1
|
Tzevelekidis P, Theodosiou M, Papadopoulou A, Sakellis E, Boukos N, Bikogiannakis AK, Kyriakou G, Efthimiadou EK, Mitsopoulou CA. Visible-light-activated antibacterial and antipollutant properties of biocompatible Cu-doped and Ag-decorated TiO 2 nanoparticles. Heliyon 2024; 10:e35634. [PMID: 39295985 PMCID: PMC11408793 DOI: 10.1016/j.heliyon.2024.e35634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 09/21/2024] Open
Abstract
Optical and photocatalytic restrictions of anatase TiO2 nanoparticles (Nps) limit their potential applications, as antipollutant and antibacterial agents for sanitary applications, to the UV spectral region. While modification with transition metals extends the absorption capacity to the visible light spectrum, often undermines the photocatalysts' biocompatibility due to toxic ion leaching. In this study, we synthesized Cu-doped and Ag-decorated TiO2 photocatalysts by employing solvothermal (ATiO2:Cu) and sol-gel synthetic procedures (BTiO2:Ag), respectively. We acquired TiO2 Nps modified with three percentages of either Cu or Ag content, to examine the potential differentiation of their structural, photocatalytic, and biological impact. Comprehensive structural characterization supports the prevailing anatase crystalline structure of bare and modified titania nanostructures, while morphological differences are demonstrated among the different samples. Optical response in the visible region of ATiO2:Cu Nps stems from band gap narrowing and lattice-defect generation, while plasmonic effects are at play for BTiO2:Ag Nps. Their photocatalytic potential under visible light irradiation, originated from low-energy LED lamps commonly found in indoor spaces, was verified after monitoring the successful enhancement of methylene blue (MB) degradation rate. Safety assessment on immortalized healthy human keratinocyte cell line (HaCaT) revealed their biocompatibility up to a certain concentration, while reactive oxygen species (ROS) production was intensified after light irradiation. The visible-light-induced photocatalytic-driven antibacterial activity was confirmed against both gram-positive Staphylococcus aureus and gram-negative Escherichia coli.
Collapse
Affiliation(s)
- Panagiotis Tzevelekidis
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Zografou, Greece
| | - Maria Theodosiou
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Zografou, Greece
- Institute of Nanoscience and Nanotechnology, National Center of Scientific Research "Demokritos", Agia Paraskevi, 15341, Greece
| | - Athina Papadopoulou
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Zografou, Greece
- Institute of Nanoscience and Nanotechnology, National Center of Scientific Research "Demokritos", Agia Paraskevi, 15341, Greece
| | - Elias Sakellis
- Institute of Nanoscience and Nanotechnology, National Center of Scientific Research "Demokritos", Agia Paraskevi, 15341, Greece
- Section of Condensed Matter Physics, Department of Physics, National and Kapodistrian University of Athens, Athens, 15784, Greece
| | - Nikos Boukos
- Institute of Nanoscience and Nanotechnology, National Center of Scientific Research "Demokritos", Agia Paraskevi, 15341, Greece
| | | | - Georgios Kyriakou
- Department of Chemical Engineering, University of Patras, Caratheodory 1, Patras, 26504, Greece
| | - Eleni K Efthimiadou
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Zografou, Greece
| | - Christiana A Mitsopoulou
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Zografou, Greece
| |
Collapse
|
2
|
Tian X, Yang J, Hussain S, Wang Y, Heinlein J, Zhang L, Hao Y, Gao R. Hydrophilic molecularly imprinted lysozyme-BiOBr composite with enhanced visible light utilization for selective removal of trace contaminants in water. Int J Biol Macromol 2024; 272:132910. [PMID: 38844276 DOI: 10.1016/j.ijbiomac.2024.132910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
The development of high-efficiency molecularly imprinted photocatalysts is still challenging due to the lack of hydrophilic and suitable functional monomers. In this work, the bio-sourced lysozyme was developed as the hydrophilic functional monomer, and Cu-doped BiOBr was used as the photocatalysts, to prepare a novel hydrophilic molecularly imprinted lysozyme-BiOBr composite (BiOBr-Cu/LyzMIP) with enhanced visible light utilization. Lysozyme could form a transparent layer to mitigate the light transmission obstruction caused by the surface imprinting layer, making it an ideal functional monomer. The prepared BiOBr-Cu/LyzMIP possessed red-shifted visible-light absorption edge and minor reduction of light absorbance, indicating the enhanced utilization of visible light. Accordingly, BiOBr-Cu/LyzMIP demonstrated excellent degradation rate (99.4 % in 20 min), exceptional degradation efficiency (0.211 min-1), and superior reusability. Moreover, BiOBr-Cu/LyzMIP exhibited rapid adsorption equilibrium (20 min), good imprinting factor (2.67), and favourable degradation selectivity (>1.75), indicating the good imprinting effect resulting from abundant functional groups of lysozyme. Versatility experiments on different templates suggested that the proposed approach allowed flexibility in selecting a wide range of hazardous contaminants according to practical requirements. The present work expands the application of lysozyme-based composites in the environmental field, and provides a new one-stop pathway for efficient and sustainable treatment of contaminated water.
Collapse
Affiliation(s)
- Xuemeng Tian
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jiyuan Yang
- Shanxi Geology and Mineral Resources 213 Laboratory Co., LTD, Linfen, Shanxi 041000, China
| | - Sameer Hussain
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Yue Wang
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jake Heinlein
- Department of Chemical & Environmental Engineering, Yale University, New Haven, CT 06520-8286, United States
| | - Long Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yi Hao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Ruixia Gao
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| |
Collapse
|
3
|
Samiee Paghaleh E, Kolvari E, Seidi F, Dashtian K. Eco-friendly and sustainable basil seed hydrogel-loaded copper hydroxide-based catalyst for the synthesis of propargylamines and tetrazoles. NANOSCALE ADVANCES 2024; 6:960-972. [PMID: 38298582 PMCID: PMC10825942 DOI: 10.1039/d3na01085f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/11/2024] [Indexed: 02/02/2024]
Abstract
The broad use of propargyl amines and tetrazoles in pharmaceutical applications presents a well-established challenge. Their synthesis relies heavily on catalysis, which, in turn, has been hindered by the scarcity of stable and practical catalysts. In response to this issue, we have developed an environmentally friendly and sustainable catalyst by infusing copper hydroxide into basil seed hydrogel (Cu(OH)2-BSH), creating a 3D nanoreactor support structure. To verify the structural, physical, chemical, and morphological properties of the prepared samples, a comprehensive analysis using various techniques, including FT-IR, EDX, FE-SEM, TEM, XRD, BET, TGA, and XPS, were conducted. The results not only confirmed the presence of Cu(OH)2 but also revealed a porous structure, facilitating faster diffusion and providing a substantial number of active sites. This catalyst boasts a high surface area and can be easily recovered, making it a cost-effective, safe, and readily available option. This catalyst was applied to the synthesis of propargyl amines and tetrazoles through multi-component reactions (MCRs), achieving excellent results under mild conditions and in a remarkably short timeframe. Consequently, this work offers a straightforward and practical approach for designing and synthesizing metal hydroxides and 3D hydrogels for use in heterogeneous catalysis during organic syntheses. This can be achieved using basic and affordable starting materials at the molecular level.
Collapse
Affiliation(s)
| | - Eskandar Kolvari
- Department of Chemistry, Semnan University P. O. Box 35131-19111 Semnan Iran
| | - Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University Nanjing 210037 China
| | - Kheibar Dashtian
- Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran
| |
Collapse
|
4
|
Kubiak A, Stachowiak M, Cegłowski M. Unveiling the Latest Developments in Molecularly Imprinted Photocatalysts: A State-of-the-Art Review. Polymers (Basel) 2023; 15:4152. [PMID: 37896395 PMCID: PMC10611036 DOI: 10.3390/polym15204152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/27/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Responding to the growing concerns about environmental pollutants, scientists are increasingly turning to innovative solutions rooted in the field of environmental science. One such promising avenue combines the robustness of traditional photocatalysis with the precision of molecular imprinting, leading to the proposition of molecularly imprinted photocatalysts (MIPCs). These MIPCs hold the potential to specifically target and eliminate environmental pollutants, marking them as a promising tool in modern environmental remediation. As researchers delve deeper into this field, the design and optimization of MIPCs have become hotbeds for scientific inquiry. This comprehensive overview delves into the multifaceted approaches to MIPC design, elucidating on aspects like the selection of appropriate photocatalytic bases, the pivotal role of templates, the choice of monomeric building blocks, and the integration of effective cross-linking agents. However, as with all burgeoning technologies, the development of MIPCs is not without its challenges. These potential impediments to the successful innovation and implementation of MIPCs are also explored.
Collapse
Affiliation(s)
| | | | - Michał Cegłowski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, PL-61614 Poznan, Poland; (A.K.); (M.S.)
| |
Collapse
|
5
|
Zhang Y, Zhang X, Wang S. Recent advances in the removal of emerging contaminants from water by novel molecularly imprinted materials in advanced oxidation processes-A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163702. [PMID: 37105485 DOI: 10.1016/j.scitotenv.2023.163702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/31/2023] [Accepted: 04/19/2023] [Indexed: 05/05/2023]
Abstract
Recently, there has been a global focus on effectively treating emerging contaminants (ECs) in water bodies. Advanced oxidation processes (AOPs) are the primary technology used for ECs removal. However, the low concentrations of ECs make it difficult to overcome the interference of background substances in complex water quality, which limits the practical application of AOPs. To address this limitation, many researchers are developing new catalysts with preferential adsorption. Molecular imprinting technology (MIT) combined with conventional catalysts has been found to effectively enhance the selectivity of catalysts for the targeted catalytic degradation of pollutants. This review presents a comprehensive summary of the progress made in research on molecularly imprinted polymers (MIPs) in the selective oxidation of ECs in water. The preparation methods, principles, and control points of novel MIP catalysts are discussed. Furthermore, the performance and mechanism of the catalysts in photocatalytic oxidation, electrocatalytic oxidation, and persulfate activation are analyzed with examples. The possible ecotoxicological risks of MIP catalysts are also discussed. Finally, the challenges and prospects of applying MIP catalysts in AOP are presented along with proposed solutions. This review provides a better understanding of using MIP catalysts in AOPs to target the degradation of ECs.
Collapse
Affiliation(s)
- Yang Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Xiaodong Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China.
| | - Shuguang Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
6
|
Miao X, Zhao L, Ren G, Pang Y, Xin H, Ge B, Liu C. Design of an interface heating device based on polydivinylbenzene/SiO 2/Bi 2WO 6 and its visible light response performance for water purification. Phys Chem Chem Phys 2023; 25:4332-4339. [PMID: 36689259 DOI: 10.1039/d2cp04877a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Environmental pollution and the shortage of drinking water are the challenges that mankind is facing. Solar interface evaporation technology has been demonstrated as an important method for producing clean water, but its application to sewage still faces problems, mainly manifested in solubility and oily pollutants. Therefore, an evaporator device contains a superhydrophobic Bi2WO6 felt floating layer, a filter paper hydrophilic layer, and a copper foam/CuO photothermal layer, of which the water contact angle of the superhydrophobic felt can reach 159°. The floating layer not only has the ability to adsorb n-hexane but the Rh B degradation can also be realized under indoor/outdoor light conditions. The carrier life of Bi2WO6 is 28.8 ns. A copper foam/CuO photothermal layer prepared through a low-temperature treatment is combined with the floating and hydrophilic layer to obtain an evaporation rate of 1.53 kg m-2 h-1.
Collapse
Affiliation(s)
- Xiao Miao
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng, 252000, China.
| | - Ling Zhao
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng, 252000, China.
| | - Guina Ren
- School of Environmental and Material Engineering, Yantai University, Yantai, 264405, China
| | - Yunlong Pang
- School of Materials Science and Engineering, Liaocheng University, Liaocheng, 252000, China.
| | - Hui Xin
- School of Materials Science and Engineering, Liaocheng University, Liaocheng, 252000, China.
| | - Bo Ge
- School of Materials Science and Engineering, Liaocheng University, Liaocheng, 252000, China.
| | - Cancan Liu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
7
|
Xu J, Lan X, Cheng J, Zhou X. Facile synthesis of g-C 3N 4/Ag 2C 2O 4 heterojunction composite membrane with efficient visible light photocatalytic activity for water disinfection. CHEMOSPHERE 2022; 295:133841. [PMID: 35131277 DOI: 10.1016/j.chemosphere.2022.133841] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/30/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Water pollution, deriving from the contamination of pathogenic bacteria, has posed a threat to human's survival and development. Photocatalytic disinfection is being widely studied in decentralized drink water safety, as traditional disinfection technologies are limited by harmful disinfection by-product and excessive energy consumption. Herein, a novel composite membrane (PN/Ag) with plasmonic heterojunction was synthesized for the efficient photocatalytic disinfection through the combination of polyacrylonitrile (PAN), N-doped carbon dots (NCDs)/g-C3N4 and Ag2C2O4 by electrospinning technique and successive ionic layer adsorption and reaction (SILAR) process. The surface plasmon resonance (SPR) effect of Ag nanoparticles and Schottky barrier formation between metal and semiconductor contributed to the efficient separation of electron-hole pairs and the generation of reactive species, resulting in outstanding photocatalytic disinfection of PN/Ag composite membranes (7.48 and 7.70 log inactivation of E. coli and S. aureus respectively in 80 min) and good reusability under visible light illumination. Moreover, the potential Z-scheme photocatalytic mechanisms were proposed for PN/Ag system according to the band structure and reactive species analysis. The as-proposed PN/Ag composite membranes may shed light on the design and application of materials in water purification.
Collapse
Affiliation(s)
- Jiaxin Xu
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, PR China
| | - Xiuquan Lan
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, PR China
| | - Jianhua Cheng
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, PR China; South China Institute of Collaborative Innovation, Dongguan, 523808, China.
| | - Xinhui Zhou
- South China Institute of Collaborative Innovation, Dongguan, 523808, China.
| |
Collapse
|
8
|
Gokul Eswaran S, Shahid Afridi P, Vasimalai N. Effective Multi Toxic Dyes Degradation Using Bio-Fabricated Silver Nanoparticles as a Green Catalyst. Appl Biochem Biotechnol 2022; 195:3872-3887. [PMID: 35435586 DOI: 10.1007/s12010-022-03902-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/14/2022] [Indexed: 11/25/2022]
Abstract
Herein, we reported the preparation and characterization of silver nanoparticles from Kalanchoe brasiliensis leaves extract and their application in the photocatalytic degradation of Aniline Blue, Toludine Blue, Congo Red, Indigo Carmine, Auramine O, and Pyronin Y dyes. The synthesis of Kalanchoe brasiliensis extract derived silver nanoparticles (KK-AgNPs) was well characterized by several techniques. The surface plasma resonance (SPR) peak of 17 nm sized KK-AgNPs occurred at 445 nm, and the KK-AgNPs were stable for more than five months. Finally, KK-AgNPs were used as a green catalyst for the photocatalytic degradation of the above-mentioned dyes. Interestingly, the KK-AgNPs green catalyst decolorized all six dyes and their mixture. We found high catalytic efficiency up to 86%. Moreover, we used the KK-AgNPs green catalyst to degrade industrial dye effluent water. We also discussed the possible mechanism for the photocatalytic degradation of dyes.
Collapse
Affiliation(s)
- S Gokul Eswaran
- Department of Chemistry, B.S.Abdur Rahman Crescent Institute of Science and Technology, Vandalur, Chennai, 600048, India
| | - P Shahid Afridi
- Department of Chemistry, B.S.Abdur Rahman Crescent Institute of Science and Technology, Vandalur, Chennai, 600048, India
| | - N Vasimalai
- Department of Chemistry, B.S.Abdur Rahman Crescent Institute of Science and Technology, Vandalur, Chennai, 600048, India.
| |
Collapse
|
9
|
Zamani S, Rahimi MR, Ghaedi M. Spinning disc photoreactor based visible-light-driven Ag/Ag 2O/TiO 2 heterojunction photocatalyst film toward the degradation of amoxicillin. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 303:114216. [PMID: 34896858 DOI: 10.1016/j.jenvman.2021.114216] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
The presence of antibiotics in waste and drinking water is causing increasing concern around the world, thereby an advanced sustainable technology needs to be developed to eliminate the antibiotics from water resources. Hence, an efficient spinning disc photoreactor (SDPR) equipped with visible light-activated Ag/Ag2O/TiO2 heterostructure thin film photocatalyst was assessed for the degradation of amoxicillin (AMX) as a typical antibiotic. The surface morphology, optoelectronic and structural features of Ag/Ag2O/TiO2 heterojunction were characterized by TEM, BET, mott Schottky, FESEM, EDS, AFM, XRD, UV-Vis-DRS, and contact angle measurements. Results confirm that Ag and Ag2O have a significant effect on the photocharge carrier separation and transfer of the as-developed photocatalyst system. The operative variables including illumination time, rotational speed, solution flow rate, aeration rate, pH, and initial AMX concentration were optimized by CCD. The results displayed the maximum AMX photodegradation (97.91%) could be achieved at optimal conditions involving illumination time of 80 min, a rotational speed of 225 rpm, the solution flow rate of 0.6 L/min, aeration rate of 20 L/min, pH = 6, and initial AMX concentration of 20 mg/L. Interestingly, more than 79% COD and 64% TOC were removed under optimum conditions during 80 min illumination time, respectively. Active species tests confirmed the dominant role of ·OH and ·O2- in AMX degradation. finally, the XRD pattern confirmed that the reusability assessments of the heterojunction film could successfully retain its stability for six consecutive photocatalytic degradation runs. This work demonstrates the feasibility of utilizing visible-light-driven thin-film photocatalysts in spinning disc photoreactors in treating the tenacious antibiotic pollutants.
Collapse
Affiliation(s)
- S Zamani
- Process Intensification Laboratory, Department of Chemical Engineering, Yasouj University, Yasouj, 75918-74831, Iran
| | - M R Rahimi
- Process Intensification Laboratory, Department of Chemical Engineering, Yasouj University, Yasouj, 75918-74831, Iran.
| | - M Ghaedi
- Department of Chemistry, Yasouj University, Yasouj, 75918-74831, Iran
| |
Collapse
|
10
|
Dashtian K, Shahbazi S, Tayebi M, Masoumi Z. A review on metal-organic frameworks photoelectrochemistry: A headlight for future applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214097] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
11
|
Li X, Yang B, Xiao K, Duan H, Wan J, Zhao H. Targeted degradation of refractory organic compounds in wastewaters based on molecular imprinting catalysts. WATER RESEARCH 2021; 203:117541. [PMID: 34416650 DOI: 10.1016/j.watres.2021.117541] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/22/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
Efficient removal of low-concentration refractory pollutants is a crucial problem to ensuring water safety. The use of heterogeneous catalysis of molecular imprinting technology combined with traditional catalysts is a promising method to improve removal efficiency. Presently, the research into molecular imprinting targeting catalysts focuses mainly on material preparation and performance optimization. However, more researchers are investigating other applications of imprinting materials. This review provides recent progress in photocatalyst preparation, electrocatalyst, and Fenton-like catalysts synthesized by molecular imprinting. The principle and control points of target catalysts prepared by precipitation polymerization (PP) and surface molecular imprinting (S-MIP) are introduced. Also, the application of imprinted catalysts in targeted degradation of drugs, pesticides, environmental hormones, and other refractory pollutants is summarized. In addition, the reusability and stability of imprinted catalyst in water treatment are discussed, and the possible ecotoxicity risk is analyzed. Finally, we appraised the prospects, challenges, and opportunities of imprinted catalysts in the advanced oxidation process. This paper provides a reference for the targeted degradation of refractory pollutants and the preparation of targeted catalysts.
Collapse
Affiliation(s)
- Xitong Li
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China; The Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Bo Yang
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ke Xiao
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Huabo Duan
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jinquan Wan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Huazhang Zhao
- The Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
12
|
Mosleh S, Rezaei K, Dashtian K, Salehi Z. Ce/Eu redox couple functionalized HKUST-1 MOF insight to sono-photodegradation of malathion. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124478. [PMID: 33239207 DOI: 10.1016/j.jhazmat.2020.124478] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/17/2020] [Accepted: 11/02/2020] [Indexed: 06/11/2023]
Abstract
The Ce/Eu redox pair-functionalized HKUST-1 MOF, as an innovative environmentally friendly and recyclable sono-photocatalyst, was hydrothermally mixed and fully characterized by XRD, PL, EIS, FE-SEM, EDS, Mott-Schottky, chronoamperometry, and DRS techniques. The obtained chemical and optical characteristics of the n-type Ce/Eu-HKUST-1 MOF showed that the transfer of additional 4f orbital electrons in the Ce/Eu redox pair improves the sono-photocatalytic activity. The performance of Ce/Eu-HKUST-1 MOF for the sono-photodegradation of Malathion (MA) was evaluated in the aqueous media in the simultaneous presence of blue light and ultrasonic irradiation. The optimization of the process was cross-examined using the response surface methodology as a function of the MA concentration (15-35 mg·L-1), Ce/Eu-HKUST-1 mass (10-30 mg), pH (4-12), and ultrasonic wave irradiation duration (10-30 min). The maximum sono-photocatalytic degradation capacity was found to be 99.99% under the optimum conditions set as 25 mg·L-1, 20 mg, 8, and 25 min for the concentration of Malathion, photocatalyst mass, pH, and irradiation duration, respectively. These findings were attributed to the suppression of electron-hole pair recombination, increased life-time of charge carriers, enhanced visible light absorption, and prominent proportion of hydroxyl and peroxide radicals formed.
Collapse
Affiliation(s)
- Soleiman Mosleh
- Department of Gas and Petroleum, Yasouj University, Gachsaran 75918-74831, Iran.
| | - Khalil Rezaei
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Kheibar Dashtian
- Chemistry Department, Yasouj University, Yasouj 75918-74831, Iran.
| | - Zaker Salehi
- Department of Radiation Sciences, School of Paramedical Sciences, Yasuj University of Medical Sciences, Iran
| |
Collapse
|
13
|
Cao Q, Sang L, Tu J, Xiao Y, Liu N, Wu L, Zhang J. Rapid degradation of refractory organic pollutants by continuous ozonation in a micro-packed bed reactor. CHEMOSPHERE 2021; 270:128621. [PMID: 33092824 DOI: 10.1016/j.chemosphere.2020.128621] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/08/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
Recently microreactor technology attracts attention due to the excellent multiphase mixing and enhanced mass transfer. Herein, a continuous ozonation system based on a micro-packed bed reactor (μPBR) was used to improve the dissolution rate of ozone and achieved a rapid and efficient degradation of refractory organic pollutants. The effects of liquid flow rate, gas flow rate, initial pH, initial O3 concentration and initial phenol concentration on the phenol and chemical oxygen demand (COD) removal efficiencies were also investigated. Experimental results showed that phenol and COD removal efficiencies under optimal conditions achieved 100.0% and 86.4%, respectively. Compared with large-scale reactors, the apparent reaction rate constant in μPBR increased by 1-2 orders of magnitude. In addition, some typical organic pollutants (including phenols, antibiotics and dyes) were treated by ozonation in μPBR. The removal efficiencies of these organic pollutants and COD achieved 100.0% and 70.2%-80.5% within 71 s, respectively. In this continuous treatment system, 100% of the unreacted ozone was converted to oxygen, which promoted the healthy development of aquatic ecosystems. Thus, this continuous system based on μPBR is a promising method in rapid and efficient treating refractory organic pollutants.
Collapse
Affiliation(s)
- Qiang Cao
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Beijing, 100141, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Le Sang
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Jiacheng Tu
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yushi Xiao
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Na Liu
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Beijing, 100141, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Lidong Wu
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Beijing, 100141, China.
| | - Jisong Zhang
- The State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
14
|
Zhu H, Zhang M, Li B, Liu Y, Zhuang J, Zhao X, Xue M, Wang L, Liu Y, Tao X. Developing hydrothermal fabrication and energy storage applications for MTeMoO6 (M=Zn, Mg, Mn). J Supercrit Fluids 2021. [DOI: 10.1016/j.supflu.2021.105187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Guan G, Pan JH, Li Z. Innovative utilization of molecular imprinting technology for selective adsorption and (photo)catalytic eradication of organic pollutants. CHEMOSPHERE 2021; 265:129077. [PMID: 33277000 DOI: 10.1016/j.chemosphere.2020.129077] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/28/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
The rapid development of industrialization and urbanization results in a numerous production of various organic chemicals to meet the increasing demand in high-quality life. During the synthesis and utilization of these chemical products, their residues unavoidably emerged in environments to severely threaten human's health. It is thus urgent to exploit effective technology for readily removing the organic pollutants with high selectivity and good reusability. As one of the most promising approaches, molecular imprinting technology (MIT) employs a chemically synthetic route to construct artificial recognition sites in highly-crosslinked matrix with complementary cavity and functional groups to target species, which have been attracting more and more interest for environmental remediation, such as the selective adsorption/separation and improved catalytic degradation of pollutants. In this review, MIT is first introduced briefly to understand their preparing process, recognition mechanism and common imprinted systems. Then, their specific binding affinities are demonstrated for selectively adsorbing and removing target molecules with a large capacity. Furthermore, the innovative utilization of MIT in catalytic eradication of pollutants is comprehensively overviewed to emphasize their enhanced efficiency and improved performances, which are classified by the used catalytically-active nanocrystals and imprinted systems. After summarizing recent advances in these fields, some limitations are discussed and possible suggestions are given to guide the future exploitation on MIT for environmental protection.
Collapse
Affiliation(s)
- Guijian Guan
- Institute of Molecular Plus, Tianjin University, Tianjin, 300072, PR China
| | - Jia Hong Pan
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
| | - Zibiao Li
- Institute of Materials Research and Engineering, A∗STAR, 2 Fusionopolis Way, Singapore, 138634, Singapore.
| |
Collapse
|
16
|
Mahmoudi F, Farhadi S, Jarosova M, Sillanpää M. Preparation of novel hybrid nanomaterials based on LaFeO
3
and phosphotungstic acid as a highly efficient magnetic photocatalyst for the degradation of methylene blue dye solution. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.6011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Saeed Farhadi
- Department of Chemistry Lorestan University Khorramabad Iran
| | - Marketa Jarosova
- Institute of Physics of the Czech Academy of Sciences Prague Czech Republic
| | - Mika Sillanpää
- Institute of Research and Development and Faculty of Environment and Chemical Engineering Duy Tan University Da Nang Vietnam
| |
Collapse
|