1
|
Acosta Ortiz R, Robles Olivares JL, Yañez Macias R. Synthesis and Thiol-Ene Photopolymerization of Bio-Based Hybrid Aromatic-Aliphatic Monomers Derived from Limonene, Cysteamine and Hydroxycinnamic Acid Derivatives. Polymers (Basel) 2024; 16:3295. [PMID: 39684040 DOI: 10.3390/polym16233295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/17/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Three novel bio-based monomers were synthesized through an amidation reaction involving allylated derivatives of coumaric, ferulic and phloretic acid and a diamine obtained from a thiol-ene coupling reaction between limonene and cysteamine. The monomers containing the enone bond of the cinnamic moiety underwent photoisomerization and photocycloaddition reactions upon UV light irradiation. All three monomers were photocured via thiol-ene photopolymerization using a glycerol-derived trifunctional thiol, resulting in fully bio-based poly(amide-thioether)s. The polymers derived from monomers that contain the enone bond exhibited glass transition (Tg) temperatures of 85 °C when a stoichiometric ratio of the thiol was used, whereas polymers in which an excess of thiol was used exhibited Tg temperatures of 61 and 74 °C. The higher Tg of the synthesized polymers, compared with other reported polymers produced from thiol-ene photopolymerizations, was attributed to the combination of the aromatic rings of the cinnamic moiety and the cycloaliphatic ring of limonene, as well as the presence of the amide groups in the polymer, which can induce hydrogen bonding. The development of high Tg polymers from bio-based monomers through thiol-ene photopolymerization represents a significant advancement in the polymer synthesis sector, offering an improved performance and sustainability.
Collapse
Affiliation(s)
- Ricardo Acosta Ortiz
- Centro de Investigación en Química Aplicada, Department of Macromolecular Chemistry and Nanomaterials, Blvd Enrique Reyna #140, Saltillo 25294, Mexico
| | - Jorge Luis Robles Olivares
- Centro de Investigación en Química Aplicada, Department of Macromolecular Chemistry and Nanomaterials, Blvd Enrique Reyna #140, Saltillo 25294, Mexico
| | - Roberto Yañez Macias
- Centro de Investigación en Química Aplicada, Department of Macromolecular Chemistry and Nanomaterials, Blvd Enrique Reyna #140, Saltillo 25294, Mexico
| |
Collapse
|
2
|
Hosseinzadeh E, Bosques-Palomo B, Carmona-Arriaga F, Fabiani MA, Aguirre-Soto A. Fabrication of Soft Transparent Patient-Specific Vascular Models with Stereolithographic 3D printing and Thiol-Based Photopolymerizable Coatings. Macromol Rapid Commun 2024; 45:e2300611. [PMID: 38158746 DOI: 10.1002/marc.202300611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/03/2023] [Indexed: 01/03/2024]
Abstract
An ideal vascular phantom should be anatomically accurate, have mechanical properties as close as possible to the tissue, and be sufficiently transparent for ease of visualization. However, materials that enable the convergence of these characteristics have remained elusive. The fabrication of patient-specific vascular phantoms with high anatomical fidelity, optical transparency, and mechanical properties close to those of vascular tissue is reported. These final properties are achieved by 3D printing patient-specific vascular models with commercial elastomeric acrylic-based resins before coating them with thiol-based photopolymerizable resins. Ternary thiol-ene-acrylate chemistry is found optimal. A PETMP/allyl glycerol ether (AGE)/polyethylene glycol diacrylate (PEGDA) coating with a 30/70% AGE/PEGDA ratio applied on a flexible resin yielded elastic modulus, UTS, and elongation of 3.41 MPa, 1.76 MPa, and 63.2%, respectively, in range with the human aortic wall. The PETMP/AGE/PEGDA coating doubled the optical transmission from 40% to 80%, approaching 88% of the benchmark silicone-based elastomer. Higher transparency correlates with a decrease in surface roughness from 2000 to 90 nm after coating. Coated 3D-printed anatomical replicas are showcased for pre-procedural planning and medical training with good radio-opacity and echogenicity. Thiol-click chemistry coatings, as a surface treatment for elastomeric stereolithographic 3D-printed objects, address inherent limitations of photopolymer-based additive manufacturing.
Collapse
Affiliation(s)
- Elnaz Hosseinzadeh
- School of Engineering and Sciences, Tecnologico de Monterrey, Nuevo León, Monterrey, 64849, México
| | - Beatriz Bosques-Palomo
- School of Engineering and Sciences, Tecnologico de Monterrey, Nuevo León, Monterrey, 64849, México
| | | | - Mario Alejandro Fabiani
- School of Medicine and Health Sciences, Tecnologico de Monterrey, Nuevo León, Monterrey, 64710, México
| | - Alan Aguirre-Soto
- School of Engineering and Sciences, Tecnologico de Monterrey, Nuevo León, Monterrey, 64849, México
| |
Collapse
|
3
|
Deng Y, Wang R, Ma Z, Zuo W, Zhu M. Synthesis and Fabrication of Betulin-Derived Polysulfide and Polysulfoxide Electrospun Fibers for Fruit Preservation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18857-18864. [PMID: 37994873 DOI: 10.1021/acs.jafc.3c07117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Plant-derived biocompounds play a crucial role in the field of renewable materials due to their sustainability as they can be converted into monomers for polymerization, comparable to numerous monomers obtained from petroleum. In this work, betulin, a triterpene derivative with antibacterial properties obtained from birch tree bark, was esterified to produce two varieties of α,ω-diene derivatives with different lengths of methylene spacers. These derivatives were then copolymerized with 2,2'-(ethylenedioxy)diethanethiol using thiol-ene photopolymerization. We optimized and confirmed the polymerization parameters such as solvents, catalysts, and monomer concentrations. These analyses allowed for the obtainment of polysulfides with a high molar mass of up to 38.9 kg/mol under the optimized conditions. Furthermore, the polysulfides were converted into polysulfoxides by using a dilute hydrogen peroxide solution. Thermal analysis of the obtained polymers revealed excellent thermal stability (up to 300 °C) and tunable glass transition temperatures depending on their molar mass and composition. We successfully produced fibers with a diameter of approximately 3.9 μm by using the electrospinning technique. The morphology and hydrophobicity of the fibers were analyzed by using scanning electron microscopy and water contact angle analysis. Plant-derived polymeric fibers exhibited good cellular biocompatibility and broad-spectrum antibacterial activity, making them promising candidates for applications in fruit preservation.
Collapse
Affiliation(s)
- Yiding Deng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Ruili Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Zhiyuan Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Weiwei Zuo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| |
Collapse
|
4
|
Wang Z, Wang Y, Wang H, Gang H, Zhang N, Zhou Y, Gu S, Zhuang Y, Xu W, Ke G, Li Z, Yang H. Bioinspired Natural Magnolol-Based Adhesive with Strong Adhesion and Antibacterial Properties for Application in Wet and Dry Environments. ACS APPLIED MATERIALS & INTERFACES 2023; 15:24846-24857. [PMID: 37183374 DOI: 10.1021/acsami.3c02136] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The development of environmentally friendly, green, and nontoxic adhesives with excellent dry and wet adhesion properties is of great attraction. In nature, barnacles and mussels exhibit strong adhesion by secreting a hydroxyl-rich dopa. Inspired by their adhesion mechanism, a simple biobased MAG-PETMP (MP) adhesive was prepared from magnolol (MAG) and pentaerythritol tetra (3-mercaptopropionate) (PETMP) by a thiol-ene click chemistry reaction. MP as an adhesive exhibits high bond strength with other substrates due to hydrogen bonds formed by the abundant hydroxyl groups at the interface and shows an inherent thermosetting network structure. Since MP has a thermosetting network, it exhibits excellent thermal stability, solvent resistance, and high mechanical strength, which make the adhesive stable in a humid environment. The cross-linking degree of MP can be easily controlled by adjusting the molar ratio of MAG and PETMP. Among the synthesized samples, the elongation at break of the MP 1 formulation is 174.27%, which makes it promising for use as a flexible adhesive. Moreover, the inherent antibacterial properties of MAG enable MP to exhibit antimicrobial properties and antibacterial adhesion to some extent. This work provides a simple biomimetic strategy that could enable the application of MAG for adhesives.
Collapse
Affiliation(s)
- Zonglei Wang
- Key Laboratory of Green Processing and Functional New Textile Materials of Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Yuli Wang
- Key Laboratory of Green Processing and Functional New Textile Materials of Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Han Wang
- Key Laboratory of Green Processing and Functional New Textile Materials of Ministry of Education, Wuhan Textile University, Wuhan 430200, China
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Hanlin Gang
- College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Naidan Zhang
- College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Yingshan Zhou
- College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Shaojin Gu
- College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Yan Zhuang
- College of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Weilin Xu
- Key Laboratory of Green Processing and Functional New Textile Materials of Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | | | - Zhongyu Li
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325027, China
| | - Hongjun Yang
- Key Laboratory of Green Processing and Functional New Textile Materials of Ministry of Education, Wuhan Textile University, Wuhan 430200, China
- College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| |
Collapse
|
5
|
Park JH, Eom YS, Kim TH. Recent Advances in Aptamer-Based Sensors for Sensitive Detection of Neurotransmitters. BIOSENSORS 2023; 13:bios13040413. [PMID: 37185488 PMCID: PMC10136356 DOI: 10.3390/bios13040413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 05/17/2023]
Abstract
In recent years, there has been an increased demand for highly sensitive and selective biosensors for neurotransmitters, owing to advancements in science and technology. Real-time sensing is crucial for effective prevention of neurological and cardiovascular diseases. In this review, we summarise the latest progress in aptamer-based biosensor technology, which offers the aforementioned advantages. Our focus is on various biomaterials utilised to ensure the optimal performance and high selectivity of aptamer-based biosensors. Overall, this review aims to further aptamer-based biosensor technology.
Collapse
Affiliation(s)
- Joon-Ha Park
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yun-Sik Eom
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
6
|
A Critical Review of Sustainable Vanillin-modified Vitrimers: Synthesis, Challenge and Prospects. REACTIONS 2023. [DOI: 10.3390/reactions4010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Nearly 90% of thermosets are produced from petroleum resources, they have remarkable mechanical characteristics, are chemically durable, and dimensionally stable. However, they can contribute to global warming, depletion of petroleum reserves, and environmental contamination during manufacture, use, and disposal. Using renewable resources to form thermosetting materials is one of the most crucial aspects of addressing the aforementioned issues. Vanillin-based raw materials have been used in the industrial manufacturing of polymer materials because they are simple to modify structurally. Conversely, traditional thermosetting materials as a broad class of high-molecular-weight molecules are challenging to heal, decompose and recover owing to their permanent 3-D crosslinking network. Once the products are damaged, recycling issues could arise, causing resource loss and environmental impact. It could be solved by inserting dynamic covalent adaptable networks (DCANs) into the polymer chains, increasing product longevity, and minimizing waste. It also improves the attractiveness of these products in the prospective field. Moreover, it is essential to underline that increasing product lifespan and reducing waste is equivalent to reducing the expense of consuming resources. The detailed synthesis, reprocessing, thermal, and mechanical characteristics of partly and entirely biomass thermosetting polymers made from vanillin-modified monomers are covered in the current work. Finally, the review highlights the benefits, difficulties, and application of these emerging vanillin-modified vitrimers as a potential replacement for conventional non-recyclable thermosets.
Collapse
|
7
|
Rashid MA, Liu W, Wei Y, Jiang Q. Review of intrinsically recyclable biobased epoxy thermosets enabled by dynamic chemical bonds. POLYM-PLAST TECH MAT 2022. [DOI: 10.1080/25740881.2022.2080559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Muhammad Abdur Rashid
- Center for Civil Aviation Composites, Donghua University, Shanghai, China
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China
- Dhaka University of Engineering and Technology, Gazipur, Bangladesh
| | - Wanshuang Liu
- Center for Civil Aviation Composites, Donghua University, Shanghai, China
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China
| | - Yi Wei
- Center for Civil Aviation Composites, Donghua University, Shanghai, China
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China
| | - Qiuran Jiang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, China
| |
Collapse
|
8
|
Saei Dehkordi SS, Albadi J, Jafari AA, Samimi HA. Boric Acid/Pentaerythritol as a Green and Reusable Catalytic System for the Synthesis of Mono- and Bis-Pyrano[2,3-d]Pyrimidinone Derivatives in Water. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2118330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | - Jalal Albadi
- Department of Chemistry, Faculty of Science, Shahrekord University, Shahrekord, Iran
| | - Abbas Ali Jafari
- Department of Chemistry, Faculty of Science, Yazd University, Yazd, Iran
| | - Heshmat Allah Samimi
- Department of Chemistry, Faculty of Science, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
9
|
Sedrik R, Bonjour O, Laanesoo S, Liblikas I, Pehk T, Jannasch P, Vares L. Chemically Recyclable Poly(β-thioether ester)s Based on Rigid Spirocyclic Ketal Diols Derived from Citric Acid. Biomacromolecules 2022; 23:2685-2696. [PMID: 35617050 PMCID: PMC9198987 DOI: 10.1021/acs.biomac.2c00452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Incorporating rigid
cyclic acetal and ketal units into polymer
structures is an important strategy toward recyclable high-performance
materials from renewable resources. In the present work, citric acid,
a widely used platform chemical derived from biomass, has been efficiently
converted into di- and tricyclic diketones. Ketalization with glycerol
or trimethylolpropane afforded rigid spirodiols, which were obtained
as complex mixtures of isomers. After a comprehensive NMR analysis,
the spirodiols were converted into the respective di(meth)acrylates
and utilized in thiol–ene polymerizations in combination with
different dithiols. The resulting poly(β-thioether ester ketal)s
were thermally stable up to 300 °C and showed glass-transition
temperatures in a range of −7 to 40 °C, depending on monomer
composition. The polymers were stable in aqueous acids and bases,
but in a mixture of 1 M aqueous HCl and acetone, the ketal functional
groups were cleanly hydrolyzed, opening the pathway for potential
chemical recycling of these materials. We envision that these novel
bioderived spirodiols have a great potential to become valuable and
versatile bio-based building blocks for several different kinds of
polymer materials.
Collapse
Affiliation(s)
- Rauno Sedrik
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Olivier Bonjour
- Department of Chemistry, Lund University, Box 124, Lund 221 00, Sweden
| | - Siim Laanesoo
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Ilme Liblikas
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| | - Tõnis Pehk
- Laboratory of Chemical Physics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, Tallinn 12618, Estonia
| | - Patric Jannasch
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia.,Department of Chemistry, Lund University, Box 124, Lund 221 00, Sweden
| | - Lauri Vares
- Institute of Technology, University of Tartu, Nooruse 1, Tartu 50411, Estonia
| |
Collapse
|
10
|
Chinomso Iroegbu A, Ray SS. Lignin and Keratin-Based Materials in Transient Devices and Disposables: Recent Advances Toward Materials and Environmental Sustainability. ACS OMEGA 2022; 7:10854-10863. [PMID: 35415330 PMCID: PMC8991899 DOI: 10.1021/acsomega.1c07372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/07/2022] [Indexed: 05/08/2023]
Abstract
Rising concerns and the associated negative implications of pollution from e-waste and delayed decomposition and mineralization of component materials (e.g., plastics) are significant environmental challenges. Hence, concerted pursuit of accurate and efficient control of the life cycle of materials and subsequent dematerialization in target environments has become essential in recent times. The emerging field of transient technology will play a significant role in this regard to help overcome current environmental challenges by enabling the use of novel approaches and new materials with unique functionalities to produce devices and materials such as disposable diagnostic devices, flexible solar panels, and foldable displays that are more ecologically benign, low-cost, and sustainable. The prerequisites for materials employed in transient devices and disposables include biodegradability, biocompatibility, and the inherent ability to mineralize or dissipate in target environments (e.g., body fluids) in a short lifetime with net-zero impact. Biomaterials such as lignin and keratin are well-known to be among the most promising environmentally benign, functional, sustainable, and industrially applicable resources for transient devices and disposables. Consequently, considering the current environmental concerns, this work focuses on the advances in applying lignin and keratin-based materials in short-life electronics and single-use consumables, current limitations, future research outlook toward materials, and environmental sustainability.
Collapse
Affiliation(s)
- Austine
Ofondu Chinomso Iroegbu
- Department
of Chemical Sciences, University of Johannesburg, Doornfontein 2028, Johannesburg, South Africa
- Centre
for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific
& Industrial Research, Pretoria 0001, South Africa
| | - Suprakas Sinha Ray
- Department
of Chemical Sciences, University of Johannesburg, Doornfontein 2028, Johannesburg, South Africa
- Centre
for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific
& Industrial Research, Pretoria 0001, South Africa
| |
Collapse
|
11
|
|
12
|
Gandini A, M. Lacerda T. Monomers and Macromolecular Materials from Renewable Resources: State of the Art and Perspectives. Molecules 2021; 27:159. [PMID: 35011391 PMCID: PMC8746301 DOI: 10.3390/molecules27010159] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/08/2021] [Accepted: 12/17/2021] [Indexed: 12/13/2022] Open
Abstract
A progressively increasing concern about the environmental impacts of the whole polymer industry has boosted the design of less aggressive technologies that allow for the maximum use of carbon atoms, and reduced dependence on the fossil platform. Progresses related to the former approach are mostly based on the concept of the circular economy, which aims at a thorough use of raw materials, from production to disposal. The latter, however, has been considered a priority nowadays, as short-term biological processes can efficiently provide a myriad of chemicals for the polymer industry. Polymers from renewable resources are widely established in research and technology facilities from all over the world, and a broader consolidation of such materials is expected in a near future. Herein, an up-to-date overview of the most recent and relevant contributions dedicated to the production of monomers and polymers from biomass is presented. We provide some basic issues related to the preparation of polymers from renewable resources to discuss ongoing strategies that can be used to achieve original polymers and systems thereof.
Collapse
Affiliation(s)
- Alessandro Gandini
- Graduate School of Engineering in Paper, Print Media and Biomaterials (Grenoble INP-Pagora), University Grenoble Alpes, LGP2, CEDEX 9, 38402 Saint Martin d’Hères, France
| | - Talita M. Lacerda
- Biotechnology Department, Lorena School of Engineering, University of São Paulo, Lorena CEP 12602-810, SP, Brazil;
| |
Collapse
|
13
|
Ohno R, Sugane K, Shibata M. Thermal and mechanical properties of polymer networks prepared by the thiol-ene reaction of a vanillin/acetone condensate and its related compounds. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|