1
|
Liu H, Zhang X, Li J, Zhang G, Fang H, Li Y. Transcriptome analysis reveals the mechanism of different fruit appearance between apricot (Armeniaca vulgaris Lam.) and its seedling. Mol Biol Rep 2023; 50:7995-8003. [PMID: 37540452 DOI: 10.1007/s11033-023-08631-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 06/26/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND Apricot fruit has great economic value. In the process of apricot breeding using traditional breeding methods, we obtained a larger seedling (named Us) from the original variety (named U). And Us fruit is larger than U, taste better. Therefore, revealing its mechanism is very important for Apricot breeding. METHODS In this study, de novo assembly and transcriptome sequencing (RNA-Seq) was used to screen the differently expressed genes (DEGs) between U and Us at three development stages, including young fruits stage, mid-ripening stage and mature fruit stage. RESULTS The results showed that there were 6,753 DEGs at different sampling time. "Cellulose synthase (UDP-forming) activity" and "cellulose synthase activity" were the key GO terms enriched in GO, of which CESA and CSL family played a key role. "Photosynthesis-antenna proteins" and "Plant hormone signal transduction" were the candidate pathways and lhca, lhcb, Aux/IAA and SAUR were the main regulators. CONCLUSION The auxin signaling pathway was active in Us, of which Aux/IAAs and SAUR were the key fruit size regulators. The low level of lhca and lhcb in Us could reveal the low demand for exogenous carbon, but they increased at mature stage, which might be due to the role of aux, who was keeping the fruit growing. Aux and photosynthesis maight be the main causes of appearance formation of Us fruits. Interestingly, the higher expression of CESA and CSL proved that Us entered the hardening process earlier than U. The advanced developmental progress might also be due to the role of Aux.
Collapse
Affiliation(s)
- Huiyan Liu
- Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, School of Food Science and Engineering, Ningxia University, Yinchuan, 750021, China
| | - Xiangjun Zhang
- School of Life Science, Ningxia University, Yinchuan, 750021, China
| | - Jianshe Li
- Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, School of Food Science and Engineering, Ningxia University, Yinchuan, 750021, China
- Ningxia Facility Horticulture Engineering Technology Center, Yinchuan, 750021, China
- Technological Innovation Center of Horticulture (Ningxia University), Ningxia Hui Autonomous Region, Yinchuan, 750021, China
| | - Guangdi Zhang
- Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, School of Food Science and Engineering, Ningxia University, Yinchuan, 750021, China.
- Ningxia Facility Horticulture Engineering Technology Center, Yinchuan, 750021, China.
- Technological Innovation Center of Horticulture (Ningxia University), Ningxia Hui Autonomous Region, Yinchuan, 750021, China.
| | - Haitian Fang
- Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, School of Food Science and Engineering, Ningxia University, Yinchuan, 750021, China.
| | - Yu Li
- Technological Innovation Center of Horticulture (Ningxia University), Ningxia Hui Autonomous Region, Yinchuan, 750021, China
| |
Collapse
|
2
|
Arshad R, Saccon F, Bag P, Biswas A, Calvaruso C, Bhatti AF, Grebe S, Mascoli V, Mahbub M, Muzzopappa F, Polyzois A, Schiphorst C, Sorrentino M, Streckaité S, van Amerongen H, Aro EM, Bassi R, Boekema EJ, Croce R, Dekker J, van Grondelle R, Jansson S, Kirilovsky D, Kouřil R, Michel S, Mullineaux CW, Panzarová K, Robert B, Ruban AV, van Stokkum I, Wientjes E, Büchel C. A kaleidoscope of photosynthetic antenna proteins and their emerging roles. PLANT PHYSIOLOGY 2022; 189:1204-1219. [PMID: 35512089 PMCID: PMC9237682 DOI: 10.1093/plphys/kiac175] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/17/2022] [Indexed: 05/17/2023]
Abstract
Photosynthetic light-harvesting antennae are pigment-binding proteins that perform one of the most fundamental tasks on Earth, capturing light and transferring energy that enables life in our biosphere. Adaptation to different light environments led to the evolution of an astonishing diversity of light-harvesting systems. At the same time, several strategies have been developed to optimize the light energy input into photosynthetic membranes in response to fluctuating conditions. The basic feature of these prompt responses is the dynamic nature of antenna complexes, whose function readily adapts to the light available. High-resolution microscopy and spectroscopic studies on membrane dynamics demonstrate the crosstalk between antennae and other thylakoid membrane components. With the increased understanding of light-harvesting mechanisms and their regulation, efforts are focusing on the development of sustainable processes for effective conversion of sunlight into functional bio-products. The major challenge in this approach lies in the application of fundamental discoveries in light-harvesting systems for the improvement of plant or algal photosynthesis. Here, we underline some of the latest fundamental discoveries on the molecular mechanisms and regulation of light harvesting that can potentially be exploited for the optimization of photosynthesis.
Collapse
Affiliation(s)
- Rameez Arshad
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc 783 71, Czech Republic
- Electron Microscopy Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Francesco Saccon
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Pushan Bag
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå 901 87, Sweden
| | - Avratanu Biswas
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Claudio Calvaruso
- Institute for Molecular Biosciences, Goethe University of Frankfurt, Frankfurt 60438, Germany
| | - Ahmad Farhan Bhatti
- Laboratory of Biophysics, Wageningen University, Wageningen, the Netherlands
| | - Steffen Grebe
- Department of Life Technologies, MolecularPlant Biology, University of Turku, Turku FI–20520, Finland
| | - Vincenzo Mascoli
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Moontaha Mahbub
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Department of Botany, Jagannath University, Dhaka 1100, Bangladesh
| | - Fernando Muzzopappa
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif sur Yvette 1198, France
| | - Alexandros Polyzois
- Université de Paris, Faculté de Pharmacie de Paris, CiTCoM UMR 8038 CNRS, Paris 75006, France
| | | | - Mirella Sorrentino
- Photon Systems Instruments, spol. s.r.o., Drásov, Czech Republic
- Department of Agricultural Sciences, University of Naples Federico II, Naples 80138, Italy
| | - Simona Streckaité
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif sur Yvette 1198, France
| | | | - Eva-Mari Aro
- Department of Life Technologies, MolecularPlant Biology, University of Turku, Turku FI–20520, Finland
| | - Roberto Bassi
- Dipartimento di Biotecnologie, Università di Verona, Verona, Italy
| | - Egbert J Boekema
- Electron Microscopy Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747 AG, The Netherlands
| | - Roberta Croce
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Jan Dekker
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Rienk van Grondelle
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Stefan Jansson
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå 901 87, Sweden
| | - Diana Kirilovsky
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif sur Yvette 1198, France
| | - Roman Kouřil
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc 783 71, Czech Republic
| | - Sylvie Michel
- Université de Paris, Faculté de Pharmacie de Paris, CiTCoM UMR 8038 CNRS, Paris 75006, France
| | - Conrad W Mullineaux
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Klára Panzarová
- Photon Systems Instruments, spol. s.r.o., Drásov, Czech Republic
| | - Bruno Robert
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif sur Yvette 1198, France
| | - Alexander V Ruban
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Ivo van Stokkum
- Department of Physics and Astronomy and LaserLaB, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Emilie Wientjes
- Laboratory of Biophysics, Wageningen University, Wageningen, the Netherlands
| | - Claudia Büchel
- Institute for Molecular Biosciences, Goethe University of Frankfurt, Frankfurt 60438, Germany
| |
Collapse
|
4
|
Rodriguez-Heredia M, Saccon F, Wilson S, Finazzi G, Ruban AV, Hanke GT. Protection of photosystem I during sudden light stress depends on ferredoxin:NADP(H) reductase abundance and interactions. PLANT PHYSIOLOGY 2022; 188:1028-1042. [PMID: 35060611 PMCID: PMC8825262 DOI: 10.1093/plphys/kiab550] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/29/2021] [Indexed: 06/14/2023]
Abstract
Plant tolerance to high light and oxidative stress is increased by overexpression of the photosynthetic enzyme Ferredoxin:NADP(H) reductase (FNR), but the specific mechanism of FNR-mediated protection remains enigmatic. It has also been reported that the localization of this enzyme within the chloroplast is related to its role in stress tolerance. Here, we dissected the impact of FNR content and location on photoinactivation of photosystem I (PSI) and photosystem II (PSII) during high light stress of Arabidopsis (Arabidopsis thaliana). The reaction center of PSII is efficiently turned over during light stress, while damage to PSI takes much longer to repair. Our results indicate a PSI sepcific effect, where efficient oxidation of the PSI primary donor (P700) upon transition from darkness to light, depends on FNR recruitment to the thylakoid membrane tether proteins: thylakoid rhodanase-like protein (TROL) and translocon at the inner envelope of chloroplasts 62 (Tic62). When these interactions were disrupted, PSI photoinactivation occurred. In contrast, there was a moderate delay in the onset of PSII damage. Based on measurements of ΔpH formation and cyclic electron flow, we propose that FNR location influences the speed at which photosynthetic control is induced, resulting in specific impact on PSI damage. Membrane tethering of FNR therefore plays a role in alleviating high light stress, by regulating electron distribution during short-term responses to light.
Collapse
Affiliation(s)
| | - Francesco Saccon
- Department of Biochemistry, Queen Mary University of London, London E1 4NS, UK
| | - Sam Wilson
- Department of Biochemistry, Queen Mary University of London, London E1 4NS, UK
| | - Giovanni Finazzi
- Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168, Centre National de la Recherche Scientifique (CNRS), Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Grenoble Alpes, Institut National de Recherche Agronomique (INRA), Institut de Recherche en Sciences et Technologies pour le Vivant (iRTSV), CEA Grenoble, F-38054 Grenoble cedex 9, France
| | - Alexander V Ruban
- Department of Biochemistry, Queen Mary University of London, London E1 4NS, UK
| | - Guy T Hanke
- Department of Biochemistry, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|