichiometry which, under homogeneous conditions, unlock outcomes that are highly difficult if not impossible to attain otherwise, namely unnatural reactivity or selectivity and catalysis regulation. The different strategies recently explored in supramolecular catalysis are concisely presented, and, for each one, a single or very few examples is/are described (mainly last 10 years, with only milestone older works discussed). The subject is divided into four sections in light of the key design principle: (i) nanoconfinement of reactants, (ii) recognition-driven catalysis, (iii) catalysis regulation by molecular machines and (iv) processive catalysis.
Collapse
Affiliation(s)
- Giorgio Olivo
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", Dipartimento di Chimica and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, I-00185 Rome, Italy.
| | - Giorgio Capocasa
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", Dipartimento di Chimica and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, I-00185 Rome, Italy.
| | - Daniele Del Giudice
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", Dipartimento di Chimica and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, I-00185 Rome, Italy.
| | - Osvaldo Lanzalunga
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", Dipartimento di Chimica and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, I-00185 Rome, Italy.
| | - Stefano Di Stefano
- Dipartimento di Chimica, Università degli Studi di Roma "La Sapienza", Dipartimento di Chimica and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, I-00185 Rome, Italy.
| |
Collapse
|
23
|
Trouvé J, Zardi P, Al‐Shehimy S, Roisnel T, Gramage‐Doria R. Enzyme‐like Supramolecular Iridium Catalysis Enabling C−H Bond Borylation of Pyridines with
meta
‐Selectivity. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101997] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Paolo Zardi
- Univ Rennes CNRS, ISCR-UMR6226 35000 Rennes France
| | | | | | | |
Collapse
|
24
|
Wei W, Yu H, Zangarelli A, Ackermann L. Deaminative meta-C-H alkylation by ruthenium(ii) catalysis. Chem Sci 2021; 12:8073-8078. [PMID: 34194696 PMCID: PMC8208126 DOI: 10.1039/d1sc00986a] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Precise structural modifications of amino acids are of importance to tune biological properties or modify therapeutical capabilities relevant to drug discovery. Herein, we report a ruthenium-catalyzed meta-C–H deaminative alkylation with easily accessible amino acid-derived Katritzky pyridinium salts. Likewise, remote C–H benzylations were accomplished with high levels of chemoselectivity and remarkable functional group tolerance. The meta-C–H activation approach combined with our deaminative strategy represents a rare example of selectively converting C(sp3)–N bonds into C(sp3)–C(sp2) bonds. Precise structural modifications of amino acids are of importance to tune biological properties or modify therapeutical capabilities relevant to drug discovery.![]()
Collapse
Affiliation(s)
- Wen Wei
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstraße 2 37077 Goettingen Germany
| | - Hao Yu
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstraße 2 37077 Goettingen Germany
| | - Agnese Zangarelli
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstraße 2 37077 Goettingen Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstraße 2 37077 Goettingen Germany .,Woehler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen Tammannstrasse 2 37077 Göttingen Germany
| |
Collapse
|
25
|
Wang J, Torigoe T, Kuninobu Y. Urea-accelerated Iridium-catalyzed 2-Position-selective C–H Borylation of Indole Derivatives. CHEM LETT 2021. [DOI: 10.1246/cl.200939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jie Wang
- Department of Molecular and Material Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga, Fukuoka 816-8580, Japan
| | - Takeru Torigoe
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasugakoen, Kasuga, Fukuoka 816-8580, Japan
- Department of Molecular and Material Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga, Fukuoka 816-8580, Japan
| | - Yoichiro Kuninobu
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasugakoen, Kasuga, Fukuoka 816-8580, Japan
- Department of Molecular and Material Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga, Fukuoka 816-8580, Japan
| |
Collapse
|
26
|
Annapureddy RR, Burg F, Gramüller J, Golub TP, Merten C, Huber SM, Bach T. Silver‐Catalyzed Enantioselective Sulfimidation Mediated by Hydrogen Bonding Interactions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Rajasekar Reddy Annapureddy
- Department Chemie and Catalysis Research Center (CRC) Technische Universität München Lichtenbergstraße 4 85747 Garching Germany
| | - Finn Burg
- Department Chemie and Catalysis Research Center (CRC) Technische Universität München Lichtenbergstraße 4 85747 Garching Germany
| | - Johannes Gramüller
- Faculty of Chemistry and Pharmacy Institute of Organic Chemistry University of Regensburg Universitätsstraße 31 93040 Regensburg Germany
| | - Tino P. Golub
- Ruhr-Universität Bochum Faculty for Chemistry and Biochemistry Universitätsstraße 150 44801 Bochum Germany
| | - Christian Merten
- Ruhr-Universität Bochum Faculty for Chemistry and Biochemistry Universitätsstraße 150 44801 Bochum Germany
| | - Stefan M. Huber
- Ruhr-Universität Bochum Faculty for Chemistry and Biochemistry Universitätsstraße 150 44801 Bochum Germany
| | - Thorsten Bach
- Department Chemie and Catalysis Research Center (CRC) Technische Universität München Lichtenbergstraße 4 85747 Garching Germany
| |
Collapse
|
27
|
Annapureddy RR, Burg F, Gramüller J, Golub TP, Merten C, Huber SM, Bach T. Silver-Catalyzed Enantioselective Sulfimidation Mediated by Hydrogen Bonding Interactions. Angew Chem Int Ed Engl 2021; 60:7920-7926. [PMID: 33438798 PMCID: PMC8048691 DOI: 10.1002/anie.202016561] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Indexed: 12/13/2022]
Abstract
An enantioselective sulfimidation of 3-thiosubstituted 2-quinolones and 2-pyridones was achieved with a stoichiometric nitrene source (PhI=NNs) and a silver-based catalyst system. Key to the success of the reaction is the use of a chiral phenanthroline ligand with a hydrogen bonding site. The enantioselectivity does not depend on the size of the two substituents at the sulfur atom but only on the binding properties of the heterocyclic lactams. A total of 21 chiral sulfimides were obtained in high yields (44-99 %) and with significant enantiomeric excess (70-99 % ee). The sulfimidation proceeds with high site-selectivity and can also be employed for the kinetic resolution of chiral sulfoxides. Mechanistic evidence suggests the intermediacy of a heteroleptic silver complex, in which the silver atom is bound to one molecule of the chiral ligand and one molecule of an achiral 1,10-phenanthroline. Support for the suggested reaction course was obtained by ESI mass spectrometry, DFT calculations, and a Hammett analysis.
Collapse
Affiliation(s)
- Rajasekar Reddy Annapureddy
- Department Chemie and Catalysis Research Center (CRC)Technische Universität MünchenLichtenbergstraße 485747GarchingGermany
| | - Finn Burg
- Department Chemie and Catalysis Research Center (CRC)Technische Universität MünchenLichtenbergstraße 485747GarchingGermany
| | - Johannes Gramüller
- Faculty of Chemistry and PharmacyInstitute of Organic ChemistryUniversity of RegensburgUniversitätsstraße 3193040RegensburgGermany
| | - Tino P. Golub
- Ruhr-Universität BochumFaculty for Chemistry and BiochemistryUniversitätsstraße 15044801BochumGermany
| | - Christian Merten
- Ruhr-Universität BochumFaculty for Chemistry and BiochemistryUniversitätsstraße 15044801BochumGermany
| | - Stefan M. Huber
- Ruhr-Universität BochumFaculty for Chemistry and BiochemistryUniversitätsstraße 15044801BochumGermany
| | - Thorsten Bach
- Department Chemie and Catalysis Research Center (CRC)Technische Universität MünchenLichtenbergstraße 485747GarchingGermany
| |
Collapse
|
28
|
Burg F, Buchelt C, Kreienborg NM, Merten C, Bach T. Enantioselective Synthesis of Diaryl Sulfoxides Enabled by Molecular Recognition. Org Lett 2021; 23:1829-1834. [PMID: 33606936 DOI: 10.1021/acs.orglett.1c00238] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The enantioselective sulfoxidation of diaryl-type sulfides was accomplished using a chiral manganese porphyrin complex equipped with a remote molecular recognition site. Despite the marginal size difference between the two substituents at the prostereogenic sulfur center, hydrogen bonding enabled the formation of chiral sulfoxides with exquisite enantioselectivities (16 examples, up to 99% ee). Aside from the precise orientation of a distinct substrate, the quinolone lactam offers an excellent entry point for further derivatization.
Collapse
Affiliation(s)
- Finn Burg
- Department Chemie and Catalysis Research Center (CRC), Technische Universität München, 85747 Garching, Germany
| | - Christoph Buchelt
- Department Chemie and Catalysis Research Center (CRC), Technische Universität München, 85747 Garching, Germany
| | - Nora M Kreienborg
- Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Christian Merten
- Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Thorsten Bach
- Department Chemie and Catalysis Research Center (CRC), Technische Universität München, 85747 Garching, Germany
| |
Collapse
|
29
|
Pachisia S, Kishan R, Yadav S, Gupta R. Half-Sandwich Ruthenium Complexes of Amide-Phosphine Based Ligands: H-Bonding Cavity Assisted Binding and Reduction of Nitro-substrates. Inorg Chem 2021; 60:2009-2022. [PMID: 33459009 DOI: 10.1021/acs.inorgchem.0c03505] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present synthesis and characterization of two half-sandwich Ru(II) complexes supported with amide-phosphine based ligands. These complexes presented a pyridine-2,6-dicarboxamide based pincer cavity, decorated with hydrogen bonds, that participated in the binding of nitro-substrates closer to the Ru(II) centers, which is further supported with binding and docking studies. These ruthenium complexes functioned as the noteworthy catalysts for the borohydride mediated reduction of assorted nitro-substrates. Mechanistic studies not only confirmed the intermediacy of [Ru-H] in the reduction but also asserted the involvement of several organic intermediates during the course of the catalysis. A similar Ru(II) complex that lacked pyridine-2,6-dicarboxamide based pincer cavity substantiated its unique role both in the substrate binding and the subsequent catalysis.
Collapse
Affiliation(s)
- Sanya Pachisia
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Ram Kishan
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Samanta Yadav
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Rajeev Gupta
- Department of Chemistry, University of Delhi, Delhi 110007, India
| |
Collapse
|
30
|
Golding WA, Schmitt HL, Phipps RJ. Systematic Variation of Ligand and Cation Parameters Enables Site-Selective C-C and C-N Cross-Coupling of Multiply Chlorinated Arenes through Substrate-Ligand Electrostatic Interactions. J Am Chem Soc 2020; 142:21891-21898. [PMID: 33332114 DOI: 10.1021/jacs.0c11056] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Use of attractive noncovalent interactions between ligand and substrate is an emerging strategy for controlling positional selectivity. A key question relates to whether fine control on molecules with multiple, closely spaced reactive positions is achievable using typically less directional electrostatic interactions. Herein, we apply a 10-piece "toolkit" comprising of two closely related sulfonated phosphine ligands and five bases, each possessing varying cation size, to the challenge of site-selective cross-coupling of multiply chlorinated arenes. The fine tuning provided by these ligand/base combinations is effective for Suzuki-Miyaura coupling and Buchwald-Hartwig coupling on a range of isomeric dichlorinated and trichlorinated arenes, substrates that would produce intractable mixtures when typical ligands are used. This study develops a practical solution for site-selective cross-coupling to generate complex, highly substituted arenes.
Collapse
Affiliation(s)
- William A Golding
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Hendrik L Schmitt
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Robert J Phipps
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
31
|
Lapuh MI, Mazeh S, Besset T. Chiral Transient Directing Groups in Transition-Metal-Catalyzed Enantioselective C–H Bond Functionalization. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03317] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Maria I. Lapuh
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| | - Sara Mazeh
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| | - Tatiana Besset
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France
| |
Collapse
|