1
|
Nam J, Kim M. Advances in materials and technologies for digital light processing 3D printing. NANO CONVERGENCE 2024; 11:45. [PMID: 39497012 PMCID: PMC11534933 DOI: 10.1186/s40580-024-00452-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 10/22/2024] [Indexed: 11/06/2024]
Abstract
Digital light processing (DLP) is a projection-based vat photopolymerization 3D printing technique that attracts increasing attention due to its high resolution and accuracy. The projection-based layer-by-layer deposition in DLP uses precise light control to cure photopolymer resin quickly, providing a smooth surface finish due to the uniform layer curing process. Additionally, the extensive material selection in DLP 3D printing, notably including existing photopolymerizable materials, presents a significant advantage compared with other 3D printing techniques with limited material choices. Studies in DLP can be categorized into two main domains: material-level and system-level innovation. Regarding material-level innovations, the development of photocurable resins with tailored rheological, photocuring, mechanical, and functional properties is crucial for expanding the application prospects of DLP technology. In this review, we comprehensively review the state-of-the-art advancements in DLP 3D printing, focusing on material innovations centered on functional materials, particularly various smart materials for 4D printing, in addition to piezoelectric ceramics and their composites with their applications in DLP. Additionally, we discuss the development of recyclable DLP resins to promote sustainable manufacturing practices. The state-of-the-art system-level innovations are also delineated, including recent progress in multi-materials DLP, grayscale DLP, AI-assisted DLP, and other related developments. We also highlight the current challenges and propose potential directions for future development. Exciting areas such as the creation of photocurable materials with stimuli-responsive functionality, ceramic DLP, recyclable DLP, and AI-enhanced DLP are still in their nascent stages. By exploring concepts like AI-assisted DLP recycling technology, the integration of these aspects can unlock significant opportunities for applications driven by DLP technology. Through this review, we aim to stimulate further interest and encourage active collaborations in advancing DLP resin materials and systems, fostering innovations in this dynamic field.
Collapse
Affiliation(s)
- Jisoo Nam
- Department of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Miso Kim
- Department of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.
- SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University (SKKU), Suwon, 16419, South Korea.
| |
Collapse
|
2
|
Bautista-Anguís D, Reiner L, Röper F, Maar S, Wolfahrt M, Wolfberger A, Schlögl S. Synthesis and Characterization of Rebondable Polyurethane Adhesives Relying on Thermo-Activated Transcarbamoylation. Polymers (Basel) 2024; 16:2799. [PMID: 39408509 PMCID: PMC11478668 DOI: 10.3390/polym16192799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Dynamic polymer networks combine the noteworthy (thermo)mechanical features of thermosets with the processability of thermoplastics. They rely on externally triggered bond exchange reactions, which induce topological rearrangements and, at a sufficiently high rate, a macroscopic reflow of the polymer network. Due to this controlled change in viscosity, dynamic polymers are repairable, malleable, and reprocessable. Herein, several dynamic polyurethane networks were synthetized as model compounds, which were able to undergo thermo-activated transcarbamoylation for the use in rebondable adhesives. Ethylenediamine-N,N,N',N'-tetra-2-propanol (EDTP) was applied as a transcarbamoylation catalyst, which participates in the curing reaction across its four -OH groups and thus, is covalently attached within the polyurethane network. Both bond exchange rate and (thermo)mechanical properties of the dynamic networks were readily adjusted by the crosslink density and availability of -OH groups. In a last step, the most promising model compound was optimized to prepare an adhesive formulation more suitable for a real case application. Single-lap shear tests were carried out to evaluate the bond strength of this final formulation in adhesively bonded carbon fiber reinforced polymers (CFRP). Exploiting the dynamic nature of the adhesive layer, the debonded CFRP test specimens were rebonded at elevated temperature. The results clearly show that thermally triggered rebonding was feasible by recovering up to 79% of the original bond strength.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sandra Schlögl
- Polymer Competence Center Leoben GmbH (PCCL), Sauraugasse 1, 8700 Leoben, Austria; (D.B.-A.); (L.R.); (F.R.); (S.M.); (M.W.)
| |
Collapse
|
3
|
Pruksawan S, Chong YT, Zen W, Loh TJE, Wang F. Sustainable Vat Photopolymerization-Based 3D-Printing through Dynamic Covalent Network Photopolymers. Chem Asian J 2024; 19:e202400183. [PMID: 38509002 DOI: 10.1002/asia.202400183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 03/22/2024]
Abstract
Vat photopolymerization (VPP) based three-dimensional (3D) printing, including stereolithography (SLA) and digital light projection (DLP), is known for producing intricate, high-precision prototypes with superior mechanical properties. However, the challenge lies in the non-recyclability of covalently crosslinked thermosets used in these printing processes, limiting the sustainable utilization of printed prototypes. This review paper examines the recently explored avenue of VPP 3D-printed dynamic covalent network (DCN) polymers, which enable reversible crosslinks and allow for the reprocessing of printed prototypes, promoting sustainability. These reversible crosslinks facilitate the rearrangement of crosslinked polymers, providing printed polymers with chemical/physical recyclability, self-healing capabilities, and degradability. While various mechanisms for DCN polymer systems are explored, this paper focuses solely on photocurable polymers to highlight their potential to revolutionize the sustainability of VPP 3D printing.
Collapse
Affiliation(s)
- Sirawit Pruksawan
- Institute of Materials Research and Engineering (IMRE), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Yi Ting Chong
- Institute of Materials Research and Engineering (IMRE), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Wylma Zen
- Institute of Materials Research and Engineering (IMRE), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
- College of Design and Engineering, National University of Singapore (NUS), 4 Engineering Drive 3, Singapore, 117583, Republic of Singapore
| | - Terence Jun En Loh
- Institute of Materials Research and Engineering (IMRE), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
- Nanyang Polytechnic, 180 Ang Mo Kio Avenue 8, Singapore, 569830, Republic of Singapore
| | - FuKe Wang
- Institute of Materials Research and Engineering (IMRE), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| |
Collapse
|
4
|
Liu Y, Liu MY, Fan XG, Wang PY, Chen SP. A 4D-Printable Photocurable Resin Derived from Waste Cooking Oil with Enhanced Tensile Strength. Molecules 2024; 29:2162. [PMID: 38731653 PMCID: PMC11085575 DOI: 10.3390/molecules29092162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/28/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
In pursuit of enhancing the mechanical properties, especially the tensile strength, of 4D-printable consumables derived from waste cooking oil (WCO), we initiated the production of acrylate-modified WCO, which encompasses epoxy waste oil methacrylate (EWOMA) and epoxy waste oil acrylate (EWOA). Subsequently, a series of WCO-based 4D-printable photocurable resins were obtained by introducing a suitable diacrylate molecule as the second monomer, coupled with a composite photoinitiator system comprising Irgacure 819 and p-dimethylaminobenzaldehyde (DMAB). These materials were amenable to molding using an LCD light-curing 3D printer. Our findings underscored the pivotal role of triethylene glycol dimethacrylate (TEGDMA) among the array of diacrylate molecules in enhancing the mechanical properties of WCO-based 4D-printable resins. Notably, the 4D-printable material, composed of EWOA and TEGDMA in an equal mass ratio, exhibited nice mechanical strength comparable to that of mainstream petroleum-based 4D-printable materials, boasting a tensile strength of 9.17 MPa and an elongation at break of 15.39%. These figures significantly outperformed the mechanical characteristics of pure EWOA or TEGDMA resins. Furthermore, the EWOA-TEGDMA resin demonstrated impressive thermally induced shape memory performance, enabling deformation and recovery at room temperature and retaining its shape at -60 °C. This resin also demonstrated favorable biodegradability, with an 8.34% weight loss after 45 days of soil degradation. As a result, this 4D-printable photocurable resin derived from WCO holds immense potential for the creation of a wide spectrum of high-performance intelligent devices, brackets, mold, folding structures, and personalized products.
Collapse
Affiliation(s)
| | | | | | | | - Shuo-Ping Chen
- College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China; (Y.L.); (M.-Y.L.); (X.-G.F.); (P.-Y.W.)
| |
Collapse
|
5
|
Leanza S, Wu S, Sun X, Qi HJ, Zhao RR. Active Materials for Functional Origami. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2302066. [PMID: 37120795 DOI: 10.1002/adma.202302066] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/13/2023] [Indexed: 06/19/2023]
Abstract
In recent decades, origami has been explored to aid in the design of engineering structures. These structures span multiple scales and have been demonstrated to be used toward various areas such as aerospace, metamaterial, biomedical, robotics, and architectural applications. Conventionally, origami or deployable structures have been actuated by hands, motors, or pneumatic actuators, which can result in heavy or bulky structures. On the other hand, active materials, which reconfigure in response to external stimulus, eliminate the need for external mechanical loads and bulky actuation systems. Thus, in recent years, active materials incorporated with deployable structures have shown promise for remote actuation of light weight, programmable origami. In this review, active materials such as shape memory polymers (SMPs) and alloys (SMAs), hydrogels, liquid crystal elastomers (LCEs), magnetic soft materials (MSMs), and covalent adaptable network (CAN) polymers, their actuation mechanisms, as well as how they have been utilized for active origami and where these structures are applicable is discussed. Additionally, the state-of-the-art fabrication methods to construct active origami are highlighted. The existing structural modeling strategies for origami, the constitutive models used to describe active materials, and the largest challenges and future directions for active origami research are summarized.
Collapse
Affiliation(s)
- Sophie Leanza
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Shuai Wu
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Xiaohao Sun
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - H Jerry Qi
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Ruike Renee Zhao
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
6
|
Liu Y, Wang S, Dong J, Huo P, Zhang D, Han S, Yang J, Jiang Z. External Stimuli-Induced Welding of Dynamic Cross-Linked Polymer Networks. Polymers (Basel) 2024; 16:621. [PMID: 38475305 DOI: 10.3390/polym16050621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024] Open
Abstract
Thermosets have been crucial in modern engineering for decades, finding applications in various industries. Welding cross-linked components are essential in the processing of thermosets for repairing damaged areas or fabricating complex structures. However, the inherent insolubility and infusibility of thermoset materials, attributed to their three-dimensional network structure, pose challenges to welding development. Incorporating dynamic chemical bonds into highly cross-linked networks bridges the gap between thermosets and thermoplastics presenting a promising avenue for innovative welding techniques. External stimuli, including thermal, light, solvent, pH, electric, and magnetic fields, induce dynamic bonds' breakage and reformation, rendering the cross-linked network malleable. This plasticity facilitates the seamless linkage of two parts to an integral whole, attracting significant attention for potential applications in soft actuators, smart devices, solid batteries, and more. This review provides a comprehensive overview of dynamic bonds employed in welding dynamic cross-linked networks (DCNs). It extensively discusses the classification and fabrication of common epoxy DCNs and acrylate DCNs. Notably, recent advancements in welding processes based on DCNs under external stimuli are detailed, focusing on the welding dynamics among covalent adaptable networks (CANs).
Collapse
Affiliation(s)
- Yun Liu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150040, China
| | - Sheng Wang
- Key Laboratory of Bio-Based Materials Science & Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Jidong Dong
- Key Laboratory of Bio-Based Materials Science & Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Pengfei Huo
- Key Laboratory of Bio-Based Materials Science & Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Dawei Zhang
- Key Laboratory of Bio-Based Materials Science & Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Shuaiyuan Han
- Key Laboratory of Bio-Based Materials Science & Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Jie Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Zaixing Jiang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150040, China
| |
Collapse
|
7
|
Hausberger A, Pecora M, Favier D, Rossegger E, Tockner M, Ules T, Haselmann M, Schlögl S, Gauthier C. In Situ Observation of Micro-Patterned Elastomeric Surfaces: The Formation of the Area of Real Contact and the Influence on Its Friction and Deformation Behaviour. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6489. [PMID: 37834628 PMCID: PMC10573622 DOI: 10.3390/ma16196489] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023]
Abstract
Structured surfaces, which are the basis of the lotus blossom effect, have great potential to serve/operate as functionalised surfaces, i.e., surfaces with specific and/or adjustable properties. In the present study, the aim is to use micro-structured elastomeric surfaces to specifically influence the friction and deformation behaviours on the basis of the shape and arrangement of the structures. Thiol-acrylate-based photopolymers patterned via nanoimprint lithography were investigated by using an in situ tribological measurement set-up. A clear influence of the different structures on the surface's friction behaviour could be shown, and, furthermore, this could be brought into relation with the real area of contact. This finding provides an important contribution to further development steps, namely, to give the structures switchable properties in order to enable the control of friction properties in a targeted manner.
Collapse
Affiliation(s)
- Andreas Hausberger
- Polymer Competence Center Leoben GmbH, Sauraugasse 1, 8700 Leoben, Austria; (E.R.); (M.T.); (T.U.); (M.H.); (S.S.)
| | - Marina Pecora
- Institut Charles Sadron, Université de Strasbourg, CNRS, F-67000 Strasbourg, France; (M.P.); (D.F.); (C.G.)
| | - Damien Favier
- Institut Charles Sadron, Université de Strasbourg, CNRS, F-67000 Strasbourg, France; (M.P.); (D.F.); (C.G.)
| | - Elisabeth Rossegger
- Polymer Competence Center Leoben GmbH, Sauraugasse 1, 8700 Leoben, Austria; (E.R.); (M.T.); (T.U.); (M.H.); (S.S.)
| | - Martin Tockner
- Polymer Competence Center Leoben GmbH, Sauraugasse 1, 8700 Leoben, Austria; (E.R.); (M.T.); (T.U.); (M.H.); (S.S.)
| | - Thomas Ules
- Polymer Competence Center Leoben GmbH, Sauraugasse 1, 8700 Leoben, Austria; (E.R.); (M.T.); (T.U.); (M.H.); (S.S.)
| | - Matthias Haselmann
- Polymer Competence Center Leoben GmbH, Sauraugasse 1, 8700 Leoben, Austria; (E.R.); (M.T.); (T.U.); (M.H.); (S.S.)
| | - Sandra Schlögl
- Polymer Competence Center Leoben GmbH, Sauraugasse 1, 8700 Leoben, Austria; (E.R.); (M.T.); (T.U.); (M.H.); (S.S.)
| | - Christian Gauthier
- Institut Charles Sadron, Université de Strasbourg, CNRS, F-67000 Strasbourg, France; (M.P.); (D.F.); (C.G.)
| |
Collapse
|
8
|
Grauzeliene S, Schuller AS, Delaite C, Ostrauskaite J. Development and Digital Light Processing 3D Printing of a Vitrimer Composed of Glycerol 1,3-Diglycerolate Diacrylate and Tetrahydrofurfuryl Methacrylate. ACS APPLIED POLYMER MATERIALS 2023; 5:6958-6965. [PMID: 37705712 PMCID: PMC10497060 DOI: 10.1021/acsapm.3c01018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/10/2023] [Indexed: 09/15/2023]
Abstract
The development of biobased reshapable and repairable vitrimers has received extensive attention due to the growing focus on an environmentally friendly society. Therefore, the objective of this research was to synthesize sustainable polymers with an environmentally friendly strategy combining the benefits of renewable resources, UV curing, and vitrimers. Two biobased monomers, glycerol 1,3-diglycerolate diacrylate and tetrahydrofurfuryl methacrylate, were chosen for the preparation of UV-curable resins and tested by real-time photorheometry and RT-FTIR spectroscopy to determine their suitability for digital light processing (DLP) 3D printing. DLP 3D-printed polymer showed shape memory, weldability, and repairability capabilities by triggering the dynamic transesterification process at high temperatures. The vitrimer with a weight ratio of 60:40 of glycerol 1,3-diglycerolate diacrylate and tetrahydrofurfuryl methacrylate showed shape memory properties with a recovery ratio of 100% and a 7-fold improved tensile strength compared to the original sample, confirming efficient weldability and repairability.
Collapse
Affiliation(s)
- Sigita Grauzeliene
- Department
of Polymer Chemistry and Technology, Kaunas
University of Technology, Radvilenu Road 19, LT-50254 Kaunas, Lithuania
| | - Anne-Sophie Schuller
- Laboratoire
de Photochimie et d’Ingénierie Macromoléculaires—EA4567,
Université de Haute Alsace, Université
de Strasbourg, 3b Rue
Alfred Werner, 68093 Mulhouse Cedex, France
| | - Christelle Delaite
- Laboratoire
de Photochimie et d’Ingénierie Macromoléculaires—EA4567,
Université de Haute Alsace, Université
de Strasbourg, 3b Rue
Alfred Werner, 68093 Mulhouse Cedex, France
| | - Jolita Ostrauskaite
- Department
of Polymer Chemistry and Technology, Kaunas
University of Technology, Radvilenu Road 19, LT-50254 Kaunas, Lithuania
| |
Collapse
|
9
|
Kashef Tabrizian S, Alabiso W, Shaukat U, Terryn S, Rossegger E, Brancart J, Legrand J, Schlögl S, Vanderborght B. Vitrimeric shape memory polymer-based fingertips for adaptive grasping. Front Robot AI 2023; 10:1206579. [PMID: 37501744 PMCID: PMC10369050 DOI: 10.3389/frobt.2023.1206579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/30/2023] [Indexed: 07/29/2023] Open
Abstract
The variability in the shapes and sizes of objects presents a significant challenge for two-finger robotic grippers when it comes to manipulating them. Based on the chemistry of vitrimers (a new class of polymer materials that have dynamic covalent bonds, which allow them to reversibly change their mechanical properties under specific conditions), we present two designs as 3D-printed shape memory polymer-based shape-adaptive fingertips (SMP-SAF). The fingertips have two main properties needed for an effective grasping. First, the ability to adapt their shape to different objects. Second, exhibiting variable rigidity, to lock and retain this new shape without the need for any continuous external triggering system. Our two design strategies are: 1) A curved part, which is suitable for grasping delicate and fragile objects. In this mode and prior to gripping, the SMP-SAFs are straightened by the force of the parallel gripper and are adapted to the object by shape memory activation. 2) A straight part that takes on the form of the objects by contact force with them. This mode is better suited for gripping hard bodies and provides a more straightforward shape programming process. The SMP-SAFs can be programmed by heating them up above glass transition temperature (54°C) via Joule-effect of the integrated electrically conductive wire or by using a heat gun, followed by reshaping by the external forces (without human intervention), and subsequently fixing the new shape upon cooling. As the shape programming process is time-consuming, this technique suits adaptive sorting lines where the variety of objects is not changed from grasp to grasp, but from batch to batch.
Collapse
Affiliation(s)
| | | | - Usman Shaukat
- Polymer Competence Center Leoben GmbH, Leoben, Austria
| | - Seppe Terryn
- Brubotics, Vrije Universiteit Brussel (VUB) and Imec, Brussels, Belgium
- Physical Chemistry and Polymer Science (FYSC), Brussels, Belgium
| | | | - Joost Brancart
- Physical Chemistry and Polymer Science (FYSC), Brussels, Belgium
| | - Julie Legrand
- Brubotics, Vrije Universiteit Brussel (VUB) and Imec, Brussels, Belgium
| | | | - Bram Vanderborght
- Brubotics, Vrije Universiteit Brussel (VUB) and Imec, Brussels, Belgium
| |
Collapse
|
10
|
Cazin I, Rossegger E, Roppolo I, Sangermano M, Granitzer P, Rumpf K, Schlögl S. Digital light processing 3D printing of dynamic magneto-responsive thiol-acrylate composites. RSC Adv 2023; 13:17536-17544. [PMID: 37304810 PMCID: PMC10253501 DOI: 10.1039/d3ra02504g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 06/05/2023] [Indexed: 06/13/2023] Open
Abstract
Additive manufacturing is one of the most promising processing techniques for fabricating customized 3D objects. For the 3D printing of functional and stimuli-triggered devices, interest is steadily growing in processing materials with magnetic properties. Synthesis routes for magneto-responsive soft materials typically involve the dispersion of (nano)particles into a non-magnetic polymer matrix. Above their glass transition temperature, the shape of such composites can be conveniently adjusted by applying an external magnetic field. With their rapid response time, facile controllability, and reversible actuation, magnetically responsive soft materials can be used in the biomedical field (e.g. drug delivery, minimally invasive surgery), soft robotics or in electronic applications. Herein, we combine the magnetic response with thermo-activated healability by introducing magnetic Fe3O4 nanoparticles into a dynamic photopolymer network, which undergoes thermo-activated bond exchange reactions. The resin is based on a radically curable thiol-acrylate system, whose composition is optimized towards processability via digital light processing 3D printing. A mono-functional methacrylate phosphate is applied as a stabilizer to increase the resins' shelf life by preventing thiol-Michael reactions. Once photocured, the organic phosphate further acts as a transesterification catalyst and activates bond exchange reactions at elevated temperature, which render the magneto-active composites mendable and malleable. The healing performance is demonstrated by recovering magnetic and mechanical properties after the thermally triggered mending of 3D-printed structures. We further demonstrate the magnetically driven movement of 3D-printed samples, which gives rise to the potential use of these materials in healable soft devices activated by external magnetic fields.
Collapse
Affiliation(s)
- Ines Cazin
- Polymer Competence Center Leoben GmbH Roseggerstrasse 12 A-8700 Leoben Austria
| | - Elisabeth Rossegger
- Polymer Competence Center Leoben GmbH Roseggerstrasse 12 A-8700 Leoben Austria
| | - Ignazio Roppolo
- Department of Applied Science and Technology, Politecnico di Torino, Duca degli Abruzzi, 24 10124 Torino Italy
| | - Marco Sangermano
- Department of Applied Science and Technology, Politecnico di Torino, Duca degli Abruzzi, 24 10124 Torino Italy
| | - Petra Granitzer
- Institute of Physics, University of Graz Universitätsplatz 3 8010 Graz Austria
| | - Klemens Rumpf
- Institute of Physics, University of Graz Universitätsplatz 3 8010 Graz Austria
| | - Sandra Schlögl
- Polymer Competence Center Leoben GmbH Roseggerstrasse 12 A-8700 Leoben Austria
| |
Collapse
|
11
|
Wang L, Zhang F, Du S, Leng J. 4D Printing of Triple-Shape Memory Cyanate Composites Based on Interpenetrating Polymer Network Structures. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21496-21506. [PMID: 37084334 DOI: 10.1021/acsami.3c01750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The triple-shape memory polymer (TSMP) can be programmed into two temporary shapes (S1 and S2) and shows an ordinal recovery from S2 to S1 and eventually to the permanent shape upon heating, which realizes more complex stimulus-response motions. We introduced a novel strategy for forming triple-shape memory cyanate ester (TSMCE) resins with high strength and fracture toughness via three-step curing, including four-dimensional (4D) printing, UV post-curing, and thermal curing. The obtained TSMCE resins presented two separated glass transition temperature (Tg) regions due to the formation of an interpenetrating polymer network (IPN), which successfully endowed the polymers with the triple-shape memory effect. The two Tg increased with the increasing cyanate ester (CE) prepolymer content; their ranges were 82.7-102.1 °C and 164.4-229.0 °C, respectively. The fracture strain of the IPN CE resin was up to 10.9%. Moreover, the cooperation of short carbon fibers (CFs) and glass fibers (GFs) with the polymer-accelerated phase separation resulted in two well-separated Tg peaks exhibiting better excellent triple-shape memory behaviors and fracture toughness. The strategy for combining the IPN structure and 4D printing provides insight into the preparation of shape memory polymers integrating high strength and toughness, multiple-shape memory effect, and multifunctionality.
Collapse
Affiliation(s)
- Linlin Wang
- Centre for Composite Materials and Structures, Harbin Institute of Technology (HIT), No. 2 Yikuang Street, Harbin 150080, People's Republic of China
| | - Fenghua Zhang
- Centre for Composite Materials and Structures, Harbin Institute of Technology (HIT), No. 2 Yikuang Street, Harbin 150080, People's Republic of China
| | - Shanyi Du
- Centre for Composite Materials and Structures, Harbin Institute of Technology (HIT), No. 2 Yikuang Street, Harbin 150080, People's Republic of China
| | - Jinsong Leng
- Centre for Composite Materials and Structures, Harbin Institute of Technology (HIT), No. 2 Yikuang Street, Harbin 150080, People's Republic of China
| |
Collapse
|
12
|
Dertnig C, Guedes de la Cruz G, Neshchadin D, Schlögl S, Griesser T. Blocked Phosphates as Photolatent Catalysts for Dynamic Photopolymer Networks. Angew Chem Int Ed Engl 2023; 62:e202215525. [PMID: 36421065 DOI: 10.1002/anie.202215525] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/25/2022]
Abstract
While latent catalysts are a well-established strategy for initiating and controlling the rate of polymerization reactions, their use in dynamic polymer networks is still in its infancy. The ideal latent catalyst should be thermally stable and release a highly active species in response to an external trigger. Here, we have synthesized a temperature resistant (>200 °C) organic phosphate with a photolabile o-nitrobenzyl protecting group that can be cleaved by UV light. Introduced in a visible light curable thiol-click photopolymer, the sequence-dependent λ-orthogonality of the curing and cleavage enables an efficient network formation at 451 nm, without premature release of the catalyst. Once cured, irradiation at 372 nm spatiotemporally activates the phosphate, which catalyzes transesterifications at elevated temperature. The formed catalyst has no effect on the thermal stability of the polymeric network and allows the activation of bond exchange reactions in selected domains of printed 3D objects.
Collapse
Affiliation(s)
- Carina Dertnig
- Chair of Chemistry of Polymeric Materials, Montanuniversitaet Leoben, Otto-Glöckel-Straße 2, 8700, Leoben, Austria
| | - Gema Guedes de la Cruz
- Chair of Chemistry of Polymeric Materials, Montanuniversitaet Leoben, Otto-Glöckel-Straße 2, 8700, Leoben, Austria
| | - Dmytro Neshchadin
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremayrgasse 9, 8010, Graz, Austria
| | - Sandra Schlögl
- Polymer Competence Center Leoben GmbH, Roseggerstraße 12, 8700, Leoben, Austria
| | - Thomas Griesser
- Chair of Chemistry of Polymeric Materials, Montanuniversitaet Leoben, Otto-Glöckel-Straße 2, 8700, Leoben, Austria
| |
Collapse
|
13
|
Kuenstler AS, Hernandez JJ, Trujillo-Lemon M, Osterbaan A, Bowman CN. Vat Photopolymerization Additive Manufacturing of Tough, Fully Recyclable Thermosets. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11111-11121. [PMID: 36795439 DOI: 10.1021/acsami.2c22081] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
To advance the capabilities of additive manufacturing, novel resin formulations are needed that produce high-fidelity parts with desired mechanical properties that are also amenable to recycling. In this work, a thiol-ene-based system incorporating semicrystallinity and dynamic thioester bonds within polymer networks is presented. It is shown that these materials have ultimate toughness values >16 MJ cm-3, comparable to high-performance literature precedents. Significantly, the treatment of these networks with excess thiols facilitates thiol-thioester exchange that degrades polymerized networks into functional oligomers. These oligomers are shown to be amenable to repolymerization into constructs with varying thermomechanical properties, including elastomeric networks that recover their shape fully from >100% strain. Using a commercial stereolithographic printer, these resin formulations are printed into functional objects including both stiff (E ∼ 10-100 MPa) and soft (E ∼ 1-10 MPa) lattice structures. Finally, it is shown that the incorporation of both dynamic chemistry and crystallinity further enables advancement in the properties and characteristics of printed parts, including attributes such as self-healing and shape-memory.
Collapse
Affiliation(s)
- Alexa S Kuenstler
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Juan J Hernandez
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Marianela Trujillo-Lemon
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Alexander Osterbaan
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Christopher N Bowman
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
14
|
He W, Zhou D, Gu H, Qu R, Cui C, Zhou Y, Wang Y, Zhang X, Wang Q, Wang T, Zhang Y. A Biocompatible 4D Printing Shape Memory Polymer as Emerging Strategy for Fabrication of Deployable Medical Devices. Macromol Rapid Commun 2023; 44:e2200553. [PMID: 36029168 DOI: 10.1002/marc.202200553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/18/2022] [Indexed: 01/26/2023]
Abstract
The rapid development of 4D printing provides a potential strategy for the fabrication of deployable medical devices (DMD). The minimally invasive surgery to implant the DMD into the body is critical, 4D printing DMD allows the well-defined device to be implanted with a high-compacted shape and transformed into their designed shape to meet the requirement. Herein, a 4D printing tissue engineering material is developed with excellent biocompatibility and shape memory effect based on the photocrosslinked polycaprolactone (PCL). The fast thiol-acrylate click reaction is applied for photocrosslinking of the acrylates capped star polymer (s-PCL-MA) with poly-thiols, that enable the 3D printing for the DMD fabrication. The cell viability, erythrocyte hemolysis, and platelet adhesion results indicate the excellent biocompatibility of the 4D printing polymer, especially the biological subcutaneous implantation results confirm the promote tissue growth and good histocompatibility. A 4D printing stent with deformable shape and recovery at a temperature close to human body temperature demonstrated the potential application as DMD. In addition, the everolimus is loaded to the polymer (ps1-PCL) through host-guest coordination with β-cyclodextrin as the core of the star polymer, which shows sustained drug release and improved body's inflammatory response.
Collapse
Affiliation(s)
- Wenyang He
- Lanzhou University Second Hospital, Lanzhou, 730000, P. R. China
| | - Dong Zhou
- Lanzhou University Second Hospital, Lanzhou, 730000, P. R. China
| | - Hao Gu
- Lanzhou University Second Hospital, Lanzhou, 730000, P. R. China
| | - Ruisheng Qu
- Lanzhou University Second Hospital, Lanzhou, 730000, P. R. China
| | - Chaoqiang Cui
- Lanzhou University Second Hospital, Lanzhou, 730000, P. R. China
| | - Yanyi Zhou
- Lanzhou University Second Hospital, Lanzhou, 730000, P. R. China
| | - Yu Wang
- Lanzhou University Second Hospital, Lanzhou, 730000, P. R. China
| | - Xinrui Zhang
- Key Laboratory of Science and Technology on Wear and protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Qihua Wang
- Key Laboratory of Science and Technology on Wear and protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Tingmei Wang
- Key Laboratory of Science and Technology on Wear and protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Yaoming Zhang
- Key Laboratory of Science and Technology on Wear and protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| |
Collapse
|
15
|
Shaukat U, Sölle B, Rossegger E, Rana S, Schlögl S. Vat Photopolymerization 3D-Printing of Dynamic Thiol-Acrylate Photopolymers Using Bio-Derived Building Blocks. Polymers (Basel) 2022; 14:5377. [PMID: 36559744 PMCID: PMC9784638 DOI: 10.3390/polym14245377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
As an energy-efficient additive manufacturing process, vat photopolymerization 3D-printing has become a convenient technology to fabricate functional devices with high resolution and freedom in design. However, due to their permanently crosslinked network structure, photopolymers are not easily reprocessed or repaired. To improve the environmental footprint of 3D-printed objects, herein, we combine the dynamic nature of hydroxyl ester links, undergoing a catalyzed transesterification at elevated temperature, with an acrylate monomer derived from renewable resources. As a sustainable building block, we synthesized an acrylated linseed oil and mixed it with selected thiol crosslinkers. By careful selection of the transesterification catalyst, we obtained dynamic thiol-acrylate resins with a high cure rate and decent storage stability, which enabled the digital light processing (DLP) 3D-printing of objects with a structure size of 550 µm. Owing to their dynamic covalent bonds, the thiol-acrylate networks were able to relax 63% of their initial stress within 22 min at 180 °C and showed enhanced toughness after thermal annealing. We exploited the thermo-activated reflow of the dynamic networks to heal and re-shape the 3D-printed objects. The dynamic thiol-acrylate photopolymers also demonstrated promising healing, shape memory, and re-shaping properties, thus offering great potential for various industrial fields such as soft robotics and electronics.
Collapse
Affiliation(s)
- Usman Shaukat
- Polymer Competence Center Leoben GmbH, Roseggerstrasse 12, 8700 Leoben, Austria
| | - Bernhard Sölle
- Polymer Competence Center Leoben GmbH, Roseggerstrasse 12, 8700 Leoben, Austria
| | - Elisabeth Rossegger
- Polymer Competence Center Leoben GmbH, Roseggerstrasse 12, 8700 Leoben, Austria
| | - Sravendra Rana
- School of Engineering, Energy Acres, University of Petroleum & Energy Studies (UPES), Dehradun 248007, India
| | - Sandra Schlögl
- Polymer Competence Center Leoben GmbH, Roseggerstrasse 12, 8700 Leoben, Austria
| |
Collapse
|
16
|
Grauzeliene S, Kastanauskas M, Talacka V, Ostrauskaite J. Photocurable Glycerol- and Vanillin-Based Resins for the Synthesis of Vitrimers. ACS APPLIED POLYMER MATERIALS 2022; 4:6103-6110. [PMID: 35991302 PMCID: PMC9379905 DOI: 10.1021/acsapm.2c00914] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/18/2022] [Indexed: 05/10/2023]
Abstract
In this study, photocurable resins based on glycerol and vanillin were designed, synthesized, and applied to digital light processing three-dimensional (3D) printing and vitrimeric abilities such as shape-memory, self-healing, and recyclability have been investigated. First, photocurable resins were prepared and synthesized by combining renewable resources and photocuring as an environmentally friendly strategy for the synthesis of vitrimers. Afterward, the most suitable resin for optical 3D printing was selected by photorheometry, and the thermal and mechanical properties of the resulting polymers were tested. Furthermore, by activating dynamic transesterification reactions at elevated temperatures, the photocured polymer exhibited self-healing, recyclability, and shape-memory properties. The vitrimer with a weight ratio of 8:2 of glycerol- and vanillin-based monomers demonstrated a welding efficiency of tensile strength up to 114.12%, 75% recyclability by alcoholysis, and shape-memory properties above and below two glass transition temperatures.
Collapse
Affiliation(s)
- Sigita Grauzeliene
- Department
of Polymer Chemistry and Technology, Kaunas
University of Technology, Radvilenu Rd. 19, Kaunas LT-50254, Lithuania
| | - Marius Kastanauskas
- Department
of Polymer Chemistry and Technology, Kaunas
University of Technology, Radvilenu Rd. 19, Kaunas LT-50254, Lithuania
| | | | - Jolita Ostrauskaite
- Department
of Polymer Chemistry and Technology, Kaunas
University of Technology, Radvilenu Rd. 19, Kaunas LT-50254, Lithuania
| |
Collapse
|
17
|
Dugas LD, Walker WD, Shankar R, Hoppmeyer KS, Thornell TL, Morgan SE, Storey RF, Patton DL, Simon YC. Diketoenamine-based Vitrimers via Thiol-ene photopolymerization. Macromol Rapid Commun 2022; 43:e2200249. [PMID: 35856189 DOI: 10.1002/marc.202200249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/21/2022] [Indexed: 11/06/2022]
Abstract
Likened to both thermosets and thermoplastics, vitrimers are a unique class of materials that combine remarkable stability, healability, and reprocessability. Herein, we describe a photopolymerized thiol-ene-based vitrimer that undergoes dynamic covalent exchanges through uncatalyzed transamination of enamines derived from cyclic β-triketones, whereby the low energy barrier for exchange facilitates reprocessing and enables rapid depolymerization. Accordingly, we devised an alkene-functionalized β-triketone, 5,5-dimethyl-2-(pent-4-enoyl)cyclohexane-1,3-dione, which was reacted with 1,6-diaminohexane in a stoichiometrically imbalanced fashion (∼1:0.85 primary amine:triketone). The resulting networks exhibited subambient glass transition temperature (Tg = 5.66°C) by differential scanning calorimetry (DSC). Using a Maxwell stress-relaxation fit, the topology freezing temperature (Tv ) was calculated to be -32°C. Small-amplitude oscillatory shear (SAOS) rheological analysis enabled us to identify a practical critical temperature above which the vitrimer could be successfully reprocessed (Tv,eff ). Via the introduction of excess primary amines, we could readily degrade the networks into monomeric precursors, which were in turn reacted with diamines to regenerate reprocessable networks. Photopolymerization provides unique spatiotemporal control over the network topology, thereby opening the path for further investigation of vitrimer properties. As such, this work expands the toolbox of chemical upcycling of networks and enables their wider implementation. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Logan D Dugas
- School of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Drive #5050, Hattiesburg, MS, 39406, USA
| | - William D Walker
- School of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Drive #5050, Hattiesburg, MS, 39406, USA
| | - Rahul Shankar
- School of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Drive #5050, Hattiesburg, MS, 39406, USA
| | - Keely S Hoppmeyer
- School of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Drive #5050, Hattiesburg, MS, 39406, USA
| | - Travis L Thornell
- US Army, Engineering Research & Development Center, Geotechnical and Structures Laboratory, Vicksburg, MS, 39180, USA
| | - Sarah E Morgan
- School of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Drive #5050, Hattiesburg, MS, 39406, USA
| | - Robson F Storey
- School of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Drive #5050, Hattiesburg, MS, 39406, USA
| | - Derek L Patton
- School of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Drive #5050, Hattiesburg, MS, 39406, USA
| | - Yoan C Simon
- School of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Drive #5050, Hattiesburg, MS, 39406, USA
| |
Collapse
|
18
|
Cerdan K, Brancart J, De Coninck H, Van Hooreweder B, Van Assche G, Van Puyvelde P. Laser sintering of self-healable and recyclable thermoset networks. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Shaukat U, Rossegger E, Schlögl S. A Review of Multi-Material 3D Printing of Functional Materials via Vat Photopolymerization. Polymers (Basel) 2022; 14:polym14122449. [PMID: 35746024 PMCID: PMC9227803 DOI: 10.3390/polym14122449] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 02/04/2023] Open
Abstract
Additive manufacturing or 3D printing of materials is a prominent process technology which involves the fabrication of materials layer-by-layer or point-by-point in a subsequent manner. With recent advancements in additive manufacturing, the technology has excited a great potential for extension of simple designs to complex multi-material geometries. Vat photopolymerization is a subdivision of additive manufacturing which possesses many attractive features, including excellent printing resolution, high dimensional accuracy, low-cost manufacturing, and the ability to spatially control the material properties. However, the technology is currently limited by design strategies, material chemistries, and equipment limitations. This review aims to provide readers with a comprehensive comparison of different additive manufacturing technologies along with detailed knowledge on advances in multi-material vat photopolymerization technologies. Furthermore, we describe popular material chemistries both from the past and more recently, along with future prospects to address the material-related limitations of vat photopolymerization. Examples of the impressive multi-material capabilities inspired by nature which are applicable today in multiple areas of life are briefly presented in the applications section. Finally, we describe our point of view on the future prospects of 3D printed multi-material structures as well as on the way forward towards promising further advancements in vat photopolymerization.
Collapse
|
20
|
Porath L, Huang J, Ramlawi N, Derkaloustian M, Ewoldt RH, Evans CM. Relaxation of Vitrimers with Kinetically Distinct Mixed Dynamic Bonds. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Laura Porath
- Department of Materials Science and Engineering, University of Illinois Urbana Champaign, Urbana, Illinois 61801, United States
- Frederick Seitz Materials Research Laboratory, University of Illinois Urbana Champaign, Urbana, Illinois 61801, United States
| | - Junrou Huang
- Department of Materials Science and Engineering, University of Illinois Urbana Champaign, Urbana, Illinois 61801, United States
- Frederick Seitz Materials Research Laboratory, University of Illinois Urbana Champaign, Urbana, Illinois 61801, United States
| | - Nabil Ramlawi
- Department of Mechanical Science and Engineering, University of Illinois Urbana Champaign, Urbana, Illinois 61801, United States
| | - Maryanne Derkaloustian
- Department of Materials Science and Engineering, University of Illinois Urbana Champaign, Urbana, Illinois 61801, United States
| | - Randy H. Ewoldt
- Frederick Seitz Materials Research Laboratory, University of Illinois Urbana Champaign, Urbana, Illinois 61801, United States
- Department of Mechanical Science and Engineering, University of Illinois Urbana Champaign, Urbana, Illinois 61801, United States
- Beckman Institute, University of Illinois Urbana Champaign, Urbana, Illinois 61801, United States
| | - Christopher M. Evans
- Department of Materials Science and Engineering, University of Illinois Urbana Champaign, Urbana, Illinois 61801, United States
- Frederick Seitz Materials Research Laboratory, University of Illinois Urbana Champaign, Urbana, Illinois 61801, United States
- Beckman Institute, University of Illinois Urbana Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
21
|
Peng S, Sun Y, Ma C, Duan G, Liu Z, Ma C. Recent advances in dynamic covalent bond-based shape memory polymers. E-POLYMERS 2022. [DOI: 10.1515/epoly-2022-0032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract
Dynamic covalent bond-based shape memory polymers (DCB-SMPs) are one of most important SMPs which have a wide potential application prospect. Different from common strong covalent bonds, DCBs own relatively weak bonding energy, similarly to the supramolecular interactions of noncovalent bonds, and can dynamically combine and dissociate these bonds. DCB-SMP solids, which can be designed to respond for different stimuli, can provide excellent self-healing, good reprocessability, and high mechanical performance, because DCBs can obtain dynamic cross-linking without sacrificing ultrahigh fixing rates. Furthermore, besides DCB-SMP solids, DCB-SMP hydrogels with responsiveness to various stimuli also have been developed recently, which have special biocompatible soft/wet states. Particularly, DCB-SMPs can be combined with emerging 3D-printing techniques to design various original shapes and subsequently complex shape recovery. This review has summarized recent research studies about SMPs based on various DCBs including DCB-SMP solids, DCB-SMP hydrogels, and the introduction of new 3D-printing techniques using them. Last but not least, the advantages/disadvantages of different DCB-SMPs have been analyzed via polymeric structures and the future development trends in this field have been predicted.
Collapse
Affiliation(s)
- Shuyi Peng
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University , Haikou 570228 , China
| | - Ye Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University , Haikou 570228 , China
| | - Chunming Ma
- Shenzhen Institute of Advanced Electronic Materials - Shenzhen Fundamental Research Institutions, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , China
| | - Gaigai Duan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University , Nanjing , 210037 , China
| | - Zhenzhong Liu
- Research Institute of Zhejiang University-Taizhou , Taizhou 318000 , China
| | - Chunxin Ma
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University , Haikou 570228 , China
- Research Institute of Zhejiang University-Taizhou , Taizhou 318000 , China
| |
Collapse
|
22
|
Roels E, Terryn S, Iida F, Bosman AW, Norvez S, Clemens F, Van Assche G, Vanderborght B, Brancart J. Processing of Self-Healing Polymers for Soft Robotics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2104798. [PMID: 34610181 DOI: 10.1002/adma.202104798] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Soft robots are, due to their softness, inherently safe and adapt well to unstructured environments. However, they are prone to various damage types. Self-healing polymers address this vulnerability. Self-healing soft robots can recover completely from macroscopic damage, extending their lifetime. For developing healable soft robots, various formative and additive manufacturing methods have been exploited to shape self-healing polymers into complex structures. Additionally, several novel manufacturing techniques, noted as (re)assembly binding techniques that are specific to self-healing polymers, have been created. Herein, the wide variety of processing techniques of self-healing polymers for robotics available in the literature is reviewed, and limitations and opportunities discussed thoroughly. Based on defined requirements for soft robots, these techniques are critically compared and validated. A strong focus is drawn to the reversible covalent and (physico)chemical cross-links present in the self-healing polymers that do not only endow healability to the resulting soft robotic components, but are also beneficial in many manufacturing techniques. They solve current obstacles in soft robots, including the formation of robust multi-material parts, recyclability, and stress relaxation. This review bridges two promising research fields, and guides the reader toward selecting a suitable processing method based on a self-healing polymer and the intended soft robotics application.
Collapse
Affiliation(s)
- Ellen Roels
- Brubotics, Vrije Universiteit Brussel (VUB) and Imec, Pleinlaan 2, Brussels, 1050, Belgium
- Physical Chemistry and Polymer Science (FYSC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels, 1050, Belgium
| | - Seppe Terryn
- Brubotics, Vrije Universiteit Brussel (VUB) and Imec, Pleinlaan 2, Brussels, 1050, Belgium
- Physical Chemistry and Polymer Science (FYSC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels, 1050, Belgium
| | - Fumiya Iida
- Machine Intelligence Lab, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ, UK
| | - Anton W Bosman
- SupraPolix B. V., Horsten 1.29, Eindhoven, 5612 AX, The Netherlands
| | - Sophie Norvez
- Chimie Moléculaire, Macromoléculaire, Matériaux, École Supérieure de Physique et de Chimie (ESPCI), 10 Rue Vauquelin, Paris, 75005, France
| | - Frank Clemens
- Laboratory for High Performance Ceramics, Swiss Federal Laboratories for Materials Science and Technology (EMPA), Überlandstrasse 129, Dübendorf, 8600, Switzerland
| | - Guy Van Assche
- Physical Chemistry and Polymer Science (FYSC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels, 1050, Belgium
| | - Bram Vanderborght
- Brubotics, Vrije Universiteit Brussel (VUB) and Imec, Pleinlaan 2, Brussels, 1050, Belgium
| | - Joost Brancart
- Physical Chemistry and Polymer Science (FYSC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels, 1050, Belgium
| |
Collapse
|
23
|
Reisinger D, Dietliker KP, Sangermano M, Schlögl S. Streamlined concept towards spatially resolved photoactivation of dynamic transesterification in vitrimeric polymers by applying thermally stable photolatent bases. Polym Chem 2022. [DOI: 10.1039/d1py01722e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Through a well targeted design, vitrimers are able to reorganise their three-dimensional covalently crosslinked network structure by associative exchange reactions when the so-called topology freezing transition temperature (Tv) is exceeded....
Collapse
|
24
|
He E, Yao Y, Zhang Y, Wei Y, Ji Y. Reprocessing of Vitrimer. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a22020072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
An X, Ding Y, Xu Y, Zhu J, Wei C, Pan X. Epoxy resin with exchangeable diselenide crosslinks to obtain reprocessable, repairable and recyclable fiber-reinforced thermoset composites. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Zhang C, Lu X, Wang Z, Xia H. Progress in Utilizing Dynamic Bonds to Fabricate Structurally Adaptive Self-Healing, Shape Memory, and Liquid Crystal Polymers. Macromol Rapid Commun 2021; 43:e2100768. [PMID: 34964192 DOI: 10.1002/marc.202100768] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/15/2021] [Indexed: 11/09/2022]
Abstract
Stimuli-responsive structurally dynamic polymers are capable of mimicking the biological systems to adapt themselves to the surrounding environmental changes and subsequently exhibiting a wide range of responses ranging from self-healing to complex shape-morphing. Dynamic self-healing polymers (SHPs), shape-memory polymers (SMPs) and liquid crystal elastomers (LCEs), which are three representative examples of stimuli-responsive structurally dynamic polymers, have been attracting broad and growing interest in recent years because of their potential applications in the fields of electronic skin, sensors, soft robots, artificial muscles, and so on. We review recent advances and challenges in the developments towards dynamic SHPs, SMPs and LCEs, focusing on the chemistry strategies and the dynamic reaction mechanisms that enhance the performances of the materials including self-healing, reprocessing and reprogramming. We compare and discuss the different dynamic chemistries and their mechanisms on the enhanced functions of the materials, where three summary tables are presented: a library of dynamic bonds and the resulting characteristics of the materials. Finally, we provide a critical outline of the unresolved issues and future perspectives on the emerging developments. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Chun Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Xili Lu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Zhanhua Wang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Hesheng Xia
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
27
|
Shaukat U, Rossegger E, Schlögl S. Thiol–acrylate based vitrimers: From their structure–property relationship to the additive manufacturing of self-healable soft active devices. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124110] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
28
|
Robinson LL, Self JL, Fusi AD, Bates MW, Read de Alaniz J, Hawker CJ, Bates CM, Sample CS. Chemical and Mechanical Tunability of 3D-Printed Dynamic Covalent Networks Based on Boronate Esters. ACS Macro Lett 2021; 10:857-863. [PMID: 35549203 DOI: 10.1021/acsmacrolett.1c00257] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
As the scope of additive manufacturing broadens, interest has developed in 3D-printed objects that are derived from recyclable resins with chemical and mechanical tunability. Dynamic covalent bonds have the potential to not only increase the sustainability of 3D-printed objects, but also serve as reactive sites for postprinting derivatization. In this study, we use boronate esters as a key building block for the development of catalyst-free, 3D-printing resins with the ability to undergo room-temperature exchange at the cross-linking sites. The orthogonality of boronate esters is exploited in fast-curing, oxygen-tolerant thiol-ene resins in which the dynamic character of 3D-printed objects can be modulated by the addition of a static, covalent cross-linker with no room-temperature bond exchange. This allows the mechanical properties of printed parts to be varied between those of a traditional thermoset and a vitrimer. Objects printed with a hybrid dynamic/static resin exhibit a balance of structural stability (residual stress = 18%) and rapid exchange (characteristic relaxation time = 7 s), allowing for interfacial welding and postprinting functionalization. Modulation of the cross-linking density postprinting is enabled by selective hydrolysis of the boronate esters to generate networks with swelling capacities tunable from 1.3 to 3.3.
Collapse
|
29
|
Reisinger D, Kaiser S, Rossegger E, Alabiso W, Rieger B, Schlögl S. Introduction of Photolatent Bases for Locally Controlling Dynamic Exchange Reactions in Thermo-Activated Vitrimers. Angew Chem Int Ed Engl 2021; 60:14302-14306. [PMID: 33929092 DOI: 10.1002/anie.202102946] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/17/2021] [Indexed: 12/16/2022]
Abstract
Vitrimers exhibit a covalently crosslinked network structure, as is characteristic of classic thermosetting polymers. However, they are capable of rearranging their network topology by thermo-activated associative exchange reactions when the topology freezing transition temperature (Tv ) is exceeded. Despite the vast number of developed vitrimers, there is a serious lack of methods that enable a (spatially) controlled onset of these rearrangement reactions above Tv . Herein, we highlight the localized release of the efficient transesterification catalyst 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) by the UV-induced cleavage of a photolatent base within a covalently crosslinked thiol-epoxy network. Demonstrated with stress relaxation measurements conducted well above the network's Tv , only the controlled release of TBD facilitates the immediate onset of transesterification in terms of a viscoelastic flow. Moreover, the spatially resolved UV-mediated photoactivation of vitrimeric properties is confirmed by permanent shape changes induced locally in the material.
Collapse
Affiliation(s)
- David Reisinger
- Polymer Competence Center Leoben GmbH, Roseggerstrasse 12, 8700, Leoben, Austria
- WACKER-Chair of Macromolecular Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Simon Kaiser
- Polymer Competence Center Leoben GmbH, Roseggerstrasse 12, 8700, Leoben, Austria
| | - Elisabeth Rossegger
- Polymer Competence Center Leoben GmbH, Roseggerstrasse 12, 8700, Leoben, Austria
| | - Walter Alabiso
- Polymer Competence Center Leoben GmbH, Roseggerstrasse 12, 8700, Leoben, Austria
| | - Bernhard Rieger
- WACKER-Chair of Macromolecular Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Sandra Schlögl
- Polymer Competence Center Leoben GmbH, Roseggerstrasse 12, 8700, Leoben, Austria
| |
Collapse
|
30
|
Reisinger D, Kaiser S, Rossegger E, Alabiso W, Rieger B, Schlögl S. Einsatz photolatenter Basen zur lokalen Kontrolle dynamischer Austauschreaktionen in thermisch aktivierbaren Vitrimeren. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- David Reisinger
- Polymer Competence Center Leoben GmbH Roseggerstraße 12 8700 Leoben Österreich
- WACKER-Lehrstuhl für Makromolekulare Chemie Technische Universität München Lichtenbergstraße 4 85748 Garching Deutschland
| | - Simon Kaiser
- Polymer Competence Center Leoben GmbH Roseggerstraße 12 8700 Leoben Österreich
| | - Elisabeth Rossegger
- Polymer Competence Center Leoben GmbH Roseggerstraße 12 8700 Leoben Österreich
| | - Walter Alabiso
- Polymer Competence Center Leoben GmbH Roseggerstraße 12 8700 Leoben Österreich
| | - Bernhard Rieger
- WACKER-Lehrstuhl für Makromolekulare Chemie Technische Universität München Lichtenbergstraße 4 85748 Garching Deutschland
| | - Sandra Schlögl
- Polymer Competence Center Leoben GmbH Roseggerstraße 12 8700 Leoben Österreich
| |
Collapse
|
31
|
Rossegger E, Höller R, Reisinger D, Fleisch M, Strasser J, Wieser V, Griesser T, Schlögl S. High resolution additive manufacturing with acrylate based vitrimers using organic phosphates as transesterification catalyst. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123631] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|