1
|
Maes S, Badi N, Winne JM, Du Prez FE. Taking dynamic covalent chemistry out of the lab and into reprocessable industrial thermosets. Nat Rev Chem 2025; 9:144-158. [PMID: 39891024 DOI: 10.1038/s41570-025-00686-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2025] [Indexed: 02/03/2025]
Abstract
Dynamic covalent chemistry (DCC) allows the development of thermally (re)processable and recyclable polymer networks, which is a highly attractive feature for new generations of thermoset materials. However, despite a surge in academic interest wherein soon almost any imaginable DCC platform may have been applied in a thermoset formulation, dynamic or reversible covalent polymer networks have so far found only few industrial applications. This Review provides a perspective on the main strategies for the application of DCC in the design and development of bulk thermoset materials, and it presents some of the key hurdles for their industrial implementation. The polymer design strategies and associated chemistries are viewed from the perspective of how 'close to market' their development pathway is, thus providing a roadmap to achieve high-volume breakthrough applications.
Collapse
Affiliation(s)
- Stephan Maes
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Nezha Badi
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Johan M Winne
- Laboratory of Organic Synthesis, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Ghent, Belgium.
| | - Filip E Du Prez
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Ghent, Belgium.
| |
Collapse
|
2
|
Yang K, Wang S, Chen Y, Dong H, Wang Q, Cheng Q. Dynamic Mechanical Properties and Energy Absorption Capabilities of Polyureas Through Experiments and Molecular Dynamic Simulation. Polymers (Basel) 2025; 17:107. [PMID: 39795510 PMCID: PMC11722925 DOI: 10.3390/polym17010107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/30/2024] [Accepted: 01/01/2025] [Indexed: 01/13/2025] Open
Abstract
Polyurea (PUR) has been widely used as a protective coating in recent years. In order to complete the understanding of the relationship between PUR microstructure and its energy absorption capabilities, the mechanical and dynamic performance of PURs containing various macrodiol structural units were compared using material characterization techniques and molecular dynamic simulation. The results showed that the PUR polycarbonate diols formed as energy absorbing materials showed high tensile strength, high toughness, and excellent loss factor distribution based on the comparison of stress-strain tensile curves, glass transition temperatures, phase images, and dynamic storage loss modulus. External energy from simple shear deformation was absorbed to convert non-bond energy, in particular, based on fractional free volume, interaction energy, and total energy and hydrogen bond number change from the molecular dynamic simulation. Hydrogen bonds formed between soft segments and hard segments in the PURs have been proven to play a significant role in determining their mechanical and dynamic performance. The mechanical and dynamic properties of PURs characterized and tested using experimental techniques were quantified effectively using molecular dynamic simulation. This is believed to be an innovative theoretical guidance for the structural design of PURs at the molecular level for the optimization of energy absorption capabilities.
Collapse
Affiliation(s)
- Ke Yang
- State Key Laboratory of Chemical Safety, Qingdao 266000, China (H.D.)
- Sinopec Research Institute of Safety and Engineering Co., Ltd., Qingdao 266000, China
| | - Shanda Wang
- State Key Laboratory of Chemical Safety, Qingdao 266000, China (H.D.)
- Sinopec Research Institute of Safety and Engineering Co., Ltd., Qingdao 266000, China
| | - Yanru Chen
- State Key Laboratory of Chemical Safety, Qingdao 266000, China (H.D.)
- Sinopec Research Institute of Safety and Engineering Co., Ltd., Qingdao 266000, China
| | - Hanhai Dong
- State Key Laboratory of Chemical Safety, Qingdao 266000, China (H.D.)
- Sinopec Research Institute of Safety and Engineering Co., Ltd., Qingdao 266000, China
| | - Quanguo Wang
- State Key Laboratory of Chemical Safety, Qingdao 266000, China (H.D.)
- Sinopec Research Institute of Safety and Engineering Co., Ltd., Qingdao 266000, China
| | - Qingli Cheng
- State Key Laboratory of Chemical Safety, Qingdao 266000, China (H.D.)
- Sinopec Research Institute of Safety and Engineering Co., Ltd., Qingdao 266000, China
| |
Collapse
|
3
|
Demirci G, Goszczyńska A, Sokołowska M, Żwir M, Gorący K, El Fray M. Synthesis and Characterization of Photocurable Difunctional Monomers for Medical Applications. Polymers (Basel) 2024; 16:3584. [PMID: 39771436 PMCID: PMC11678372 DOI: 10.3390/polym16243584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/02/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Photocurable materials offer a rapid transition from a liquid to a solid state, and have recently received great interest in the medical field. However, while dental resins are very popular, only a few materials have been developed for soft tissue repair. This study aims to synthesize a difunctional methacrylate monomer using a dibutyltin dilaurate which is suitable for the photocuring of soft materials. These soft materials were compared with PhotoBioCure® (Szczecin, Poland) material with a similar molecular weight, of Mn ~7000 g/mol on average. Infrared spectroscopy was used to monitor the two-step synthesis catalyzed with dibutyltin dilaurate, while spectroscopic and chromatographic methods were used to determine the chemical structure and molecular weight of the monomers. Photopolymerization kinetics under varying light intensities were explored in a nitrogen atmosphere for representative difunctional monomers. The mechanical testing of the resulting elastomeric films confirmed tensile strength and modulus values consistent with soft tissue parameters in the range of 3-4 MPa. The 3D printability of the macromonomers was also assessed. Additionally, cytotoxicity assessments using cultured cells showed a high cell viability (97%) for all new materials. Overall, we demonstrate that difunctional methacrylate monomers converted to flexible solids during photopolymerization show great potential for biomedical applications.
Collapse
Affiliation(s)
- Gokhan Demirci
- Department of Polymer and Biomaterials Science, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Al. Piastów 45, 70-311 Szczecin, Poland; (G.D.); (A.G.); (M.S.); (M.Ż.); (K.G.)
- Poltiss Spółka z o.o., Al. Wojska Polskiego 150/1, 71-324 Szczecin, Poland
| | - Agata Goszczyńska
- Department of Polymer and Biomaterials Science, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Al. Piastów 45, 70-311 Szczecin, Poland; (G.D.); (A.G.); (M.S.); (M.Ż.); (K.G.)
- Poltiss Spółka z o.o., Al. Wojska Polskiego 150/1, 71-324 Szczecin, Poland
| | - Martyna Sokołowska
- Department of Polymer and Biomaterials Science, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Al. Piastów 45, 70-311 Szczecin, Poland; (G.D.); (A.G.); (M.S.); (M.Ż.); (K.G.)
- Poltiss Spółka z o.o., Al. Wojska Polskiego 150/1, 71-324 Szczecin, Poland
| | - Marek Żwir
- Department of Polymer and Biomaterials Science, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Al. Piastów 45, 70-311 Szczecin, Poland; (G.D.); (A.G.); (M.S.); (M.Ż.); (K.G.)
| | - Krzysztof Gorący
- Department of Polymer and Biomaterials Science, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Al. Piastów 45, 70-311 Szczecin, Poland; (G.D.); (A.G.); (M.S.); (M.Ż.); (K.G.)
| | - Miroslawa El Fray
- Department of Polymer and Biomaterials Science, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Al. Piastów 45, 70-311 Szczecin, Poland; (G.D.); (A.G.); (M.S.); (M.Ż.); (K.G.)
| |
Collapse
|
4
|
Monegro RH, Krishnamoorti R, Robertson ML. Functionalization and Repurposing of Polypropylene to a Thermoset Polyurethane. ACS Macro Lett 2024; 13:1442-1448. [PMID: 39387544 DOI: 10.1021/acsmacrolett.4c00505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Developing effective recycling pathways for polyolefin waste, enabling a move to a circular economy, is an imperative that must be met. Postuse modification has shown promising results in upcycling polyolefins, removing the limitation of inertness, and improving the final physical properties of the recycled material while extending its useful lifetime. Grafting of maleic anhydride groups to polypropylene is an established industrial process that enhances its reactivity and provides a convenient route to further functionalization and upcycling. In this work, maleic anhydride grafted polypropylene was hydroxylated and subsequently cured with a diisocyanate to form a thermoset polyurethane (PU). The crystal structure (unit cell and lamellar structure) of the polypropylene (PP) was preserved in the PU. At room temperature, the PU showed a high modulus due to the crystallization behavior of the PP; upon increasing the temperature above the melting temperature, the modulus decreased to a rubbery plateau, consistent with formation of a network. The resulting PU showed a higher glass transition temperature and lower degree of crystallinity than its PP predecessor due to the crosslinked nature of the polymer. The mechanical integrity of the PU was maintained through several reprocessing cycles due to the melt processability enabled by the presence of a urethane exchange catalyst. This functionalization and upcycling route thus offers a promising alternative to repurposing PP waste in which the creation of melt-processable thermoset polymers expands applications for the materials.
Collapse
Affiliation(s)
- Ronard Herrera Monegro
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Ramanan Krishnamoorti
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Megan L Robertson
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
5
|
Elizalde F, Pertici V, Aguirresarobe R, Ximenis M, Vozzolo G, Lezama L, Ruipérez F, Gigmes D, Sardon H. Tuning Reprocessing Temperature of Aliphatic Polyurethane Networks by Alkoxyamine Selection. ACS APPLIED POLYMER MATERIALS 2024; 6:7057-7065. [PMID: 38961862 PMCID: PMC11217918 DOI: 10.1021/acsapm.4c00840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 07/05/2024]
Abstract
Recent studies have shown that the largest employed thermoset family, polyurethanes (PUs), has great potential to be reprocessed due to the dynamic behavior of carbamate linkage. However, it requires high temperatures, especially in the case of aliphatic PUs, which causes side reactions besides the desired exchange reaction. To facilitate the reprocessing of aliphatic PUs, in this work, we have explored the dynamic potential of alkoxyamine bonds in PU networks to facilitate the reprocessing under mild conditions considering their fast recombination ability. Taking advantage of the structural effect of the nitroxide and alkyl radicals on the dissociation energy, two different alkoxyamine-based diols have been designed and synthesized to generate PU networks. Our study shows that replacing 50 mol % of a nondynamic diol chain extender with these dynamic blocks boosts the relaxation times of the networks, enabling reprocessing at temperatures as low as 80 °C.
Collapse
Affiliation(s)
- Fermin Elizalde
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa
72, 20018 Donostia-San
Sebastian, Spain
| | - Vincent Pertici
- Aix
Marseille Univ, CNRS, ICR UMR 7273, 13397 Marseille, France
| | - Robert Aguirresarobe
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa
72, 20018 Donostia-San
Sebastian, Spain
| | - Marta Ximenis
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa
72, 20018 Donostia-San
Sebastian, Spain
| | - Giulia Vozzolo
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa
72, 20018 Donostia-San
Sebastian, Spain
| | - Luis Lezama
- Department
of Inorganic Chemistry and BC Materials, University of the Basque Country UPV/EHU, E-48080 Bilbao, Spain
| | - Fernando Ruipérez
- POLYMAT
and Physical Chemistry Department, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
| | - Didier Gigmes
- Aix
Marseille Univ, CNRS, ICR UMR 7273, 13397 Marseille, France
| | - Haritz Sardon
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa
72, 20018 Donostia-San
Sebastian, Spain
| |
Collapse
|
6
|
Pettazzoni L, Ximenis M, Leonelli F, Vozzolo G, Bodo E, Elizalde F, Sardon H. Oxime metathesis: tuneable and versatile chemistry for dynamic networks. Chem Sci 2024; 15:2359-2364. [PMID: 38362428 PMCID: PMC10866338 DOI: 10.1039/d3sc06011j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/28/2023] [Indexed: 02/17/2024] Open
Abstract
Oxime chemistry has emerged as a versatile tool for use in a wide range of applications. In particular, the combination of oximes with esters and urethanes has enabled the realisation of Covalent Adaptable Networks (CANs) with improved and tunable dynamic properties. Nevertheless, an exclusively oxime-based chemistry has not yet been explored in the fabrication of CANs. In this work, we investigate the mechanism of the acid-catalysed dynamic exchange of oximes. We propose a metathesis mechanism that is well supported by both experimental and computational studies, which highlight the importance of the substituent effect on the exchange reaction kinetics. Then, as a proof of concept, we incorporate oxime groups into a cross-linked polymeric material and demonstrate the ability of oxime-based polymers to be reprocessed under acid catalysis while maintaining their structural integrity.
Collapse
Affiliation(s)
- Luca Pettazzoni
- Department of Chemistry, Sapienza Università di Roma Piazzale Aldo Moro 5 00185 Rome Italy
| | - Marta Ximenis
- POLYMAT University of the Basque Country UPV/EHU Joxe Mari Korta Center, Avda. Tolosa 72 20018 Donostia-San Sebastian Spain
| | - Francesca Leonelli
- Department of Chemistry, Sapienza Università di Roma Piazzale Aldo Moro 5 00185 Rome Italy
| | - Giulia Vozzolo
- POLYMAT University of the Basque Country UPV/EHU Joxe Mari Korta Center, Avda. Tolosa 72 20018 Donostia-San Sebastian Spain
| | - Enrico Bodo
- Department of Chemistry, Sapienza Università di Roma Piazzale Aldo Moro 5 00185 Rome Italy
| | - Fermin Elizalde
- POLYMAT University of the Basque Country UPV/EHU Joxe Mari Korta Center, Avda. Tolosa 72 20018 Donostia-San Sebastian Spain
| | - Haritz Sardon
- POLYMAT University of the Basque Country UPV/EHU Joxe Mari Korta Center, Avda. Tolosa 72 20018 Donostia-San Sebastian Spain
- Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country. UPV/EHU Donostia-San Sebastián 20018 Spain
| |
Collapse
|
7
|
Jang JW, Cha I, Choi J, Han J, Hwang JY, Cho IG, Son SU, Kang EJ, Song C. Biomass- and Carbon Dioxide-Derived Polyurethane Networks for Thermal Interface Material Applications. Polymers (Basel) 2024; 16:177. [PMID: 38256976 PMCID: PMC10820237 DOI: 10.3390/polym16020177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/23/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Recent environmental concerns have increased demand for renewable polymers and sustainable green resource usage, such as biomass-derived components and carbon dioxide (CO2). Herein, we present crosslinked polyurethanes (CPUs) fabricated from CO2- and biomass-derived monomers via a facile solvent-free ball milling process. Furan-containing bis(cyclic carbonate)s were synthesized through CO2 fixation and further transformed to tetraols, denoted FCTs, by aminolysis and utilized in CPU synthesis. Highly dispersed polyurethane-based hybrid composites (CPU-Ag) were also manufactured using a similar ball milling process. Due to the malleability of the CPU matrix, enabled by transcarbamoylation (dynamic covalent chemistry), CPU-based composites are expected to present very low interfacial thermal resistance between the heat sink and heat source. The characteristics of the dynamic covalent bond (i.e., urethane exchange reaction) were confirmed by the results of dynamic mechanical thermal analysis and stress relaxation analysis. Importantly, the high thermal conductivity of the CPU-based hybrid material was confirmed using laser flash analysis (up to 51.1 W/m·K). Our mechanochemical approach enables the facile preparation of sustainable polymers and hybrid composites for functional application.
Collapse
Affiliation(s)
- Ji Won Jang
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea; (J.W.J.); (I.C.); (J.H.); (I.G.C.); (S.U.S.)
| | - Inhwan Cha
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea; (J.W.J.); (I.C.); (J.H.); (I.G.C.); (S.U.S.)
| | - Junhyeon Choi
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Republic of Korea; (J.C.); (J.Y.H.)
| | - Jungwoo Han
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea; (J.W.J.); (I.C.); (J.H.); (I.G.C.); (S.U.S.)
| | - Joon Young Hwang
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Republic of Korea; (J.C.); (J.Y.H.)
| | - Il Gyu Cho
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea; (J.W.J.); (I.C.); (J.H.); (I.G.C.); (S.U.S.)
| | - Seung Uk Son
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea; (J.W.J.); (I.C.); (J.H.); (I.G.C.); (S.U.S.)
| | - Eun Joo Kang
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Republic of Korea; (J.C.); (J.Y.H.)
| | - Changsik Song
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea; (J.W.J.); (I.C.); (J.H.); (I.G.C.); (S.U.S.)
| |
Collapse
|
8
|
Kassem H, Imbernon L, Stricker L, Jonckheere L, Du Prez FE. Reprocessable Polyurethane Foams Using Acetoacetyl-Formed Amides. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37917002 DOI: 10.1021/acsami.3c12132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Like any other thermosetting material, polyurethane foams (PUFs) contain permanent cross-links that hinder their reprocessability and make their recyclability a tedious and environmentally unfriendly process. Herein, we introduce acetoacetyl-formed amides, formed by the reaction of isocyanates with acetoacetate groups, as dynamic units in the backbone of PUFs. By extensive variation of the foam composition, optimum parameters have been found to produce malleable foams above temperatures of 130 °C, without the requirement of any solvent during the foaming process. The PU cross-linked material can be compression-molded at least three times, giving rise to PU elastomers and thus maintaining a cross-linked network structure. Characterization of the original foams shows comparable properties to standard PUFs, for example, having a density of 32 kg/m3, while they show similar chemical and thermal properties upon reprocessing to strong PU elastomers, exhibiting Tg ranging from -42 to -48 °C. This research provides a straightforward method to produce thermally reprocessable PUFs as a promising pathway to address the recycling issues of end-of-life foams.
Collapse
Affiliation(s)
- Hiba Kassem
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4-bis, 9000 Ghent, Belgium
- Recticel NV, Damstraat 2, Industriezone 7, 9230 Wetteren, Belgium
| | - Lucie Imbernon
- Recticel NV, Damstraat 2, Industriezone 7, 9230 Wetteren, Belgium
| | - Lucas Stricker
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4-bis, 9000 Ghent, Belgium
| | - Laura Jonckheere
- Recticel NV, Damstraat 2, Industriezone 7, 9230 Wetteren, Belgium
| | - Filip E Du Prez
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4-bis, 9000 Ghent, Belgium
| |
Collapse
|
9
|
Diodati LE, Liu S, Rinaldi-Ramos CM, Sumerlin BS. Magnetic Nanoparticles Improve Flow Rate and Enable Self-Healing in Covalent Adaptable Networks. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37384942 DOI: 10.1021/acsami.3c06329] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Covalent adaptable networks (CANs) combine the mechanical and chemical stability of thermosets with the reprocessability of thermoplastics through the incorporation of stimuli-responsive dynamic crosslinks. To allow for processing through induction heating, we have created associative CANs that include fillers in the polymer matrix for efficient heat transfer. While the inclusion of inorganic fillers often decreases flow rate in CANs and complicates reprocessing of the material, the presence of Fe3O4 nanoparticles had no detrimental effect on flow behavior in a vinylogous urethane vitrimer, an observation we attribute to the catalytic nature of nanoparticles on the dynamic exchange chemistry. We employed two methods of nanoparticle incorporation: blending bare nanoparticles and crosslinking chemically modified nanoparticles. The vitrimers with covalently crosslinked nanoparticles exhibited a decreased relaxation time compared to those with blended nanoparticles. The magnetic character of the Fe3O4 nanoparticles enabled self-healing of the vitrimer composite materials upon exposure to an alternating electromagnetic field during induction heating.
Collapse
Affiliation(s)
- Lily E Diodati
- George and Josephine Butler Polymer Research Laboratory, Center of Macromolecular Science and Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Sitong Liu
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Carlos M Rinaldi-Ramos
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Brent S Sumerlin
- George and Josephine Butler Polymer Research Laboratory, Center of Macromolecular Science and Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
10
|
Maes S, Van Lijsebetten F, Winne JM, Du Prez FE. N-Sulfonyl Urethanes to Design Polyurethane Networks with Temperature-Controlled Dynamicity. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- Stephan Maes
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC) and Laboratory of Organic Synthesis, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281-S4, Ghent 9000, Belgium
| | - Filip Van Lijsebetten
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC) and Laboratory of Organic Synthesis, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281-S4, Ghent 9000, Belgium
| | - Johan M. Winne
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC) and Laboratory of Organic Synthesis, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281-S4, Ghent 9000, Belgium
| | - Filip E. Du Prez
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC) and Laboratory of Organic Synthesis, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281-S4, Ghent 9000, Belgium
| |
Collapse
|
11
|
Olazabal I, González A, Vallejos S, Rivilla I, Jehanno C, Sardon H. Upgrading Polyurethanes into Functional Ureas through the Asymmetric Chemical Deconstruction of Carbamates. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:332-342. [PMID: 36643003 PMCID: PMC9832924 DOI: 10.1021/acssuschemeng.2c05647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/11/2022] [Indexed: 06/17/2023]
Abstract
The importance of systematic and efficient recycling of all forms of plastic is no longer a matter for debate. Constituting the sixth most produced polymer family worldwide, polyurethanes, which are used in a broad variety of applications (buildings, electronics, adhesives, sealants, etc.), are particularly important to recycle. In this study, polyurethanes are selectively recycled to obtain high value-added molecules. It is demonstrated that depolymerization reactions performed with secondary amines selectively cleave the C-O bond of the urethane group, while primary amines unselectively break C-O and C-N bonds. The selective cleavage of C-O bonds, catalyzed by an acid:base mixture, led to the initial polyol and a functional diurea in several hours to a few minutes for both model polyurethanes and commercial polyurethane foams. Different secondary amines were employed as nucleophiles to synthesize a small library of diureas obtained in good to excellent yields. This study not only targets the recovery of the initial polyol but also aims to form new diureas which are useful building blocks for the polymerization of innovative materials.
Collapse
Affiliation(s)
- Ion Olazabal
- POLYMAT,
University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 72, 20018 Donostia-San Sebastian, Spain
| | - Alba González
- POLYMAT,
University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 72, 20018 Donostia-San Sebastian, Spain
| | - Saúl Vallejos
- Department
of Chemistry, Faculty of Science, University
of Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
- CQC-IMS,
Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - Iván Rivilla
- Departamento
de Química Orgánica I, Centro de Innovación en
Química Avanzada (ORFEO−CINQA), Facultad de Química, Universidad del País Vasco/Euskal Herriko Unibertsitatea
(UPV/EHU) and Donostia International Physics Center (DIPC), P° Manuel Lardizabal 3, 20018 San Sebastián-Donostia, Spain
- Ikerbasque, Basque Fundation for Science, 48009 Bilbao, Spain
| | - Coralie Jehanno
- POLYMAT,
University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 72, 20018 Donostia-San Sebastian, Spain
- POLYKEY, Joxe Mari Korta
Center, Avda. Tolosa
72, 20018 Donostia-San
Sebastian, Spain
| | - Haritz Sardon
- POLYMAT,
University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 72, 20018 Donostia-San Sebastian, Spain
| |
Collapse
|
12
|
Mouren A, Avérous L. Sustainable cycloaliphatic polyurethanes: from synthesis to applications. Chem Soc Rev 2023; 52:277-317. [PMID: 36520183 DOI: 10.1039/d2cs00509c] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Polyurethanes (PUs) are a versatile and major polymer family, mainly produced via polyaddition between polyols and polyisocyanates. A large variety of fossil-based building blocks is commonly used to develop a wide range of macromolecular architectures with specific properties. Due to environmental concerns, legislation, rarefaction of some petrol fractions and price fluctuation, sustainable feedstocks are attracting significant attention, e.g., plastic waste and biobased resources from biomass. Consequently, various sustainable building blocks are available to develop new renewable macromolecular architectures such as aromatics, linear aliphatics and cycloaliphatics. Meanwhile, the relationship between the chemical structures of these building blocks and properties of the final PUs can be determined. For instance, aromatic building blocks are remarkable to endow materials with rigidity, hydrophobicity, fire resistance, chemical and thermal stability, whereas acyclic aliphatics endow them with oxidation and UV light resistance, flexibility and transparency. Cycloaliphatics are very interesting as they combine most of the advantages of linear aliphatic and aromatic compounds. This original and unique review presents a comprehensive overview of the synthesis of sustainable cycloaliphatic PUs using various renewable products such as biobased terpenes, carbohydrates, fatty acids and cholesterol and/or plastic waste. Herein, we summarize the chemical modification of the main sustainable cycloaliphatic feedstocks, synthesis of PUs using these building blocks and their corresponding properties and subsequently present their major applications in hot-topic fields, including building, transportation, packaging and biomedicine.
Collapse
Affiliation(s)
- Agathe Mouren
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex 2, France.
| | - Luc Avérous
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex 2, France.
| |
Collapse
|
13
|
Ji S, Wu X, Jiang Y, Wang T, Liu Z, Cao C, Ji B, Chi L, Li D, Chen X. Self-Reporting Joule Heating Modulated Stiffness of Polymeric Nanocomposites for Shape Reconfiguration. ACS NANO 2022; 16:16833-16842. [PMID: 36194555 DOI: 10.1021/acsnano.2c06682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Shape reconfigurable devices, e.g., foldable phones, have emerged with the development of flexible electronics. But their rigid frames limit the feasible shapes for the devices. To achieve freely changeable shapes yet keep the rigidity of devices for user-friendly operations, stiffness-tunable materials are desired, especially under electrical control. However, current such systems are multilayer with at least a heater layer and a structural layer, leading to complex fabrication, high cost, and loss of reprocessability. Herein, we fabricate covalent adaptable networks-carbon nanotubes (CAN-CNT) composites to realize Joule heating controlled stiffness. The nanocomposites function as stiffness-tunable matrices, electric heaters, and softening sensors all by themselves. The self-reporting of softening is used to regulate the power control, and the sensing mechanism is investigated by simulating the CNT-polymer chain interactions at the nanoscale during the softening process. The nanocomposites not only have adjustable mechanical and thermodynamic properties but also are easy to fabricate at low cost and exhibit reprocessability and recyclability benefiting from the dynamic exchange reactions of CANs. Shape and stiffness control of flexible display systems are demonstrated with the nanocomposites as framing material, where freely reconfigurable shapes are realized to achieve convenient operation, wearing, or storage, fully exploiting their flexible potential.
Collapse
Affiliation(s)
- Shaobo Ji
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798Singapore
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials, Soochow University, Suzhou, 215123China
| | - Xuwei Wu
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027China
| | - Ying Jiang
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798Singapore
| | - Ting Wang
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798Singapore
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023China
| | - Zhihua Liu
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798Singapore
- Agency for Science Technology and Research, Institute of Materials Research and Engineering (IMRE), Singapore, 138634, Singapore
| | - Can Cao
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798Singapore
| | - Baohua Ji
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027China
- Oujiang Lab, Wenzhou Institute, Chinese Academy of Sciences, Wenzhou, 325001China
| | - Lifeng Chi
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials, Soochow University, Suzhou, 215123China
| | - Dechang Li
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027China
| | - Xiaodong Chen
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798Singapore
- Agency for Science Technology and Research, Institute of Materials Research and Engineering (IMRE), Singapore, 138634, Singapore
| |
Collapse
|
14
|
Berne D, Ladmiral V, Leclerc E, Caillol S. Thia-Michael Reaction: The Route to Promising Covalent Adaptable Networks. Polymers (Basel) 2022; 14:4457. [PMID: 36298037 PMCID: PMC9609322 DOI: 10.3390/polym14204457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 11/30/2022] Open
Abstract
While the Michael addition has been employed for more than 130 years for the synthesis of a vast diversity of compounds, the reversibility of this reaction when heteronucleophiles are involved has been generally less considered. First applied to medicinal chemistry, the reversible character of the hetero-Michael reactions has recently been explored for the synthesis of Covalent Adaptable Networks (CANs), in particular the thia-Michael reaction and more recently the aza-Michael reaction. In these cross-linked networks, exchange reactions take place between two Michael adducts by successive dissociation and association steps. In order to understand and precisely control the exchange in these CANs, it is necessary to get an insight into the critical parameters influencing the Michael addition and the dissociation rates of Michael adducts by reconsidering previous studies on these matters. This review presents the progress in the understanding of the thia-Michael reaction over the years as well as the latest developments and plausible future directions to prepare CANs based on this reaction. The potential of aza-Michael reaction for CANs application is highlighted in a specific section with comparison with thia-Michael-based CANs.
Collapse
Affiliation(s)
| | | | - Eric Leclerc
- ICGM, Univ Montpellier, CNRS, ENSCM, 34090 Montpellier, France
| | - Sylvain Caillol
- ICGM, Univ Montpellier, CNRS, ENSCM, 34090 Montpellier, France
| |
Collapse
|
15
|
Bakkali-Hassani C, Berne D, Ladmiral V, Caillol S. Transcarbamoylation in Polyurethanes: Underestimated Exchange Reactions? Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Dimitri Berne
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | | | | |
Collapse
|
16
|
Bandegi A, Montemayor M, Manas‐Zloczower I. Vitrimerization of rigid thermoset polyurethane foams: A mechanochemical method to recycle and reprocess thermosets. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Alireza Bandegi
- Department of Macromolecular Science and Engineering Case Western Reserve University Cleveland Ohio USA
| | - Maya Montemayor
- Department of Macromolecular Science and Engineering Case Western Reserve University Cleveland Ohio USA
| | - Ica Manas‐Zloczower
- Department of Macromolecular Science and Engineering Case Western Reserve University Cleveland Ohio USA
| |
Collapse
|
17
|
Chen SW, Yang JH, Huang YC, Chiu FC, Wu CH, Jeng RJ. A facile strategy to achieve polyurethane vitrimers from chemical recycling of poly(carbonate). CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
18
|
Debsharma T, Amfilochiou V, Wróblewska AA, De Baere I, Van Paepegem W, Du Prez FE. Fast Dynamic Siloxane Exchange Mechanism for Reshapable Vitrimer Composites. J Am Chem Soc 2022; 144:12280-12289. [PMID: 35758403 DOI: 10.1021/jacs.2c03518] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
To develop siloxane-containing vitrimers with fast dynamic characteristics, different mechanistic pathways have been investigated using a range of catalysts. In particular, one siloxane exchange pathway has been found to show a fast dynamic behavior in a useful temperature range (180-220 °C) for its application in vitrimers. The mechanism is found to involve 1,5,7-triazabicyclo [4.4.0] dec-5-ene (TBD) as an organic catalyst in the presence of hydroxyl groups. Using this new mechanistic approach, vitrimers with ultrafast stress-relaxation characteristics (relaxation times below 10 s) have been prepared with a readily available epoxy resin and siloxane-amine hardener. Subsequently, the low viscosity siloxane-containing vitrimer resin enabled the preparation of glass fiber-reinforced vitrimer composites using an industrially relevant vacuum-assisted resin infusion technique. The resulting composite was successfully thermoformed into a new shape, which makes it possible to envision a second life for such highly engineered materials.
Collapse
Affiliation(s)
- Tapas Debsharma
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Ghent B-9000, Belgium
| | - Virginia Amfilochiou
- Department of Materials, Textiles and Chemical Engineering, Mechanics of Materials and Structures, Ghent University, Technologiepark 46, Zwijnaarde 9052 , Belgium
| | - Aleksandra Alicja Wróblewska
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Ghent B-9000, Belgium
| | - Ives De Baere
- Department of Materials, Textiles and Chemical Engineering, Mechanics of Materials and Structures, Ghent University, Technologiepark 46, Zwijnaarde 9052 , Belgium
| | - Wim Van Paepegem
- Department of Materials, Textiles and Chemical Engineering, Mechanics of Materials and Structures, Ghent University, Technologiepark 46, Zwijnaarde 9052 , Belgium
| | - Filip E Du Prez
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Ghent B-9000, Belgium
| |
Collapse
|
19
|
Li J, Zhang S, Ju B. Soft, fully bio‐based poly‐hydroxyl thermosets based on catalyst‐free transesterification with decent re‐processability. J Appl Polym Sci 2022. [DOI: 10.1002/app.52676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jie Li
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian P. R. China
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian P. R. China
| | - Benzhi Ju
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian P. R. China
| |
Collapse
|
20
|
Internal catalysis on the opposite side of the fence in non-isocyanate polyurethane covalent adaptable networks. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
21
|
Vidil T, Llevot A. Fully Biobased Vitrimers: Future Direction Towards Sustainable Cross‐Linked Polymers. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202100494] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Thomas Vidil
- University of Bordeaux CNRS Bordeaux INP Laboratoire de Chimie des Polymères Organiques UMR 5629, ENSCBP, 16 avenue Pey‐Berland Pessac cedex F‐33607 France
| | - Audrey Llevot
- University of Bordeaux CNRS Bordeaux INP Laboratoire de Chimie des Polymères Organiques UMR 5629, ENSCBP, 16 avenue Pey‐Berland Pessac cedex F‐33607 France
| |
Collapse
|
22
|
Ruiz de Luzuriaga A, Solera G, Azcarate-Ascasua I, Boucher V, Grande HJ, Rekondo A. Chemical control of the aromatic disulfide exchange kinetics for tailor-made epoxy vitrimers. POLYMER 2022. [DOI: 10.1016/j.polymer.2021.124457] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
Yue H, Zhou J, Huang M, Hao C, Hao R, Dong C, He S, Liu H, Liu W, Zhu C. Recyclable, reconfigurable, thermadapt shape memory polythiourethane networks with multiple dynamic bonds for recycling of carbon fiber-reinforced composites. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124358] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
24
|
Zhou J, Yue H, Huang M, Hao C, He S, Liu H, Liu W, Zhu C, Dong X, Wang D. Arbitrarily Reconfigurable and Thermadapt Reversible Two-Way Shape Memory Poly(thiourethane) Accomplished by Multiple Dynamic Covalent Bonds. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43426-43437. [PMID: 34491715 DOI: 10.1021/acsami.1c13057] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The fabrication of a single polymer network that exhibits a good reversible two-way shape memory effect (2W-SME), can be formed into arbitrarily complex three-dimensional (3D) shapes, and is recyclable remains a challenge. Herein, we design and fabricate poly(thiourethane) (PTU) networks with an excellent thermadapt reversible 2W-SME, arbitrary reconfigurability, and good recyclability via the synergistic effects of multiple dynamic covalent bonds (i.e., ester, urethane, and thiourethane bonds). The PTU samples with good mechanical performance simultaneously demonstrate a maximum tensile stress of 29.7 ± 1.1 MPa and a high strain of 474.8 ± 7.5%. In addition, the fraction of reversible strain of the PTU with 20 wt % hard segment reaches 22.4% during the reversible 2W-SME, where the fraction of reversible strain is enhanced by self-nucleated crystallization of the PTU. A sample with arbitrarily complex permanent 3D shapes can be realized via the solid-state plasticity, and that sample also exhibits excellent reversible 2W-SME. A smart light-responsive actuator with a double control switch is fabricated using a reversible two-way shape memory PTU/MXene film. In addition, the PTU networks are de-cross-linked by alcohol solvolysis, enabling the recovery of monomers and the realization of recyclability. Therefore, the present study involving the design and fabrication of a PTU network for potential applications in intelligent actuators and multifunctional shape-shifting devices provides a new strategy for the development of thermadapt reversible two-way shape memory polymers.
Collapse
Affiliation(s)
- Junjie Zhou
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Huimin Yue
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Miaoming Huang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Chaobo Hao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Suqin He
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Hao Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Wentao Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Chengshen Zhu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xia Dong
- CAS Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Dujin Wang
- CAS Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
25
|
Cai Y, Li C, Yang Y, Li H, Wang Y, Zhang Q. Self-Healable and Reprocessable Cross-Linked Poly(urea-urethane) Elastomers with High Mechanical Performance Based on Dynamic Oxime–Carbamate Bonds. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yingchao Cai
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Beilin District, 127 West Youyi Road, Xi’an 710072, Shaanxi, China
| | - Chunmei Li
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Beilin District, 127 West Youyi Road, Xi’an 710072, Shaanxi, China
| | - Yumin Yang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Beilin District, 127 West Youyi Road, Xi’an 710072, Shaanxi, China
| | - Haonan Li
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Beilin District, 127 West Youyi Road, Xi’an 710072, Shaanxi, China
| | - Yuhang Wang
- School of Chemistry and Chemical Engineering, Shaanxi Xueqian Normal University, Xi’an 710100, People’s Republic of China
| | - Qiuyu Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Beilin District, 127 West Youyi Road, Xi’an 710072, Shaanxi, China
| |
Collapse
|
26
|
Nellepalli P, Patel T, Oh JK. Dynamic Covalent Polyurethane Network Materials: Synthesis and Self-Healability. Macromol Rapid Commun 2021; 42:e2100391. [PMID: 34418209 DOI: 10.1002/marc.202100391] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/12/2021] [Indexed: 02/06/2023]
Abstract
Polyurethane (PU) has not only been widely used in the daily lives, but also extensively explored as an important class of the essential polymers for various applications. In recent years, significant efforts have been made on the development of self-healable PU materials that possess high performance, extended lifetime, great reliability, and recyclability. A promising approach is the incorporation of covalent dynamic bonds into the design of PU covalently crosslinked polymers and thermoplastic elastomers that can dissociate and reform indefinitely in response to external stimuli or autonomously. This review summarizes various strategies to synthesize self-healable, reprocessable, and recyclable PU materials integrated with dynamic (reversible) Diels-Alder cycloadduct, disulfide, diselenide, imine, boronic ester, and hindered urea bond. Furthermore, various approaches utilizing the combination of dynamic covalent chemistries with nanofiller surface chemistries are described for the fabrication of dynamic heterogeneous PU composites.
Collapse
Affiliation(s)
- Pothanagandhi Nellepalli
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| | - Twinkal Patel
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| | - Jung Kwon Oh
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| |
Collapse
|
27
|
Anaya O, Jourdain A, Antoniuk I, Ben Romdhane H, Montarnal D, Drockenmuller E. Tuning the Viscosity Profiles of High-Tg Poly(1,2,3-triazolium) Covalent Adaptable Networks by the Chemical Structure of the N-Substituents. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02221] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Omaima Anaya
- Univ Lyon, Université Lyon 1, CNRS, Ingénierie des Matériaux Polymères, UMR 5223, F-69003 Lyon, France
- Université de Tunis El Manar, Faculté des Sciences de Tunis, Laboratoire de Chimie (Bio)Organique Structurale et de Polymères—Synthèse et Etudes Physicochimiques (LR99ES14), 2092 El Manar, Tunisia
| | - Antoine Jourdain
- Univ Lyon, Université Lyon 1, CNRS, Ingénierie des Matériaux Polymères, UMR 5223, F-69003 Lyon, France
| | - Iurii Antoniuk
- Univ Lyon, Université Lyon 1, CNRS, Ingénierie des Matériaux Polymères, UMR 5223, F-69003 Lyon, France
| | - Hatem Ben Romdhane
- Université de Tunis El Manar, Faculté des Sciences de Tunis, Laboratoire de Chimie (Bio)Organique Structurale et de Polymères—Synthèse et Etudes Physicochimiques (LR99ES14), 2092 El Manar, Tunisia
| | - Damien Montarnal
- Univ Lyon, CPE Lyon, CNRS, Catalyse, Chimie, Polymères et Procédés, UMR 5265, F-69003 Lyon, France
| | - Eric Drockenmuller
- Univ Lyon, Université Lyon 1, CNRS, Ingénierie des Matériaux Polymères, UMR 5223, F-69003 Lyon, France
| |
Collapse
|
28
|
Aguirresarobe RH, Nevejans S, Reck B, Irusta L, Sardon H, Asua JM, Ballard N. Healable and self-healing polyurethanes using dynamic chemistry. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101362] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Zhang Q, Wang S, Rao B, Chen X, Ma L, Cui C, Zhong Q, Li Z, Cheng Y, Zhang Y. Hindered urea bonds for dynamic polymers: An overview. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2020.104807] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
30
|
Pronoitis C, Hakkarainen M, Odelius K. Long-chain polyamide covalent adaptable networks based on renewable ethylene brassylate and disulfide exchange. Polym Chem 2021. [DOI: 10.1039/d1py00811k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Long-chain polyamide covalent adaptable networks with high strength and short relaxation times were prepared based on a renewable ethylene brassylate and disulfide exchange.
Collapse
Affiliation(s)
- Charalampos Pronoitis
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-58, 100 44 Stockholm, Sweden
| | - Minna Hakkarainen
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-58, 100 44 Stockholm, Sweden
| | - Karin Odelius
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-58, 100 44 Stockholm, Sweden
| |
Collapse
|