1
|
Gao Y, Zhu Y, Wang Y, Bi J. Water-Stable Ln-MOF as a multi-emitting luminescent sensor for the detection of metal ions and pharmaceuticals. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 323:124915. [PMID: 39096672 DOI: 10.1016/j.saa.2024.124915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 07/07/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
The development of innovative multi-emission sensors for the rapid and accurate detection of contaminants is both vital and challenging. In this study, utilizing two rigid ligands (H3ICA and H4BTEC), a series of water-stable bimetallic organic frameworks (EuTb-MOFs) were synthesized. Luminescent investigations have revealed that EuTb-MOF-1 exhibits prominent multiple emission peaks, attributed to the distinctive fluorescence characteristics of Eu(III) and Tb(III) ions. Therefore, EuTb-MOF-1 efficiently recognized various metal ions and pharmaceutical compounds through 2D decoded maps. Fe3+ and Pb2+ exhibited significant quenching effects on the luminescence of EuTb-MOF-1, which were attributed to the internal filtering effect and the interaction between Lewis basic sites within EuTb-MOF-1 and Pb2+ ions, respectively. Furthermore, EuTb-MOF-1 demonstrated high sensitivity to sulfonamide antibiotics, with detection limits of 0.037 μM for SMZ and 0.041 μM for SDZ, respectively. In addition, EuTb-MOF-1 was immobilized to prepare MOF-based test strips, enabling direct visual detection of sulfonamides as a portable sensor. With excellent water stability, multi-responsive recognition capabilities, and high sensitivity to specific analytes, EuTb-MOF-1 is a promising candidate for environmental contaminant detection in aquatic systems.
Collapse
Affiliation(s)
- Yanxin Gao
- Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian 350108, PR China.
| | - Yanyue Zhu
- Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian 350108, PR China
| | - Yuping Wang
- Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian 350108, PR China
| | - Jinhong Bi
- Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian 350108, PR China; State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Minhou, Fujian 350108, PR China.
| |
Collapse
|
2
|
Dai H, Xu Z, Yang K, Zhou J, Wang J, Zhang Y, Shen Y, Liu X, Jiang Y, Xu W. A Multifunctional Tb(III)-Based Metal-Organic Framework for Chemical Conversion of CO 2, Fluorescence Sensing of Trace Water and Metamitron. Inorg Chem 2024. [PMID: 39643950 DOI: 10.1021/acs.inorgchem.4c04353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
The utilization of metal-organic frameworks (MOFs) as fluorescent sensors for the detection of environmental and chemical reagent pollutants as well as heterogeneous catalysis for CO2 conversion represents a crucial avenue of research with significant implications for the protection of human health. In this work, a Tb(III)-based three-dimensional metal-organic framework, [Tb(L)·4DMF]n (Tb-MOF) (H3L = 5'-(4-carboxy-3-hydroxyphenyl)-3,3″-dihydroxy-[1,1':3',1″-terphenyl]-4,4″-dicarboxylic acid), has been structurally conformed by single-crystal X-ray crystallography. It possesses a 1D rhombus channel along the [010] direction, featuring a pore size of 6.02 × 9.13 Å. Tb-MOF was proved to be a multifunctional material for a fluorescent sensor and CO2 cycloaddition heterogeneous catalyst material. Fluorescence sensing studies revealed that Tb-MOF demonstrates high sensitivity, selectivity, and favorable regeneration properties, making it an effective chemosensor for detecting the metamitron (MMT) pesticide and trace water in organic solvents. The mechanism of fluorescence quenching by MMT and water was elucidated by a combination of XRD, UV-vis absorption spectra, IR spectra, theoretical calculations, and fluorescence lifetimes. The material was also utilized for the sensing of MMT and water in paper strips. Additionally, the open Tb3+ site as Lewis acidic centers makes Tb-MOF achieve efficiently catalytic conversion for CO2 and epoxides to cyclic carbonates. Moreover, a possible catalytic mechanism for the conversion of carbon dioxide to cyclic carbonates was proposed by in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) experiments. It also exhibited recyclability for up to five cycles without noticing an appreciable loss in sensing or catalytic efficiency.
Collapse
Affiliation(s)
- Huan Dai
- School of Materials Science and Chemical Engineering, Resource Recycling of Ningbo University - Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo 315211, China
| | - Zichen Xu
- Ningbo High School, Ningbo 315600, China
| | - Ke Yang
- School of Materials Science and Chemical Engineering, Resource Recycling of Ningbo University - Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo 315211, China
| | - Jianchao Zhou
- School of Materials Science and Chemical Engineering, Resource Recycling of Ningbo University - Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo 315211, China
| | - Jing Wang
- School of Materials Science and Chemical Engineering, Resource Recycling of Ningbo University - Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo 315211, China
| | - Ya Zhang
- School of Materials Science and Chemical Engineering, Resource Recycling of Ningbo University - Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo 315211, China
| | - Yudong Shen
- School of Materials Science and Chemical Engineering, Resource Recycling of Ningbo University - Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo 315211, China
| | - Xiaolan Liu
- School of Materials Science and Chemical Engineering, Resource Recycling of Ningbo University - Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo 315211, China
| | - Yue Jiang
- School of Materials Science and Chemical Engineering, Resource Recycling of Ningbo University - Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo 315211, China
| | - Wei Xu
- School of Materials Science and Chemical Engineering, Resource Recycling of Ningbo University - Ningbo Shuangneng Environmental Technology Co., Ltd., Ningbo University, Ningbo 315211, China
| |
Collapse
|
3
|
Han Z, Yang Y, Rushlow J, Huo J, Liu Z, Hsu YC, Yin R, Wang M, Liang R, Wang KY, Zhou HC. Development of the design and synthesis of metal-organic frameworks (MOFs) - from large scale attempts, functional oriented modifications, to artificial intelligence (AI) predictions. Chem Soc Rev 2024. [PMID: 39582426 DOI: 10.1039/d4cs00432a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Owing to the exceptional porous properties of metal-organic frameworks (MOFs), there has recently been a surge of interest, evidenced by a plethora of research into their design, synthesis, properties, and applications. This expanding research landscape has driven significant advancements in the precise regulation of MOF design and synthesis. Initially dominated by large-scale synthesis approaches, this field has evolved towards more targeted functional modifications. Recently, the integration of computational science, particularly through artificial intelligence predictions, has ushered in a new era of innovation, enabling more precise and efficient MOF design and synthesis methodologies. The objective of this review is to provide readers with an extensive overview of the development process of MOF design and synthesis, and to present visions for future developments.
Collapse
Affiliation(s)
- Zongsu Han
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA.
| | - Yihao Yang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA.
| | - Joshua Rushlow
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA.
| | - Jiatong Huo
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA.
| | - Zhaoyi Liu
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA.
| | - Yu-Chuan Hsu
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA.
| | - Rujie Yin
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Mengmeng Wang
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis (IMCN/MOST), Université catholique de Louvain, 1348 Louvain-laNeuve, Belgium
| | - Rongran Liang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA.
| | - Kun-Yu Wang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA.
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA.
| |
Collapse
|
4
|
Liu CP, Lin TE, Chiang JC, Chen BJ, Chien PH, Chien SY, Lee GH, Liu YH, Lu KL. An exceptional water stable terbium-based metal-organic framework for selective detection of pesticides. RSC Adv 2024; 14:35220-35226. [PMID: 39502867 PMCID: PMC11536185 DOI: 10.1039/d4ra06622g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024] Open
Abstract
A terbium-based metal-organic framework (MOF) with exceptional water stability for highly selective detection of pesticide thiamethoxam (TMX) in aqueous solution is reported. To date, most reported lanthanide metal-organic frameworks (Ln-MOFs) still exhibit poor water stability, which may limit their practical applications in bio-sensing and detecting pollutants in environmental water samples. In this work, a Tb-MOF [Tb(BDC)1.5(DEF)·0.5H2O] n (1, BDC = 1,4-benzene dicarboxylate, DEF = N,N-diethylformamide) was prepared by hydrothermal reactions of 1,4-benzenedicarboxylic acid with the corresponding rare earth ions of Tb3+. Impressively, water stability surveys of compound 1 indicated that it maintained at least 90% of its emission intensity after storage in water for several months. This characteristic of long water stability is unusual as compared to other Ln-MOFs, making compound 1 an excellent candidate for sensing applications in the aqueous phase. In particular, the green emission of compound 1 could be quenched by the pesticide thiamethoxam (TMX), which was attributed to both the static and dynamic quenching processes based on an upward-curving Stern-Volmer plot. The quenching mechanism was speculatively attributed to the inner filter effect combined with the complex formation based on the electrostatic interaction of compound 1 and TMX, resulting in the promotion of the quenching efficiency. Finally, compound 1 was demonstrated to detect TMX in aqueous solution with rapid response and high selectivity.
Collapse
Affiliation(s)
- Ching-Ping Liu
- Department of Chemistry, Fu Jen Catholic University New Taipei City 242062 Taiwan
| | - Ting-En Lin
- Department of Chemistry, Fu Jen Catholic University New Taipei City 242062 Taiwan
| | - Jung-Chang Chiang
- Department of Chemistry, Fu Jen Catholic University New Taipei City 242062 Taiwan
| | - Bo-Jhen Chen
- Department of Chemistry, Fu Jen Catholic University New Taipei City 242062 Taiwan
| | - Po-Hsiu Chien
- Department of Chemistry, Fu Jen Catholic University New Taipei City 242062 Taiwan
| | - Su-Ying Chien
- Instrumentation Center, National Taiwan University Taipei 10617 Taiwan
| | - Gene-Hsiang Lee
- Instrumentation Center, National Taiwan University Taipei 10617 Taiwan
| | - Yen-Hsiang Liu
- Department of Chemistry, Fu Jen Catholic University New Taipei City 242062 Taiwan
| | - Kuang-Lieh Lu
- Department of Chemistry, Fu Jen Catholic University New Taipei City 242062 Taiwan
- Institute of Chemistry, Academia Sinica Taipei 115 Taiwan
| |
Collapse
|
5
|
Zhang Z, Deng D, Xu X, Zhang J, Yan S, Guo Z, Dong H, Chen Z, Su Z. Stretchable Tb-Tb Distance Regulates the Piezofluorochromic Behavior of Chiral Tb(III)-MOF upon Compression. JACS AU 2024; 4:2050-2057. [PMID: 38818063 PMCID: PMC11134353 DOI: 10.1021/jacsau.4c00259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/01/2024] [Accepted: 05/01/2024] [Indexed: 06/01/2024]
Abstract
Luminescent chiral Tb-MOF microcrystals with the Tb2(COO)4 subunit indicated strong green mechano-luminescence under compression. Furthermore, piezofluorochromic behavior in the diamond anvil cell was observed, with the intensity tendency of decreasing-increasing-decreasing and a shortened lifetime upon compression, due to the reversible stretchable Tb-Tb interactions. The Tb-Tb distance upon compression was refined through in situ high-pressure X-ray absorption spectra, which was consistent with the tendency of the piezofluorochromic intensity. In situ high-pressure UV-vis absorption spectra, Fourier transform infrared spectra, and powder X-ray diffraction demonstrated the full recovery of Tb-MOF after over 10 GPa compressions due to the semiflexible ligand. This work not only provided an ultrastable Tb-MOF but also illustrated the relationship of the piezofluorochromic behavior with the detailed structural transformation for the first time.
Collapse
Affiliation(s)
- Ziyou Zhang
- Jiangsu
Collaborative Innovation Center of Biomedical Functional Materials,
Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry
and Materials Science, Nanjing Normal University, Nanjing 210046, China
- Center
for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
| | - Dongping Deng
- Jiangsu
Collaborative Innovation Center of Biomedical Functional Materials,
Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry
and Materials Science, Nanjing Normal University, Nanjing 210046, China
| | - Xiaoqian Xu
- Jiangsu
Collaborative Innovation Center of Biomedical Functional Materials,
Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry
and Materials Science, Nanjing Normal University, Nanjing 210046, China
| | - Jiangwei Zhang
- College
of Chemistry and Chemical Engineering, Inner
Mongolia University, Hohhot 010021, China
| | - Shuai Yan
- Shanghai
Synchrotron Radiation Facility, Institute
of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
| | - Zhiying Guo
- Beijing
Synchrotron Radiation Facility, Institute
of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Hongliang Dong
- Center
for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
| | - Zhiqiang Chen
- Center
for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
| | - Zhi Su
- Jiangsu
Collaborative Innovation Center of Biomedical Functional Materials,
Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry
and Materials Science, Nanjing Normal University, Nanjing 210046, China
| |
Collapse
|
6
|
Zhang X, Zhang Y, Li X, Yu J, Chi W, Wang Z, Zheng H, Sun Z, Zhu Y, Jiao C. A stable Mn(II) coordination polymer demonstrating proton conductivity and quantitative sensing of oxytetracycline in aquaculture. Dalton Trans 2024; 53:5034-5042. [PMID: 38374728 DOI: 10.1039/d3dt03882c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
The construction and investigation of dual-functional coordination polymers (CPs) with proton conduction and luminescence sensing is of great significance in clean energy and agricultural monitoring fields. In this work, an Mn-based coordination polymer (Mn-CP), namely, [Mn0.5(HL)] (H2L = HOOCC6H4C6H4CH2PO(OH)OCH3), was hydrothermally synthesized. Mn-CP has a one-dimensional (1D) chain structure, in which uncoordinated -COOH groups can serve as potential sites for fluorescence sensing. Moreover, Mn-CP shows good water and pH stabilities, offering the feasibility for proton conduction and sensing applications. Mn-CP displays comparatively high proton conductivity of 1.07 × 10-4 S cm-1 at 368 K and 95% relative humidity (RH), which is promising for proton conduction materials. Moreover, it can serve as a repeatable, highly selective, and visualized fluorescence sensor for detecting oxytetracycline (OTC). More importantly, Mn-CP reveals an amazing quantitative sensing of OTC in actual samples such as seawater, aquaculture freshwater, soil infiltration solutions, and tap water. This work proves the excellent application potential of dual-functional CPs in the field of clean energy and environmental protection, especially for the fluorescence detection of antibiotics in aquaculture systems.
Collapse
Affiliation(s)
- Xu Zhang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China.
| | - Yana Zhang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China.
| | - Xin Li
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China.
| | - Jiahui Yu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China.
| | - Weijia Chi
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China.
| | - Zikang Wang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China.
| | - Hanwen Zheng
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China.
| | - Zhengang Sun
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China.
| | - Yanyu Zhu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China.
| | - Chengqi Jiao
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China.
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
7
|
Hong C, Li L, Zou JY, You SY, Wang EL, Zhang L, Liu YW, Huang YL. On-Off Ratiometric Fluorescence Europium(III) Metal-Organic Framework for Quantitative Detection of the Inflammatory Marker Neopterin. Inorg Chem 2024; 63:4697-4706. [PMID: 38407040 DOI: 10.1021/acs.inorgchem.3c04357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Benefiting from the unique photoluminescence behavior of the lanthanide(III) ions and organic ligands, a lanthanide(III) metal-organic framework (Ln-MOF) material can simultaneously demonstrate photoluminescence of lanthanide(III) cations and organic molecules and endow its superior applications of fluorescence sensing behaviors. Herein, we present a europium(III) MOF material {[Eu2(BPTA)·(CH3COO)2·3DMA]·0.5DMA·3H2O}n (1) (where H4BPTA is 3,3',5,5'-biphenyltetracarboxylic acid) for photoluminescence performance of quantitatively sensing the inflammatory marker neopterin (Neo). The obtained 1 comprises Eu2(COO)4 paddlewheel secondary building units, which could be bridged by BPTA4- ligands to extend a 2D framework. The fluorescence titration indicates 1 can achieve simultaneous fluorescence behavior of Eu3+ ions and Neo via on-off ratiometric effects and thus could be exploited as the ratiometric fluorescence sensor matrix. Such a fluorescence phenomenon of 1 as a ratiometric sensor for quantitative detection of Neo via an on-off ratiometric effect is never observed in MOF chemistry. Moreover, naked-eye visible color variations of the fluorescence for 1 could be observed from red to blue with increasing concentrations of Neo, confirmed by fluorescent test strips as well as portable fluorescent hydrogels. And 1 also shows a low detection limit of 15.11 nM. A synergetic contribution of the competitive absorption, fluorescence resonance energy-transfer, and photoinduced electron-transfer mechanisms between Neo and the framework of 1 realizes the on-off ratiometric fluorescence behavior for Neo detection, supported by the UV-vis spectral overlap experiment and DFT calculations.
Collapse
Affiliation(s)
- Chao Hong
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, PR China
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Ling Li
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, PR China
| | - Ji-Yong Zou
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, PR China
| | - Sheng-Yong You
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, PR China
| | - Er Li Wang
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, PR China
- School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Li Zhang
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, PR China
| | - Yue-Wei Liu
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, PR China
| | - You-Lin Huang
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
| |
Collapse
|
8
|
Yang X, Liu W, Liu X, Sun Y, Wang X, Shao Y, Liu W. Construction of Multifunctional Luminescent Lanthanide MOFs for Luminescent Sensing of Temperature, Trifluoroacetic Acid Vapor and Explosives. Inorg Chem 2024; 63:3921-3930. [PMID: 38335732 DOI: 10.1021/acs.inorgchem.3c04380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Metal-organic frameworks (MOFs) with multifunctional and tunable optical properties have unique advantages in the field of sensing, and the structure and properties of MOFs are significantly influenced by the ligands. In this study, a Y-type tricarboxylic acid ligand containing amide bonds was synthesized through functional guidance, and three isomorphic and heterogeneous three-dimensional MOFs (Eu-MOF, Tb-MOF, and Gd-MOF) were obtained by solvothermal reaction. Further studies revealed that both the Tb-MOF and Eu-MOF could selectively detect picric acid (PA). The luminescence quenching of the two MOFs by PA was attributed to competing absorption and photoelectron energy transfer mechanisms. In addition, due to the energy transfer between Tb and Rhodamine B, Rhodamine B was encapsulated into Tb-MOF. The obtained material exhibited a linear relationship between the temperature parameters I544/I584 and temperature within the range of 280-400 K, the correlation coefficient (R2) reached an impressive value of 0.999, and the absolute sensitivity of the sample used for temperature sensing was 1.534% K-1. What is more, the material exhibited a good response to trifluoroacetic acid vapor, which suggests the potential of the material for temperature sensing and detection of trifluoroacetic acid vapor. The designed and investigated strategy can also serve as a reference for further research on excellent multifunctional sensors.
Collapse
Affiliation(s)
- Xiaoshan Yang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotope, College of Chemistry and Chemical Engineering, Lanzhou University, 730000 Lanzhou, China
| | - Wei Liu
- Frontiers Science Center for Rare Isotope, School of Nuclear Science and Technology, Institute of National Nuclear Industry, Lanzhou University, 730000 Lanzhou, China
| | - Xueguang Liu
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotope, College of Chemistry and Chemical Engineering, Lanzhou University, 730000 Lanzhou, China
| | - Yiliang Sun
- Frontiers Science Center for Rare Isotope, School of Nuclear Science and Technology, Institute of National Nuclear Industry, Lanzhou University, 730000 Lanzhou, China
| | - Xiaoyan Wang
- Frontiers Science Center for Rare Isotope, School of Nuclear Science and Technology, Institute of National Nuclear Industry, Lanzhou University, 730000 Lanzhou, China
| | - Yongliang Shao
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotope, College of Chemistry and Chemical Engineering, Lanzhou University, 730000 Lanzhou, China
| | - Weisheng Liu
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotope, College of Chemistry and Chemical Engineering, Lanzhou University, 730000 Lanzhou, China
| |
Collapse
|
9
|
Lal S, Singh P, Singhal A, Kumar S, Singh Gahlot AP, Gandhi N, Kumari P. Advances in metal-organic frameworks for water remediation applications. RSC Adv 2024; 14:3413-3446. [PMID: 38259988 PMCID: PMC10801355 DOI: 10.1039/d3ra07982a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 12/05/2023] [Indexed: 01/24/2024] Open
Abstract
Rapid industrialization and agricultural development have resulted in the accumulation of a variety of harmful contaminants in water resources. Thus, various approaches such as adsorption, photocatalytic degradation and methods for sensing water contaminants have been developed to solve the problem of water pollution. Metal-organic frameworks (MOFs) are a class of coordination networks comprising organic-inorganic hybrid porous materials having organic ligands attached to inorganic metal ions/clusters via coordination bonds. MOFs represent an emerging class of materials for application in water remediation owing to their versatile structural and chemical characteristics, such as well-ordered porous structures, large specific surface area, structural diversity, and tunable sites. The present review is focused on recent advances in various MOFs for application in water remediation via the adsorption and photocatalytic degradation of water contaminants. The sensing of water pollutants using MOFs via different approaches, such as luminescence, electrochemical, colorimetric, and surface-enhanced Raman spectroscopic techniques, is also discussed. The high porosity and chemical tunability of MOFs are the main driving forces for their widespread applications, which have huge potential for their commercial use.
Collapse
Affiliation(s)
- Seema Lal
- Department of Chemistry, Deshbandhu College, University of Delhi New Delhi India
| | - Parul Singh
- Department of Chemistry, Deshbandhu College, University of Delhi New Delhi India
| | - Anchal Singhal
- Department of Chemistry, St. Joseph's College Bengaluru Karnataka India
| | - Sanjay Kumar
- Department of Chemistry, Deshbandhu College, University of Delhi New Delhi India
| | | | - Namita Gandhi
- Department of Chemistry, Deshbandhu College, University of Delhi New Delhi India
| | - Pratibha Kumari
- Department of Chemistry, Deshbandhu College, University of Delhi New Delhi India
| |
Collapse
|
10
|
Liu AG, Meng XY, Chen Y, Chen ZT, Liu PD, Li B. Introducing a Pyrazinoquinoxaline Derivative into a Metal-Organic Framework: Achieving Fluorescence-Enhanced Detection for Cs + and Enhancing Photocatalytic Activity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:669-683. [PMID: 38150676 DOI: 10.1021/acsami.3c14588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Conventional photoresponsive materials have low photon utilization due to irregular distribution of photoactive groups, which severely limits the related real applications. Metal-organic frameworks (MOFs) can modulate the regular arrangement of functional groups to improve the electron transport paths and enhance the photon utilization, which provides strong support for the development of photoactive materials with excellent performance. In this work, one effective strategy for constructing a photoactive MOF had been developed via the utilization of Cd2+ and pyrazinoquinoxaline tetracarboxylic acid. The structural advantages of the Cd-MOF, such as a porous structure, abundant subject-object interaction sites, and a stable framework, ensure the prerequisite for various applications, while the better synergistic effect of Cd3 clusters and the pyrazinoquinoxaline derivative ensures efficient electron transfer efficiency. Therefore, by virtue of these structural advantages, the Cd-MOF can achieve fluorescence quenching detection for a variety of substrates, such as Fe3+, Cr2O72-, MnO4-, nitrofuran antibiotics, and TNP explosives, while fluorescence enhancement detection can be achieved for halogen ions, Cs+, Pb2+, and NO2-. In addition, the Cd-MOF can be used as a photocatalyst to successfully achieve the photocatalytic conversion of benzylamine to N-benzylbenzimidate under mild conditions. Thus, the Cd-MOF as a whole shows the possibility of application as a diverse fluorescence detection and photocatalyst and also illustrates the feasibility of preparing high-performance photoactive materials using the pyrazinoquinoxaline derivative.
Collapse
Affiliation(s)
- Ao-Gang Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Xiao-Yu Meng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Yuan Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Zi-Tong Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Peng-da Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| | - Bao Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Semiconductor Chemistry Center, School of Chemistry and Chemical Engineering, Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People's Republic of China
| |
Collapse
|
11
|
Cai DG, Zheng TF, Liu SJ, Wen HR. Fluorescence sensing and device fabrication with luminescent metal-organic frameworks. Dalton Trans 2024; 53:394-409. [PMID: 38047400 DOI: 10.1039/d3dt03223j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Metal-organic frameworks (MOFs) are a novel class of hybrid porous multi-functional materials consisting of metal ions/clusters and organic ligands. MOFs have exclusive benefits due to their tunable structure and diverse properties. Luminescent MOFs (LMOFs) exhibit both porosity and light emission. They display abundant host and guest responses, making them conducive to sensing. Currently, LMOF sensing research is gaining more depth, with attention given to their device and practical applications. This work reviews recent advancements and device applications of LMOFs as chemical sensors toward ions, volatile organic compounds, biomolecules, and environmental toxins. Furthermore, the detection mechanism and the correlation between material properties and structure are elaborated. This analysis serves as a valuable reference for the preparation and efficient application of targeted LMOFs.
Collapse
Affiliation(s)
- Ding-Gui Cai
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| | - Teng-Fei Zheng
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| | - Sui-Jun Liu
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| | - He-Rui Wen
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P.R. China.
| |
Collapse
|
12
|
Li L, Zou JY, You SY, Zhang L. Ratiometric Fluorescence Thermometry, Quantitative Gossypol Detection, and CO 2 Chemical Fixation by a Multipurpose Europium (III) Metal-Organic Framework. Inorg Chem 2023; 62:14168-14179. [PMID: 37606309 DOI: 10.1021/acs.inorgchem.3c00739] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
A lanthanide-based molecular crystalline material endows metal-organic frameworks (MOFs) with many fascinating applications such as fluorescence detection and CO2 chemical fixation. Herein, we describe and study a multipurpose europium(III) MOF with the formula of {[Eu2(TATAB)2]·2.5H2O·2DMF}n (Eu-MOF) (where H3TATAB is 4,4',4″-((1,3,5-triazine-2,4,6-triyl)tris(azanediyl))tribenzoic acid ligand) for photoluminescence sensor matrix and CO2 chemical fixation. This Eu-MOF features 1D square channels along the c direction with a pore size of ca.14.07 Å × 14.07 Å, occupied by lattice water and DMF molecules. The obtained Eu-MOF can achieve simultaneous luminescence of the H3TATAB ligand and Eu3+ ions, which can be developed as the sensor matrix for ratiometric fluorescence thermometry. The luminescence of the Eu-MOF demonstrates an obvious color change from red to yellow as temperature rises from 303 to 373 K and the Eu-MOF has a satisfying relative sensitivity of 3.21% K-1 and a small temperature uncertainty of 0.0093 K at 333 K. Moreover, sensitive detection of gossypol was achieved with a quenching constant Ksv of 1.18 × 105 M-1 and a detection limit of 4.61 μM. A combination of the competitive absorption and photoinduced electron transfer caused by host-guest interactions and strengthened π-π packing effect synergistically between gossypol molecules and the Eu-MOF skeleton realizes the "turn-off" sensing of gossypol. Importantly, the nature of the Eu-MOF allows showing CO2 chemical fixation under mild conditions. Thus, the Eu-MOF can be utilized as a multipurpose material for ratiometric fluorescence thermometry, quantitative gossypol detection, and CO2 chemical fixation.
Collapse
Affiliation(s)
- Ling Li
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, P. R. China
| | - Ji-Yong Zou
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, P. R. China
| | - Sheng-Yong You
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, P. R. China
| | - Li Zhang
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, P. R. China
| |
Collapse
|
13
|
Hu Y, Shen L, Zhang Y, Lu L, Fu H, She Y. A naphthalimide-based fluorescent probe for rapid detection of nitrite and its application in food quality monitoring. Anal Chim Acta 2023; 1268:341403. [PMID: 37268343 DOI: 10.1016/j.aca.2023.341403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/18/2023] [Accepted: 05/21/2023] [Indexed: 06/04/2023]
Abstract
Nitrite (NO2-) is a widely used food additive and long-term aging of cooked leftovers may also contribute to the formation of NO2-, excessive consumption of NO2- is harmful to human health. Developing an effective sensing strategy for on-site monitoring of NO2- has attracted considerable attention. Herein, a novel colorimetric and fluorometric probe ND-1 based on photoinduced electron transfer effect (PET) was designed for highly selective and sensitive detection of nitrite (NO2-) in foods. The probe ND-1 was strategically constructed by employing naphthalimide as the fluorophore and o-phenylendiamine as the specific recognition site for NO2-. The triazole derivative ND-1-NO2- could be produced exclusively by reacting with NO2-, leading to a visible colorimetric change from yellow to colorless accompanied by a significantly enhanced fluorescence intensity at 440 nm. The probe ND-1 exhibited promising sensing performances towards NO2- including high selectivity, rapid response time (within 7 min), low detection limit (47.15 nM) and wide quantitative detection range (0-35 μM). In addition, probe ND-1 was capable of quantitative detecting of NO2- in real food samples (including pickled vegetables and cured meat products) with satisfactory recovery rates (97.61%-103.08%). Moreover, the paper device loaded by probe ND-1 could be utilized for visual monitoring of NO2- levels variation of stir-fried greens. This study provided a feasible method for the accurate, traceable and rapid on-site monitoring NO2- in foods.
Collapse
Affiliation(s)
- Ying Hu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Lu Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Yinan Zhang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Lingmin Lu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Haiyan Fu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, College of Pharmacy, South-Central Minzu University, Wuhan, 430074, PR China.
| | - Yuanbin She
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, PR China.
| |
Collapse
|
14
|
Chen D, Wu Z, Zhang Y, Li D, Wei J, Jiao T, Chen Q, Oyama M, Chen Q, Chen X. Boric acid group-functional Tb-MOF as a fluorescent and captured probe for the highly sensitive and selective determination of propyl gallate in edible oils. Food Chem 2023; 418:136012. [PMID: 36996649 DOI: 10.1016/j.foodchem.2023.136012] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023]
Abstract
This study reports the development of a Tb-metal-organic framework (Tb-MOF)-based fluorescent platform for the detection of propyl gallate (PG). The Tb-MOF using 5-boronoisophthalic acid (5-bop) as the ligand exhibited multiple emissions at 490, 543, 585, and 622 nm under an excitation wavelength of 256 nm. The fluorescence of Tb-MOF was selectively and significantly weakened in the presence of PG due to the special nucleophilic reaction between the boric acid of Tb-MOF and o-diphenol hydroxyl of PG, and the combined effect of static quenching and internal filtering. Furthermore, this sensor enabled the determination of PG within seconds in a wide linear range of 1-150 μg/mL, and with a low detection limit of 0.098 μg/mL, and high specificity against other phenolic antioxidants. This work provided a new route for the sensitive and selective determination of PG in soybean oil, thus was perspective to monitor and reduce the risk of PG overuse.
Collapse
|
15
|
De Villenoisy T, Zheng X, Wong V, Mofarah SS, Arandiyan H, Yamauchi Y, Koshy P, Sorrell CC. Principles of Design and Synthesis of Metal Derivatives from MOFs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210166. [PMID: 36625270 DOI: 10.1002/adma.202210166] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/15/2022] [Indexed: 06/16/2023]
Abstract
Materials derived from metal-organic frameworks (MOFs) have demonstrated exceptional structural variety and complexity and can be synthesized using low-cost scalable methods. Although the inherent instability and low electrical conductivity of MOFs are largely responsible for their low uptake for catalysis and energy storage, a superior alternative is MOF-derived metal-based derivatives (MDs) as these can retain the complex nanostructures of MOFs while exhibiting stability and electrical conductivities of several orders of magnitude higher. The present work comprehensively reviews MDs in terms of synthesis and their nanostructural design, including oxides, sulfides, phosphides, nitrides, carbides, transition metals, and other minor species. The focal point of the approach is the identification and rationalization of the design parameters that lead to the generation of optimal compositions, structures, nanostructures, and resultant performance parameters. The aim of this approach is to provide an inclusive platform for the strategies to design and process these materials for specific applications. This work is complemented by detailed figures that both summarize the design and processing approaches that have been reported and indicate potential trajectories for development. The work is also supported by comprehensive and up-to-date tabular coverage of the reported studies.
Collapse
Affiliation(s)
| | - Xiaoran Zheng
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Vienna Wong
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Sajjad S Mofarah
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Hamidreza Arandiyan
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), RMIT University, Melbourne, VIC, 3000, Australia
- Laboratory of Advanced Catalysis for Sustainability, School of Chemistry, University of Sydney, Sydney, NSW, 2006, Australia
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Pramod Koshy
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Charles C Sorrell
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| |
Collapse
|
16
|
Rasheed T. Water stable MOFs as emerging class of porous materials for potential environmental applications. CHEMOSPHERE 2023; 313:137607. [PMID: 36566790 DOI: 10.1016/j.chemosphere.2022.137607] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/04/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Metal-organic frameworks (MOFs) are extensively recognized for their wide applications in a variety of fields such as water purification, adsorption, sensing, catalysis and drug delivery. The fundamental characteristics of the majority of MOFs, such as their structure and shape, are known to be sensitively impacted by water or moisture. As a result, a thorough evaluation of the stability of MOFs in respect to factors linked to these property changes is required. It is quite rare for MOFs in their early stages to have strong water-stability, which is necessary for the commercialization and development of wider applications of this interesting material. Also, numerous applications in presence of water have progressed considerably as a "proof of concept" stage in the past and a growing number of water-stable MOFs (WSMOFs) have been discovered in recent years. This review discusses the variables and processes that affect the aqueous stability of several MOFs, including imidazolate and carboxylate frameworks. Accordingly, this article will assist researchers in accurately evaluating how water affects the stability of MOFs so that effective techniques can be identified for the advancement of water-stable metal-organic frameworks (WSMOFs) and for their effective applications toward a variety of fields.
Collapse
Affiliation(s)
- Tahir Rasheed
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia.
| |
Collapse
|
17
|
Zhu CY, Shen MT, Cao HM, Qi MJ, Li P, Chen L, Ge Y, Gao W, Zhang XM. Highly sensitive detection of tetracycline and Fe3+ and for visualizable sensing application based on a water-stable luminescent Tb-MOF. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
18
|
A water-stable Eu-MOF as multi-responsive luminescent sensor for high-efficiency detection of Fe3+, MnO4− ions and nicosulfuron in aqueous solution. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
19
|
Yang X, Yu X, Wang Q, Zou J, Liao G, Li M, Liu X, Xia H, Xu F. Metal–organic cages ZrT-1-NH2 for rapid and selective sensing of nitrite. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Studies on a novel method for the determination of nitrosamines in food by HPLC-UV-FLD coupling with terbium-doped carbon dots. Food Chem 2022. [DOI: 10.1016/j.foodchem.2022.134894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
21
|
Liu W, Wang F, Chen X, Zhi W, Wang X, Xu B, Yang B. Design of "turn-off" luminescent Ln-MOFs for sensitive detection of cyanide anions. Dalton Trans 2022; 51:15741-15749. [PMID: 36178037 DOI: 10.1039/d2dt01844f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two novel 2D lanthanide metal-organic frameworks (Ln-MOFs), namely {[Eu2(DBTA)3(DMF)2]·DMF}n (1) and {[Tb2(DBTA)3(DMF)2]·DMF}n (2) (H2DBTA = 2,5-dibromoterephthalic acid), have been successfully synthesized by the solvothermal method. Single-crystal X-ray diffraction results proved that the complexes possess the same topological structure of a (42·6)2(42·84)(47·63)2-connected net. The recognition of CN- from interfering anions with a low detection limit by "turn-off" luminescence makes them promising candidates for the highly selective and sensitive detection of the cyanide ion. The Ln-MOFs 1 and 2 exhibit excellent chemical sensing properties for CN- with efficiency, selectivity, and excellent performance in various mixed anions. The evaluation parameters, including the quenching constant and detection limit, have been investigated to obtain the detection performance for CN-.
Collapse
Affiliation(s)
- Weisai Liu
- National Engineering Research Center of Vacuum Metallurgy, Kunming 650093, China. .,Key Laboratory of Vacuum Metallurgy for Nonferrous Metal of Yunnan Province, Kunming 650093, China.,Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Fei Wang
- National Engineering Research Center of Vacuum Metallurgy, Kunming 650093, China. .,Key Laboratory of Vacuum Metallurgy for Nonferrous Metal of Yunnan Province, Kunming 650093, China.,Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Xiaoyi Chen
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Wenke Zhi
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Xuquan Wang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Baoqiang Xu
- National Engineering Research Center of Vacuum Metallurgy, Kunming 650093, China.
| | - Bin Yang
- National Engineering Research Center of Vacuum Metallurgy, Kunming 650093, China.
| |
Collapse
|
22
|
Jia Z, Han Z, Wang K, Zhou T, Min H, Sun T, Liao Y, Wang L, Cheng P, Shi W. An Efficient, Multiplexed Strategy for Instant Detection of Bacterial Biomarker by a Lanthanide-Organic Material. Inorg Chem 2022; 61:14313-14321. [PMID: 36036495 DOI: 10.1021/acs.inorgchem.2c01984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Water contamination is a highly critical issue owing to its strong relationship to human health. In addition to chemical pollutants, microorganisms such as multiresistant pathogenic bacteria have received significant attention from the World Health Organization. The main problem associated with monitoring pathogenic bacteria in water is the interference from concomitant species and their low concentrations. To address this problem, we synthesized a bilanthanide-organic material as an efficient luminescence sensor for the detection of Pseudomonas aeruginosa, a representative bacterium, via its two unique biomarkers: 1-hydroxyphenazine (1-HX) and 2-aminoacetophenone (2-AA). This multiplexed sensing approach overcomes a common issue encountered by single-marker luminescence sensors that may report false positives due to coexisting species in the complex environment. High sensitivities and low limits of detection for 1-HX and 2-AA were obtained with very fast response time. The key structural factors governing the high-performance sensing function were revealed. This work provides an alternative route for the effortless and instant detection of bacterial biomarkers in water.
Collapse
Affiliation(s)
- Ziyang Jia
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zongsu Han
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Kunyu Wang
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Tianze Zhou
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hui Min
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Tiankai Sun
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yunteng Liao
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Liang Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Peng Cheng
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Wei Shi
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
23
|
A unique terbium-fluoride-oxalate metal–organic framework containing [Tb-F]n chains with bifunctions of luminescent detection of Cr(VI) and catalyzing CO2 conversion to cyclic carbonates. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
Feng SS, Wei YX, Li M, Dong WK. A highly selective naphthalene-fluorophore salamo-based chemosensor for sequential identification of Cu2+ and S2− ions in water applications. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132923] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Pal SC, Mukherjee D, Das MC. pH-Stable Luminescent Metal-Organic Frameworks for the Selective Detection of Aqueous-Phase Fe III and Cr VI Ions. Inorg Chem 2022; 61:12396-12405. [PMID: 35895324 DOI: 10.1021/acs.inorgchem.2c01793] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of chemically stable metal-organic framework (MOF)-based luminescent platforms for toxic ion detection in an aqueous medium is highly challenging because most of the classical MOFs are prone to water degradation, and that is the reason why most of the MOF-based luminescent sensors use a nonaqueous medium for sensing. In this contribution, we report two new water-stable luminescent MOFs (Zn-MOF-1 and Zn-MOF-2), assembled from a mixed-ligand synthesis approach. Because of the presence of a hydrophobic trifluoromethyl group to the backbone and stronger metal-N coordination, these MOFs exhibit excellent stability not only in water but also in acidic/alkaline aqueous solutions (pH = 3-10). Here, we report a green sensing approach by exploiting the significant reduction in photoluminescence of these MOFs in the presence of toxic ions. Fe3+ and CrO42-/Cr2O72- ions could be traced with a detection limit (LOD) in the micromolar range (0.045 and 0.745/0.33 μM for Zn-MOF-1; 125.2 and 114.2/83.5 μM for Zn-MOF-2). The mechanistic study reveals that competitive absorption of the excitation energy coupled with fluorescent resonance energy transfer are responsible for the turn-off quenching. The anti-interference ability and recyclability along with the pH stability gave these MOFs high potential to be used as practical sensors toward FeIII and CrVI ions in water as a greenest medium.
Collapse
Affiliation(s)
- Shyam Chand Pal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Debolina Mukherjee
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Madhab C Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
26
|
Geng J, Li Y, Lin H, Liu Q, Lu J, Wang X. A new three-dimensional zinc(II) metal-organic framework as a fluorescence sensor for sensing the biomarker 3-nitrotyrosine. Dalton Trans 2022; 51:11390-11396. [PMID: 35819031 DOI: 10.1039/d2dt01800d] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
3-Nitrotyrosine (3-NT), an oxidative stress biomarker, is closely associated with various diseases. Thus, rapid and sensitive detection of 3-NT is of great significance for preventing and treating diseases. Herein, we reported a new 3D zinc-based metal-organic framework (Zn-MOF) [Zn(L)(HBTC)] (L = (E)-4,4'-(ethene-1,2-diyl)bis[(N-pyridin-3-yl)benzamide], H3BTC = 1,3,5-benzenetricarboxylic acid), which was structurally characterized by single crystal X-ray diffraction, IR, PXRD and TG. The Zn-MOF can be used as a highly efficient fluorescence sensing material to provide a direct and low-cost method for the rapid detection of 3-NT and shows high sensitivity with a KSV value of 6.596 × 104 M-1, a rapid luminescence response within 24 s, excellent selectivity, high anti-interference ability and good recyclability. It is the first example of a MOF being used to directly detect 3-NT as a luminescence sensor to our knowledge. The sensing mechanism of the Zn-MOF towards 3-NT is discussed in detail, which provides a basis for the rational design of MOF sensing materials and their application in biomarker detection.
Collapse
Affiliation(s)
- Jun Geng
- College of Chemistry and Materials Engineering, Bohai University, Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Jinzhou 121013, P. R. China.
| | - Yuyao Li
- College of Chemistry and Materials Engineering, Bohai University, Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Jinzhou 121013, P. R. China.
| | - Hongyan Lin
- College of Chemistry and Materials Engineering, Bohai University, Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Jinzhou 121013, P. R. China.
| | - Qianqian Liu
- College of Chemistry and Materials Engineering, Bohai University, Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Jinzhou 121013, P. R. China.
| | - Junjun Lu
- College of Chemistry and Materials Engineering, Bohai University, Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Jinzhou 121013, P. R. China.
| | - Xiuli Wang
- College of Chemistry and Materials Engineering, Bohai University, Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Jinzhou 121013, P. R. China.
| |
Collapse
|
27
|
Li X, Wen Q, Chen J, Sun W, Zheng Y, Long C, Wang Q. Lanthanide Molecular Species Generated Fe3O4@SiO2-TbDPA Nanosphere for the Efficient Determination of Nitrite. Molecules 2022; 27:molecules27144431. [PMID: 35889303 PMCID: PMC9315872 DOI: 10.3390/molecules27144431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 11/24/2022] Open
Abstract
The presence of nitrite (NO2−) in water and food leads to serious problems in public health and the environment. Therefore, it is important to develop a rapid and efficient method for the selective detection of NO2−. In this work, the synthesis and characterization of magnetic Fe3O4@SiO2-TbDPA nanoprobe have been carried out. The Fe3O4@SiO2-TbDPA aqueous solution exhibits a strong green emission. Due to the addition of various concentrations of NO2− (0–100 μM), the fluorescence intensity has been suppressed. The nanoprobe Fe3O4@SiO2-TbDPA exhibits excellent selectivity and sensitivity toward NO2− ions. Excellent linearity is obtained in the range of 5–80 μM with a detection limit of 1.03 μM. Furthermore, the presence of magnetic Fe3O4 nanoparticles in Fe3O4@SiO2-TbDPA nanospheres will also facilitate the effective separation of Fe3O4@SiO2-TbDPA from the aqueous solution. Our proposed strategy is expected to fabricate an organic-inorganic hybrid magnetic nanomaterial and can be used as an efficient sensor. It has been shown that this new strategy has numerous advantages, such as high stability, selectivity, and simplicity of operation. It demonstrates great potential for simple and convenient NO2− detection. It may expand to a variety of ranges in environmental monitoring and biomedical fields.
Collapse
Affiliation(s)
- Xiangqian Li
- Key Lab of Ecological Restoration in Hilly Areas, School of Chemical & Environmental Engineering, Pingdingshan University, Pingdingshan 467000, China;
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou 510006, China; (J.C.); (W.S.); (Y.Z.)
| | - Qin Wen
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao 266071, China;
| | - Jiannian Chen
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou 510006, China; (J.C.); (W.S.); (Y.Z.)
| | - Wenjie Sun
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou 510006, China; (J.C.); (W.S.); (Y.Z.)
| | - Yuhui Zheng
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou 510006, China; (J.C.); (W.S.); (Y.Z.)
| | | | - Qianming Wang
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou 510006, China; (J.C.); (W.S.); (Y.Z.)
- Correspondence: ; Tel.: +86-20-39310258; Fax: +86-20-39310187
| |
Collapse
|
28
|
Wang Q, Liu JY, Wang TT, Liu YY, Zhang LX, Huo JZ, Ding B. Solvo-thermal synthesis of a unique cluster-based nano-porous zinc(II) luminescent metal-organic framework for highly sensitive detection of anthrax biomarker and dichromate. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 274:121132. [PMID: 35286888 DOI: 10.1016/j.saa.2022.121132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/13/2021] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
In this work a flexible multi-dentate 4,4'-(1H-1,2,4-triazole-1-yl) methylene-bis(benzonic acid) (H2L) ligand has been employed, a unique cluster-based nano-porous luminescent zinc(II) metal-organic framework {[Zn(μ6-L)]·(DMAC)2}n (1) (DMAC = Dimethylacetamide) has been isolated under solvo-thermal conditions. The H2L ligand adopts hexa-dentate coordination modes via one triazole nitrogen atom and four aromatic carboxylate oxygen atoms, which bridge the neighboring six-coordinated ZnII centers, leading to a three-dimensional (3D) nano-porous metal organic framework. A PLATON program analysis suggests the total potential solvent area volume is 2028.9 Å3, which occupy 62.5% percent of the unit cell volume (3248.4 Å3). PXRD Patterns of the as-synthesized samples 1 have been determined confirming the purity of the bulky samples. Photo-luminescent properties indicate strong fluorescent emissions of 1 at the room temperature. Further photo-luminescent measurements show that 1 can exhibit highly sensitive real-time luminescence sensing of anthrax biomarker dipicolinic acid (DPA) with high quenching efficiency (KSV = 1.48 × 105 M-1) and low detection limit (0.298 μM (S/N = 3)). Meanwhile 1 also exhibits highly selective and sensitive luminescence sensing for Cr2O72- ions in aqueous solutions with high quenching efficiency KSV = 1.22 × 104 L·mol-1 and low detection limit (0.023 μM (S/N = 3)). Therefore 1 can be used a unique multi-functional 3D cluster-based metal organic material in sensitive detection and effective detection of environment pollutants and biomarker molecules.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Jing-Yi Liu
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Tian-Tian Wang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Yuan-Yuan Liu
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Le-Xi Zhang
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Jian-Zhong Huo
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China.
| | - Bin Ding
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China.
| |
Collapse
|
29
|
Wang Y, Xu N, Ma J, Li H, Zhang Y, Liu G, Wang X. Stable Zinc(II) Coordination Polymer as a Rapid and Highly Sensitive Fluorescence Sensor for the Discriminative Sensing of Biomarker 2-(2-Methoxyethoxy) Acetic Acid. Inorg Chem 2022; 61:7780-7786. [PMID: 35544386 DOI: 10.1021/acs.inorgchem.2c00164] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel two-dimensional bilayer Zn-based luminescent coordination polymer (LCP) [Zn2(μ2-OH)(4-dptp)(3,4',5-bpt)] (LCP 1) [4-dptp = N3,N4-bis(pyridin-4-ylmethyl)thiophene-3,4-dicarboxamide and 3,4',5-H3bpt = biphenyl-3,4',5-tricarboxylic acid] was successfully prepared under hydrothermal conditions and characterized by single-crystal X-ray diffraction, IR spectroscopy, powder X-ray diffraction, and luminescence spectroscopy. LCP 1 displayed excellent fluorescence-quenching efficiency toward a biomarker 2-(2-methoxyethoxy) acetic acid (MEAA) with a high Ksv (5.153 × 104 M-1), a low limit of detection (0.244 μM), and a rapid response time (28 s). Additionally, LCP 1 can repeatedly detect MEAA at least eight times with excellent stability. The sensing mechanism was also carefully investigated through UV-vis absorption spectroscopy, density functional theory calculations, and fluorescence lifetime analysis.
Collapse
Affiliation(s)
- Yue Wang
- College of Chemistry and Materials Engineering, Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Bohai University, Jinzhou 121013, P. R. China
| | - Na Xu
- College of Chemistry and Materials Engineering, Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Bohai University, Jinzhou 121013, P. R. China
| | - Jianxin Ma
- College of Chemistry and Materials Engineering, Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Bohai University, Jinzhou 121013, P. R. China
| | - Hui Li
- College of Chemistry and Materials Engineering, Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Bohai University, Jinzhou 121013, P. R. China
| | - Yue Zhang
- College of Chemistry and Materials Engineering, Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Bohai University, Jinzhou 121013, P. R. China
| | - Guocheng Liu
- College of Chemistry and Materials Engineering, Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Bohai University, Jinzhou 121013, P. R. China
| | - Xiuli Wang
- College of Chemistry and Materials Engineering, Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Bohai University, Jinzhou 121013, P. R. China
| |
Collapse
|
30
|
Ma R, Qiao C, Xia L, Xia Z, Yang Q, Xu Y, Xie G, Chen S, Gao S. Dynamic Metal-Iodide Bonds in a Tetracoordinated Cadmium-Based Metal-Organic Framework Boosting Efficient CO 2 Cycloaddition under Solvent- and Cocatalyst-Free Conditions. Inorg Chem 2022; 61:7484-7496. [PMID: 35511935 DOI: 10.1021/acs.inorgchem.2c00569] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Due to the inherent thermodynamic stability and kinetic inertness of CO2, heterogeneous catalytic conversion of CO2 to cyclic carbonates often requires harsh operating conditions, high temperature and high pressure, and the addition of cocatalysts. Therefore, the development of efficient heterogeneous catalysts under cocatalyst-free and mild conditions for CO2 conversion has always been a challenge. Herein, an infrequent tetracoordinated Cd-MOF was synthesized and used to catalyze CO2 cycloaddition reactions efficiently without the addition of any cocatalyst, and its catalytic mechanism was systematically investigated through a series of experiments, including fluorescence analysis, X-ray photoelectron spectroscopy, microcalorimetry, and density functional theory (DFT) calculation. Cd-MOF features a 3D supermolecule structure with 1D 11.6 × 7.7 Å2 channels, and the abundant Lewis acid/base and I- sites located in the confined channel boost efficient CO2 conversion with a maximum yield of 98.2% and a turnover number value of 1080.11 at 60 °C and 0.5 MPa, far surpassing most pristine MOF-based catalytic systems. A combined experimental and DFT calculation demonstrates that the exposed Cd(II) Lewis acid sites rapidly participate in coordination to activate the epoxides, and the resulting large steric hindrance facilitates leaving of the coordinated iodide ions in a reversibly dynamic fashion convenient for the rate-determining step ring-opening as a strong nucleophile. Such a pristine MOF catalyst with self-independent catalytic ring-opening overcomes the complicated operation limitation of the traditional cocatalyst-free MOF systems based on encapsulating/postmodifying cocatalysts, providing a whole new strategy for the development of simple, green, and efficient heterogeneous catalysts for CO2 cycloaddition.
Collapse
Affiliation(s)
- Ren Ma
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Chengfang Qiao
- Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, College of Chemical Engineering and Modern Materials, Shangluo University, Shangluo 726000, China
| | - Li Xia
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Zhengqiang Xia
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Qi Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Yifan Xu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Gang Xie
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Sanping Chen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Shengli Gao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| |
Collapse
|
31
|
A stable zinc-based metal–organic framework as fluorescent sensor for detecting Cr2O72−, Fe3+ and L-Cysteine with high sensitivity and selectivity. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
Meng Y, Zhang N, Li J, Xu Y, Yang Q, Yuan Y, Zhang X, Wu J, Zhao L. The detection of selectivity and sensitivity towards TNP by a new Zn(II)-coordination polymer as luminescent sensor in aqueous solution. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 266:120419. [PMID: 34619506 DOI: 10.1016/j.saa.2021.120419] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/06/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Nitroaromatic compounds (NACs) can lead to various environmental pollution healh problems. In order to effectively recognize and sense NACs, a novel coordination polymers (CPs) with fluorescent characteristic [Zn3(btc)2(tpt)(H2O)2]·4H2O (1) (tpt = tris(4-pyridyl)triazine, H3btc = 1,3,5-benzenetricarboxylic acid) has been triumphantly prepared as an fluorescence probe by solvothermal method. 1 possesses remarkable PH stability ranging from 2.0 to 12.0 and is also stable in different pure organic solvents. It should be noted that 1 manifests a fluorescence quenching response against the detection of selectivity and sensitivity towards 2,4,6-trinitrophenol (TNP) in aqueous solution. It also makes analysis on the limit of detection towards TNP, which is as low as 0.94 µM compared with most reported CPs sensors for TNP. Therefore, 1 can become a satisfactory sensor for TNP detection with remarkable selectivity, strong anti-interference and favorable recyclability. In addition, the quenching mechanisms were also discussed. It was supposed that the mechanisms of photoinduced electron transfer (PET) as well as resonance energy transfer (RET) might be the main influencing factors.
Collapse
Affiliation(s)
- Yao Meng
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, People's Republic of China
| | - Nanxi Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, People's Republic of China
| | - Jinxue Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, People's Republic of China
| | - Yuanyi Xu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, People's Republic of China
| | - Qingfeng Yang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, People's Republic of China
| | - Ye Yuan
- Center for Analysis, Measurement and Computing, Harbin Institute of Technology, Harbin, People's Republic of China
| | - Xiao Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, People's Republic of China.
| | - Jie Wu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China.
| | - Liyan Zhao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, People's Republic of China.
| |
Collapse
|
33
|
Yang Z, Zhong Y, Zhou X, Zhang W, Yin Y, Fang W, Xue H. Metal-organic framework-based sensors for nitrite detection: a short review. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-021-01270-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
34
|
Geng J, Lin H, Li X, Lu J, Wang X. Improvement of the fluorescent sensing biomarker 3-nitrotyrosine for a new luminescent coordination polymer by size regulation. CrystEngComm 2022. [DOI: 10.1039/d2ce01397e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A new 3D luminescent coordination polymer (LCP) 1 was synthesized for detecting biomarker 3-nitrotyrosine. By adjusting the reaction conditions, Nano-LCP 1 was synthesized, which has a more lower detection limit compared with LCP 1.
Collapse
Affiliation(s)
- Jun Geng
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| | - Hongyan Lin
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| | - Xiaohui Li
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| | - Junjun Lu
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| | - XiuLi Wang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| |
Collapse
|
35
|
Kayani KF, Omer KM. A red luminescent europium metal organic framework (Eu-MOF) integrated with a paper strip using smartphone visual detection for determination of folic acid in pharmaceutical formulations. NEW J CHEM 2022. [DOI: 10.1039/d2nj00601d] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Integration of smartphone with visual-based paper strip as a low-cost, fast, and reliable probe for semi-quantitative analysis of folic acid.
Collapse
Affiliation(s)
- Kawan F. Kayani
- Center for Biomedical Analysis, Department of Chemistry, College of Science, University of Sulaimani, Qliasan St, 46002, Slemani City, Kurdistan Region, Iraq
| | - Khalid M. Omer
- Center for Biomedical Analysis, Department of Chemistry, College of Science, University of Sulaimani, Qliasan St, 46002, Slemani City, Kurdistan Region, Iraq
| |
Collapse
|
36
|
Mahata P, Sarkar S, Singha DK, Majee P, Daga P, Mondal SK. Stabilization of CO2 as Zwitterionic Carbamate within a Coordination Polymer (CP): Synthesis, Structure and Anions Sensing Behaviour of Tb-CP composite. CrystEngComm 2022. [DOI: 10.1039/d2ce00711h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new gadolinium (III) based coordination polymer (CP), [Gd(3,5-pydc)1.5(CO2)0.5(H2O)4].3H2O (where 3,5-pydc =3,5-pyridinedicarboxylate) , 1, has been successfully synthesized using slow diffusion method at room temperature. Single crystal X-ray diffraction study...
Collapse
|
37
|
Zhang JW, Li X, Yu RY, Zhang JP, Chen Y, Li JQ. An unusual F-bridged dual-trinuclear Mg–organic framework as a luminescent thermometer for highly efficient low-temperature detection. CrystEngComm 2022. [DOI: 10.1039/d2ce01008a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel Mg-MOF with unusual μ3-F dual-trinuclear cluster was successfully afforded by utilizing a solvent system of DMA/DMPU/HFP. Interestingly, as a luminescent thermometer, this MOF exhibits excellent low-temperature sensing capabilities.
Collapse
Affiliation(s)
- Jian-Wei Zhang
- School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan, 476000, P. R. China
| | - Xi Li
- School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan, 476000, P. R. China
| | - Rui-Ying Yu
- School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan, 476000, P. R. China
| | - Jin-Ping Zhang
- School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan, 476000, P. R. China
| | - Ya Chen
- School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan, 476000, P. R. China
| | - Jie-Qiong Li
- School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan, 476000, P. R. China
| |
Collapse
|
38
|
Karmakar A, Velasco E, Li J. OUP accepted manuscript. Natl Sci Rev 2022; 9:nwac091. [PMID: 35832779 PMCID: PMC9273335 DOI: 10.1093/nsr/nwac091] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 11/12/2022] Open
Affiliation(s)
- Avishek Karmakar
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Ever Velasco
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Jing Li
- Corresponding author. E-mail:
| |
Collapse
|
39
|
Sun HX, Zhou J, Zhang Z, He M, He LC, Du L, Xie MJ, Zhao QH. Anion-controlled Zn(II) coordination polymers with 1-(tetrazo-5-yl)-3-(triazo-1-yl) benzene as an assembling ligand: synthesis, characterization, and efficient detection of tryptophan in water. Dalton Trans 2021; 50:18044-18052. [PMID: 34826320 DOI: 10.1039/d1dt03045k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Tryptophan regulates and participates in various physiological systems in the human body, and its excessive intake has harmful effects. Therefore, detecting and monitoring tryptophan in water and distinguishing it from other amino acids are necessary. In addition to their excellent luminescence, coordination polymer-based sensors have good stability and high sensitivity and selectivity for sensing applications. In this work, two luminescent coordination polymers (CPs), [Zn(ttb)Cl]n (1) and [Zn2(ttb)2(OH)(NO3)]n (2), were obtained through the solvothermal reaction of different Zn(II) salts with a rarely studied multidentate N-donor ligand, 1-(tetrazo-5-yl)-3-(triazo-1-yl) benzene (Httb). Crystallographic investigations revealed that the structure of 1 exhibits a 2D fes net with Cl- anions acting as terminal charge balancers, and that of 2 features a 3D ant net with NO3- anions in a rare monodentate bridging (μ2-O-η1:η1) mode. In terms of stability tests, 2 has better thermal and water stability than 1. Although both show good fluorescence performance, specific tryptophan detection, and excellent anti-interference ability, 2 has higher KSV (111 852.6 M-1), a lower limit of detection (LOD = 23.6 nM), and a better recovery rate than 1. Cytotoxicity experiments proved that 2 has extremely low toxicity and thus has great potential for in vivo detection. Therefore, CP 2 is a suitable candidate for advanced practical applications for the efficient sensing of tryptophan in water. The luminescence of the ligands was also calculated using DFT theory and further discussed through experiments. The quenching mechanism that occurs after tryptophan addition was explored through Hirshfeld surface analysis.
Collapse
Affiliation(s)
- Han-Xu Sun
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China.
| | - Jie Zhou
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China.
| | - Zhen Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China.
| | - Mei He
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China.
| | - Lian-Cheng He
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China.
| | - Lin Du
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China.
| | - Ming-Jin Xie
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China.
| | - Qi-Hua Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China.
| |
Collapse
|
40
|
Min H, Wu S, Han Z, Chen Z, Sun T, Shi W, Cheng P. Fast Detection of Entacapone by a Lanthanide-Organic Framework with Rhombic Channels. Chemistry 2021; 27:17459-17464. [PMID: 34608690 DOI: 10.1002/chem.202103297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Indexed: 02/06/2023]
Abstract
Entacapone (ENT) is a powerful catechol-O-methyl transferase inhibitor that is used for the diagnosis and treatment of Parkinson's syndrome, but the amount used must be well controlled to avoid overtreatment and side effect. Fast and selective detection of ENT needs well-matched energy levels and well-designed sensor-ENT interaction which is highly challenging. In this work, a water stable europium-based metal-organic framework (Eu-TDA) was synthesized to detect ENT by luminescence with excellent reusability and selectivity in the presence of main coexisting and interference species of plasma with a limit of detection of 5.01 μM. The experimental results showed that the luminescence of Eu-TDA can be effectively quenched by ENT via well-designed photoinduced electron transfer mechanism and internal filtration effect mechanism in the system.
Collapse
Affiliation(s)
- Hui Min
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Shuangyan Wu
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Zongsu Han
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Zhonghang Chen
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Tiankai Sun
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Wei Shi
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China.,Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Peng Cheng
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China.,Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
41
|
Yuan Z, Hou G, Han L. A Terbium‐Based MOF as fluorescent probe for the detection of Malachite Green, Fe
3+
and MnO
4
−. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202100301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhuang‐Dong Yuan
- School of Chemistry Chemical Engineering and Materials Jining University Qufu 273155 P. R. China
| | - Guo‐Zheng Hou
- School of Chemistry Chemical Engineering and Materials Jining University Qufu 273155 P. R. China
| | - Li‐Juan Han
- School of Chemistry Chemical Engineering and Materials Jining University Qufu 273155 P. R. China
- State Key Laboratory of Coordination Chemistry School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| |
Collapse
|
42
|
Zhang CL, Qian JL, Zhou T, Li YQ. The Length of Substituents on Ligands Regulates the Structural Diversity of Coordination Polymers. RUSS J COORD CHEM+ 2021. [DOI: 10.1134/s1070328421120058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
43
|
Li Y, Wu S, Zhang Y, Ma Z, Zhu M, Gao E. A lanthanide metal–organic framework as ratio fluorescence probe to detect pesticides in water. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120632] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
44
|
Zhou YN, Liu LL, Liu QW, Liu XX, Feng MZ, Wang L, Sun ZG, Zhu YY, Zhang X, Jiao CQ. Dual-Functional Metal-Organic Framework for Luminescent Detection of Carcinoid Biomarkers and High Proton Conduction. Inorg Chem 2021; 60:17303-17314. [PMID: 34699193 DOI: 10.1021/acs.inorgchem.1c02655] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
It remains a challenge to exploit dual-functional metal-organic frameworks (MOFs) for applications, including luminescence detection and proton conduction. With the deliberate selection of the bifunctional organic ligand 5-sulfoisophthalic acid monosodium salt (NaH2bts), and the phosphonic acid ligand N,N'-piperazine (bismethylenephosphonic acid; H4L), a robust three-dimensional (3D) noninterpenetrating dual-functional MOF, [Tb(H2L)(H2bts)(H2O)]·H2O (1), has been synthesized hydrothermally. On the basis of the excellent thermal and chemical as well as superior luminescence stabilities in water and solutions with different pHs, 1 can serve as the simple, rapid, and highly selective and sensitive luminescence detection of the carcinoid biomarkers 5-hydroxytryptamine (HT) and its metabolite 5-hydroxyindole-3-acetic acid (HIAA) with detection limits of nanomolar magnitude in water and in simulated blood plasma and urine systems. Due to the change in the signals that could be readily differentiated by the naked eye under a UV lamp, a portable test paper has been developed. The probable quenching mechanisms are discussed in detail. In addition, a great number of hydrogen-bonding networks are formed among the uncoordinated carboxylic oxygen atoms, sulfonate oxygen atoms, protonated nitrogen atoms, and water molecules, which provide potential proton-hopping sites for proton conduction, leading to a maximum proton conductivity of 2.3 × 10-4 S cm-1 at 368 K and 95% relative humidity. The above results suggest that rationally designed dual-functional MOFs can open an avenue for the development of occupational diagnostic tools and alternative energy technology.
Collapse
Affiliation(s)
- Ya-Nan Zhou
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China
| | - Li-Li Liu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China
| | - Qi-Wei Liu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China
| | - Xiao-Xin Liu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China
| | - Ming-Ze Feng
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China
| | - Lu Wang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China
| | - Zhen-Gang Sun
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China
| | - Yan-Yu Zhu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China
| | - Xu Zhang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China
| | - Cheng-Qi Jiao
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China
| |
Collapse
|
45
|
Gao G, Liu W, Liu G, Zhu M, Zhang Y, Wu S, Gao E. A Water‐Stable Tb(III) Metal‐Organic Framework with Multiple Fluorescent Centers for Efficient Self‐Calibration Sensing Pesticides. ChemistrySelect 2021. [DOI: 10.1002/slct.202102575] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Guoxu Gao
- International Key Laboratory of Liaoning Inorganic Molecule-Based Chemical and Department of Coordination Chemistry Shenyang University of Chemical Technology Shenyang 110142 P.R. China
| | - Wei Liu
- International Key Laboratory of Liaoning Inorganic Molecule-Based Chemical and Department of Coordination Chemistry Shenyang University of Chemical Technology Shenyang 110142 P.R. China
| | - Gongchi Liu
- International Key Laboratory of Liaoning Inorganic Molecule-Based Chemical and Department of Coordination Chemistry Shenyang University of Chemical Technology Shenyang 110142 P.R. China
| | - Mingchang Zhu
- International Key Laboratory of Liaoning Inorganic Molecule-Based Chemical and Department of Coordination Chemistry Shenyang University of Chemical Technology Shenyang 110142 P.R. China
| | - Ying Zhang
- International Key Laboratory of Liaoning Inorganic Molecule-Based Chemical and Department of Coordination Chemistry Shenyang University of Chemical Technology Shenyang 110142 P.R. China
| | - Shuangyan Wu
- International Key Laboratory of Liaoning Inorganic Molecule-Based Chemical and Department of Coordination Chemistry Shenyang University of Chemical Technology Shenyang 110142 P.R. China
| | - Enjun Gao
- International Key Laboratory of Liaoning Inorganic Molecule-Based Chemical and Department of Coordination Chemistry Shenyang University of Chemical Technology Shenyang 110142 P.R. China
- School of Chemical Engineering University of Science and Technology Liaoning Anshan 114051 P.R. China
| |
Collapse
|
46
|
|
47
|
Ghosh S, Biswas S. Ultrafast and nanomolar level detection of H 2S in aqueous medium using a functionalized UiO-66 metal-organic framework based fluorescent chemosensor. Dalton Trans 2021; 50:11631-11639. [PMID: 34355723 DOI: 10.1039/d1dt01456k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Here, we present a 4-nitrophenyl functionalized Zr-UiO-66 MOF (MOF = metal-organic framework) and its applications towards the selective, sensitive and rapid detection of H2S both in the aqueous medium and vapour phase. The MOF material was synthesized using the 2-(nitrophenoxy)terepththalic acid (H2BDC-O-Ph-NO2) linker and ZrCl4 salt in the presence of a benzoic acid modulator. It was carefully characterized by thermogravimetric analysis (TGA), elemental analysis, powder X-ray diffraction (PXRD), FT-IR spectroscopy and surface area analysis. Noticeable thermal stability up to a temperature of 390 °C under air and the considerable chemical stability in different liquid media (H2O, 1 M HCl, glacial acetic acid, NaOH in the pH = 8 to 10 range) confirmed the robustness of the MOF. The BET surface area (1040 m2 g-1) indicated the porous nature of the MOF. Remarkable selectivity of the MOF towards H2S over other potential congeners of H2S was observed in the aqueous medium. A very high fluorescence increment (∼77 fold) was observed after adding an aqueous Na2S solution to the MOF suspension. The MOF probe displayed the lowest limit of detection (12.58 nM) among the existing MOF-based chemosensors of H2S. Furthermore, it exhibited a very quick (60 s) response towards H2S detection. The MOF compound could also detect H2S in the vapour phase as well as in real water samples. Furthermore, we developed inexpensive MOF-coated paper strips for the naked-eye sensing of H2S. A thorough investigation was carried out in order to elucidate the fluorescence turn-on sensing mechanism.
Collapse
Affiliation(s)
- Subhrajyoti Ghosh
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | | |
Collapse
|
48
|
Guo Y, Han Z, Min H, Chen Z, Sun T, Wang L, Shi W, Cheng P. A Europium-Organic Framework Sensing Material for 2-Aminoacetophenone, a Bacterial Biomarker in Water. Inorg Chem 2021; 60:9192-9198. [PMID: 34105956 DOI: 10.1021/acs.inorgchem.1c01251] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
2-Aminoacetophenone (2-AA) is a metabolite produced in large quantities by the pathogenic bacteria Pseudomonas aeruginosa (PA), which is a biomarker for PA in water. State-of-the-art analytical techniques to detect PA usually require expensive instruments and a long analysis time which are not suitable for real-time water quality monitoring, especially for high-quality drinking water. Herein, we reported the application of a europium metal-organic framework (Eu-MOF) as a luminescent sensing material, which provides a facile, environmentally friendly and low-cost way for the fast detection of PA in water. Eu-MOF shows a high sensitivity toward 2-AA with a KSV value of 3.563 × 104 M-1, rapid luminescence response in 12 s and high-selectivity and anti-interference ability with the existence of common detection indexes in drinking water owing to the good match of the energy levels of Eu-MOF and 2-AA. A systematical optimization of the sensing conditions to enhance the sensing function of Eu-MOF for 2-AA was discussed in detail, to give fundamentals for the rational design of MOF-based sensing materials.
Collapse
Affiliation(s)
- Yifan Guo
- Department of Chemistry and Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zongsu Han
- Department of Chemistry and Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hui Min
- Department of Chemistry and Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhonghang Chen
- Department of Chemistry and Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Tiankai Sun
- Department of Chemistry and Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Liang Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Wei Shi
- Department of Chemistry and Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Peng Cheng
- Department of Chemistry and Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
49
|
Zhang CL, Qian JL, Zhou T, Li YQ. CONSTRUCTION OF A COBALT COORDINATION
POLYMER BASED ON A LINEAR LIGAND
WITH FLEXIBLE BRANCHED CHAINS. J STRUCT CHEM+ 2021. [DOI: 10.1134/s0022476621060111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
50
|
Jing H, Dan W, Zhu J, Ling Y, Jia Y, Yang Y, Liu X, Chen Z, Zhou Y. Multimetal lanthanide phosphonocarboxylate frameworks: structures, colour tuning and near-infrared emission. Dalton Trans 2021; 50:7380-7387. [PMID: 33960995 DOI: 10.1039/d1dt01052b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of isostructural lanthanide phosphonocarboxylate frameworks {(H3O)3[Ln7(pbpdc)6(DMF)4(H2O)3]·4H2O}n (named LnPCF, Ln = Tb, Eu and Gd, H4pbpdc = 4'-phosphono-[1,1'-biphenyl]-3,5-dicarboxylic acid) were solvothermally synthesized and characterized by the single crystal X-ray diffraction technique. By combining lanthanide cations with a phosphonocarboxylate ligand, a heptametallic lanthanide phosphonate [Ln7(PO3)6(COO)12] core was obtained. This core exhibited as a rare highly 18-connected node and was linked by the 3-connected pbpdc4- ligand, forming a (3,18)-connected framework with a novel topology of {43}6{438·676·839}. This LnPCF structure is an ideal platform for accommodating various lanthanide ions. The TbPCF and EuPCF show efficient luminescence emission due to the "antenna effect" and incorporating Gd3+ into the TbPCF results in a drastic luminescence enhancement. Fine colour tuning between green and red can be easily achieved in bimetallic TbxGd1-xPCFs. More significantly, upon combining a few percent of Nd3+ and Gd3+ with Tb3+, the resulting trimetallic Tb0.4Gd0.5Nd0.1PCF shows dual emissions of both visible and near-infrared light.
Collapse
Affiliation(s)
- Huiru Jing
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China.
| | - Wenyan Dan
- College of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jiaxing Zhu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China.
| | - Yun Ling
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China.
| | - Yu Jia
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China.
| | - Yongtai Yang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China.
| | - Xiaofeng Liu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China.
| | - Zhenxia Chen
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China.
| | - Yaming Zhou
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China.
| |
Collapse
|