1
|
Watanabe S, Yano T, An Z, Oyaizu K. Aromatic Poly(dithioacetal)s: Spanning Degradability, Thermostability, and High Refractive Index Towards Eco-friendly Optics. CHEMSUSCHEM 2024:e202401609. [PMID: 39340202 DOI: 10.1002/cssc.202401609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 09/30/2024]
Abstract
In the quest for eco-friendly optics, high refractive index polymers (HRIPs) with degradability have been one of the desirable optical materials for realizing eco-friendly and efficient lighting technologies. However, it has been challenging for HRIPs to simultaneously realize thermostability, high refractive index (RI), visible transparency, and efficient degradability, all of which are essential for their practical use. In this context, we herein focus on aromatic poly(dithioacetal)s, composed of visible-transparent yet degradable dithioacetal moieties and rigid phenylene sulfide spacers, exhibiting moderately high Tg (> 60 °C), high RI (> 1.7), and colorless film features. In addition, poly(dithioacetal)s can balance (1) high stability under the operating conditions even upon heating and (2) quantitative degradability that can selectively yield cyclic low-molecular-weight products that can be further repolymerized upon further addition of an acid catalyst. These results provide a key concept for high refractive index polymers that allow on-demand degradability and recyclability without compromising their high potential thermal and optical properties.
Collapse
Affiliation(s)
- Seigo Watanabe
- Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
- Department of Applied Chemistry, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Tomoya Yano
- Department of Applied Chemistry, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Zexin An
- Department of Applied Chemistry, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Kenichi Oyaizu
- Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
- Department of Applied Chemistry, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| |
Collapse
|
2
|
Delobel C, Panossian A, Hanquet G, Leroux FR, Toulgoat F, Billard T. Phenylseleno trifluoromethoxylation of alkenes. Beilstein J Org Chem 2024; 20:2434-2441. [PMID: 39355857 PMCID: PMC11443662 DOI: 10.3762/bjoc.20.207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/13/2024] [Indexed: 10/03/2024] Open
Abstract
Trifluoromethoxylated molecules and selenylated compounds find a wide range of interesting applications, but separately. In order to combine the potential of these two motifs and to propose a new class of compounds, we have developed an electrophilic phenylseleno trifluoromethoxylation of alkenes, which leads to β-selenylated trifluoromethoxylated compounds or, upon subsequent reduction, to the trifluoromethoxylated ones.
Collapse
Affiliation(s)
- Clément Delobel
- Institute of Chemistry and Biochemistry (ICBMS - UMR 5246), CNRS, University Claude Bernard-Lyon 1, CPE Lyon, Lyon, France
| | - Armen Panossian
- Université de Strasbourg, Université de Haute-Alsace, CNRS, UMR 7042-LIMA, ECPM, Strasbourg, France
| | - Gilles Hanquet
- Université de Strasbourg, Université de Haute-Alsace, CNRS, UMR 7042-LIMA, ECPM, Strasbourg, France
| | - Frédéric R Leroux
- Université de Strasbourg, Université de Haute-Alsace, CNRS, UMR 7042-LIMA, ECPM, Strasbourg, France
| | - Fabien Toulgoat
- Institute of Chemistry and Biochemistry (ICBMS - UMR 5246), CNRS, University Claude Bernard-Lyon 1, CPE Lyon, Lyon, France
- CPE Lyon, Lyon, France
| | - Thierry Billard
- Institute of Chemistry and Biochemistry (ICBMS - UMR 5246), CNRS, University Claude Bernard-Lyon 1, CPE Lyon, Lyon, France
| |
Collapse
|
3
|
Chen J, Bai X, Jiang H, Zhao C, Li Y, Chu M, Li Y, Zhang M, Chen L. Metal-free radical selenothiocyanation of terminal and internal alkynes. Chem Commun (Camb) 2024; 60:10196-10199. [PMID: 39192807 DOI: 10.1039/d4cc03391d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
We report herein a synthetic strategy for the generation of direct selenothiocyanation from both terminal and internal alkynes via a radical process. Alkynes derived from bioactive molecules, such as L(-)-borneol and L-menthol, are suitable for selenothiocyanation reaction. This method features metal-free conditions and readily available reagents.
Collapse
Affiliation(s)
- Jiabin Chen
- School of Environmental and Chemical Engineering, Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, Wuyi University, Jiangmen 529020, P. R. China.
| | - Xiaoyan Bai
- School of Environmental and Chemical Engineering, Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, Wuyi University, Jiangmen 529020, P. R. China.
| | - Haobo Jiang
- School of Environmental and Chemical Engineering, Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, Wuyi University, Jiangmen 529020, P. R. China.
| | - Cong Zhao
- School of Environmental and Chemical Engineering, Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, Wuyi University, Jiangmen 529020, P. R. China.
| | - Ya Li
- School of Environmental and Chemical Engineering, Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, Wuyi University, Jiangmen 529020, P. R. China.
| | - Mingming Chu
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, P. R. China.
| | - Yiming Li
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, P. R. China.
| | - Min Zhang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Rd-381, Guangzhou 510641, P. R. China.
| | - Lu Chen
- School of Environmental and Chemical Engineering, Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, Wuyi University, Jiangmen 529020, P. R. China.
| |
Collapse
|
4
|
Zhao Z, Zhang H, Yan H, Yu X, Gu L, Zhang S. Electrophotocatalytic Tellurosulfonylation of Alkynes for the Synthesis of β-(Telluro)vinyl Sulfones. Org Lett 2024; 26:6114-6119. [PMID: 38968081 DOI: 10.1021/acs.orglett.4c01831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
Difunctionalization of alkynes has gained a lot of interest in current organic chemistry. Herein, we developed an electrophotocatalytic multicomponent cascade reaction of alkynes and indoles with sulfinic acid sodium salts using elemental tellurium as the tellurium source. Using synergistic anodic oxidation and visible-light irradiation, various β-(telluro)vinyl sulfones have been prepared. This strategy features mild reaction conditions, excellent substrate scope, readily available starting materials, and great functional group tolerance.
Collapse
Affiliation(s)
- Zhiheng Zhao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou 550025, P. R. China
| | - Huiping Zhang
- College of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, P. R. China
| | - Hongyan Yan
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou 550025, P. R. China
| | - Xixi Yu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou 550025, P. R. China
| | - Lijun Gu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou 550025, P. R. China
| | - Shengyong Zhang
- School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi 710032, P. R. China
| |
Collapse
|
5
|
Kumar P, Bhalla A. Reaction Pattern and Mechanistic Aspects of Iodine and Iodine-Based Reagents in Selenylation of Aliphatic, Aromatic, and (Hetero)Cyclic Systems. Top Curr Chem (Cham) 2024; 382:12. [PMID: 38589598 DOI: 10.1007/s41061-024-00459-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 03/15/2024] [Indexed: 04/10/2024]
Abstract
Organoselenium compounds have been the subject of extensive research since the discovery of the biologically active compound ebselen. Ebselen has recently been found to show activity against the main protease of the virus responsible for COVID-19. Other organoselenium compounds are also well-known for their diverse biological activities, with such compounds exhibiting interesting physical properties relevant to the fields of electronics, materials, and polymer chemistry. In addition, the incorporation of selenium into various organic molecules has garnered significant attention due to the potential of selenium to enhance the biological activity of these molecules, particularly in conjunction with bioactive heterocycles. Iodine and iodine-based reagents play a prominent role in the synthesis of organoselenium compounds, being valued for their cost-effectiveness, non-toxicity, and ease of handling. These reagents efficiently selenylate a broad range of organic substrates, encompassing alkenes, alkynes, and cyclic, aromatic, and heterocyclic molecules. They serve as catalysts, additives, inducers, and oxidizing agents, facilitating the introduction of different functional groups at alternate positions in the molecules, thereby allowing for regioselective and stereoselective approaches. Specific iodine reagents and their combinations can be tailored to follow the desired reaction pathways. Here, we present a comprehensive review of the progress in the selenylation of organic molecules using iodine reagents over the past decade, with a focus on reaction patterns, solvent effects, heating, microwave, and ultrasonic conditions. Detailed discussions on mechanistic aspects, such as electrophilic, nucleophilic, radical, electrochemical, and ring expansion reactions via selenylation, multiselenylation, and difunctionalization, are included. The review also highlights the formation of various cyclic, heterocyclic, and heteroarenes resulting from the in situ generation of selenium intermediates, encompassing cyclic ketones, cyclic ethers, cyclic lactones, selenophenes, chromones, pyrazolines, pyrrolidines, piperidines, indolines, oxazolines, isooxazolines, lactones, dihydrofurans, and isoxazolidines. To enhance the reader's interest, the review is structured into different sections covering the selenylation of aliphatic sp2/sp carbon and cyclic sp2 carbon, and then is further subdivided into various heterocyclic molecules.
Collapse
Affiliation(s)
- Pankaj Kumar
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, UT, 160014, India
| | - Aman Bhalla
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, UT, 160014, India.
| |
Collapse
|
6
|
Laskowska A, Pacuła-Miszewska AJ, Obieziurska-Fabisiak M, Jastrzębska A, Długosz-Pokorska A, Gach-Janczak K, Ścianowski J. Synthesis of New Chiral β-Carbonyl Selenides with Antioxidant and Anticancer Activity Evaluation-Part I. MATERIALS (BASEL, SWITZERLAND) 2024; 17:899. [PMID: 38399148 PMCID: PMC10890689 DOI: 10.3390/ma17040899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024]
Abstract
A series of unsymmetrical phenyl β-carbonyl selenides with o-amido function substituted on the nitrogen atom with chiral alkyl groups was obtained. The compounds form a series of enantiomeric and diastereomeric pairs and present the first examples of this type of chiral Se derivatives. All obtained selenides were further evaluated as antioxidants and anticancer agents to define the influence of the particular stereochemistry of the attached functional groups on the bioactivity of the molecules. The highest H2O2 reduction potential was observed for N-(cis-2-hydroxy-1-indanyl)-2-((2-oxopropyl)selanyl)benzamide, and the best radical scavenging properties for N-(-1-hydroxy-2-butanyl)-2-((2-oxopropyl)selanyl)benzamide. Also, both enantiomers of the N-(1-hydroxy-2-butanyl) selenide expressed the highest cytotoxic potential towards human promyelocytic leukemia HL-60 cell line with similar IC50 values 14.4 ± 0.5 and 16.2 ± 1.1 µM, respectively. On the other hand, breast cancer cell line MCF-7 was most sensitive to N-((R)-(-)-1-hydroxy-2-butanyl)- 2-((2-oxopropyl)selanyl)benzamide (IC50 of 35.7 ± 0.6 µM). The structure-activity dependence of the obtained Se derivatives was discussed, and the most potent compounds were selected.
Collapse
Affiliation(s)
- Anna Laskowska
- Department of Organic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarin Street, 87-100 Torun, Poland; (A.L.); (A.J.P.-M.); (M.O.-F.)
| | - Agata J. Pacuła-Miszewska
- Department of Organic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarin Street, 87-100 Torun, Poland; (A.L.); (A.J.P.-M.); (M.O.-F.)
| | - Magdalena Obieziurska-Fabisiak
- Department of Organic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarin Street, 87-100 Torun, Poland; (A.L.); (A.J.P.-M.); (M.O.-F.)
| | - Aneta Jastrzębska
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarin Street, 87-100 Torun, Poland;
| | - Angelika Długosz-Pokorska
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (A.D.-P.); (K.G.-J.)
| | - Katarzyna Gach-Janczak
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (A.D.-P.); (K.G.-J.)
| | - Jacek Ścianowski
- Department of Organic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarin Street, 87-100 Torun, Poland; (A.L.); (A.J.P.-M.); (M.O.-F.)
| |
Collapse
|
7
|
Wang CS, Xu Y, Wang SP, Zheng CL, Wang G, Sun Q. Recent advances in selective mono-/dichalcogenation and exclusive dichalcogenation of C(sp 2)-H and C(sp 3)-H bonds. Org Biomol Chem 2024; 22:645-681. [PMID: 38180073 DOI: 10.1039/d3ob01847d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Organochalcogen compounds are prevalent in numerous natural products, pharmaceuticals, agrochemicals, polymers, biological molecules and synthetic intermediates. Direct chalcogenation of C-H bonds has evolved as a step- and atom-economical method for the synthesis of chalcogen-bearing compounds. Nevertheless, direct C-H chalcogenation severely lags behind C-C, C-N and C-O bond formations. Moreover, compared with the C-H monochalcogenation, reports of selective mono-/dichalcogenation and exclusive dichalcogenation of C-H bonds are relatively scarce. The past decade has witnessed significant advancements in selective mono-/dichalcogenation and exclusive dichalcogenation of various C(sp2)-H and C(sp3)-H bonds via transition-metal-catalyzed/mediated, photocatalytic, electrochemical or metal-free approaches. In light of the significance of both mono- and dichalcogen-containing compounds in various fields of chemical science and the critical issue of chemoselectivity in organic synthesis, the present review systematically summarizes the advances in these research fields, with a special focus on elucidating scopes and mechanistic aspects. Moreover, the synthetic limitations, applications of some of these processes, the current challenges and our own perspectives on these highly active research fields are also discussed. Based on the substrate types and C-H bonds being chalcogenated, the present review is organized into four sections: (1) transition-metal-catalyzed/mediated chelation-assisted selective C-H mono-/dichalcogenation or exclusive dichalcogenation of (hetero)arenes; (2) directing group-free selective C-H mono-/dichalcogenation or exclusive dichalcogenation of electron-rich (hetero)arenes; (3) C(sp3)-H dichalcogenation; (4) dichalcogenation of both C(sp2)-H and C(sp3)-H bonds. We believe the present review will serve as an invaluable resource for future innovations and drug discovery.
Collapse
Affiliation(s)
- Chang-Sheng Wang
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, PR China.
| | - Yuan Xu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637371, Singapore.
| | - Shao-Peng Wang
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, PR China.
| | - Chun-Ling Zheng
- School of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, PR China.
| | - Guowei Wang
- School of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, PR China.
| | - Qiao Sun
- School of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu Rd S., Nanjing 211816, PR China.
| |
Collapse
|
8
|
Moraes CO, Santos RBC, Cavalcante MFO, Guilhermi JS, Ali MA, Botteselle GV, Frizon TEA, Shah MIA, Lião LM, Beatriz A, Saba S, Rafique J. Urea Hydrogen Peroxide and Ethyl Lactate, an Eco-Friendly Combo System in the Direct C(sp 2)-H Bond Selenylation of Imidazo[2,1- b]thiazole and Related Structures. ACS OMEGA 2023; 8:39535-39545. [PMID: 37901565 PMCID: PMC10600889 DOI: 10.1021/acsomega.3c05338] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/27/2023] [Indexed: 10/31/2023]
Abstract
Herein, we describe a urea hydrogen peroxide-mediated sustainable protocol for the synthesis of selenylated imidazo[2,1-b]thiazole by using half molar equivalent diorganyl diselenides in ethyl lactate as a greener solvent. The reaction features high yields, easy performance on gram scale, metal-free conditions, as well as applicability to imidazopyridine and imidazopyrimidine.
Collapse
Affiliation(s)
- Cassio
A. O. Moraes
- Instituto
de Química, Universidade Federal
do Mato Grosso do Sul, Campo
Grande, Mato Grosso do Sul 79074-460, Brazil
| | - Rafaely B. C. Santos
- Instituto
de Química, Universidade Federal
do Mato Grosso do Sul, Campo
Grande, Mato Grosso do Sul 79074-460, Brazil
| | - Marcos F. O. Cavalcante
- LABSO,
Instituto de Química, Universidade
Federal de Goiás—UFG, Goiânia, Goiás 74690-900, Brazil
| | - Jhefferson S. Guilhermi
- LABSO,
Instituto de Química, Universidade
Federal de Goiás—UFG, Goiânia, Goiás 74690-900, Brazil
| | - Muhammad A. Ali
- Institute
of Chemistry (ICS), University of Peshawar—UOP, Peshawar, Khyber Pakhtunkhwa 25120, Pakistan
| | - Giancarlo V. Botteselle
- Departamento
de Química, Universidade Estadual
do Centro-Oeste—UNICENTRO, Guarapuava, Paraná 85819110, Brazil
| | - Tiago E. A. Frizon
- Universidade
Federal de Santa Catarina—UFSC, Campus Araranguá, Araranguá, Santa Catarina 88905120, Brazil
| | - Muhammad I. A. Shah
- Department
of Chemistry, Abdul Wali Khan University, Mardan, Khyber Pakhtunkhwa 23200, Pakistan
| | - Luciano M. Lião
- LABSO,
Instituto de Química, Universidade
Federal de Goiás—UFG, Goiânia, Goiás 74690-900, Brazil
| | - Adilson Beatriz
- Instituto
de Química, Universidade Federal
do Mato Grosso do Sul, Campo
Grande, Mato Grosso do Sul 79074-460, Brazil
| | - Sumbal Saba
- LABSO,
Instituto de Química, Universidade
Federal de Goiás—UFG, Goiânia, Goiás 74690-900, Brazil
| | - Jamal Rafique
- Instituto
de Química, Universidade Federal
do Mato Grosso do Sul, Campo
Grande, Mato Grosso do Sul 79074-460, Brazil
- LABSO,
Instituto de Química, Universidade
Federal de Goiás—UFG, Goiânia, Goiás 74690-900, Brazil
| |
Collapse
|
9
|
Neto JSS, Granja IJA, Scheide MR, Franco MS, Moraes CAO, Beatriz A, de Lima DP, Botteselle GV, Frizon TEA, Saba S, Rafique J, Braga AL. Catalyst- and metal-free C(sp 2)-H bond selenylation of (N-hetero)-arenes using diselenides and trichloroisocyanuric acid at room temperature. Sci Rep 2023; 13:14251. [PMID: 37652946 PMCID: PMC10471583 DOI: 10.1038/s41598-023-41430-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/26/2023] [Indexed: 09/02/2023] Open
Abstract
In this paper, we report an eco-friendly approach for the C(sp2)-H bond selenylation of imidazopyridines and other N-heteroarenes as well as simple arenes at ambient temperature. This new protocol consists of the reaction between (N-hetero)-arenes and the diorganyl-diselenides and trichloroisocyanuric acid (TCCA)-ethanol reagent system. In a short reaction time, the desired selenylated products were obtained regioselectively in good yields, with tolerance for a wide range of functional groups.
Collapse
Affiliation(s)
- José S S Neto
- Departamento de Química, Universidade Federal de Santa Catarina-UFSC, Florianópolis, SC, 88040-970, Brazil
- Instituto de Química, Universidade Federal de Goiás-UFG, Goiânia, GO, 74690-900, Brazil
| | - Isis J A Granja
- Instituto de Química, Universidade Federal de Goiás-UFG, Goiânia, GO, 74690-900, Brazil
| | - Marcos R Scheide
- Departamento de Química, Universidade Federal de Santa Catarina-UFSC, Florianópolis, SC, 88040-970, Brazil
| | - Marcelo S Franco
- Departamento de Química, Universidade Federal de Santa Catarina-UFSC, Florianópolis, SC, 88040-970, Brazil
| | - Cassio A O Moraes
- Instituto de Química, Universidade Federal do Mato Grosso do Sul-UFMS, Campo Grande, MS, 79074-460, Brazil
| | - Adilson Beatriz
- Instituto de Química, Universidade Federal do Mato Grosso do Sul-UFMS, Campo Grande, MS, 79074-460, Brazil
| | - Dênis P de Lima
- Instituto de Química, Universidade Federal do Mato Grosso do Sul-UFMS, Campo Grande, MS, 79074-460, Brazil
| | - Giancarlo V Botteselle
- Departamento de Química, Universidade Estadual do Centro-Oeste-UNICENTRO, Guarapuava, PR, 85819-110, Brazil
| | - Tiago E A Frizon
- Universidade Federal de Santa Catarina-UFSC, Campus Araranguá, Araranguá, SC, 88905-120, Brazil
| | - Sumbal Saba
- Instituto de Química, Universidade Federal de Goiás-UFG, Goiânia, GO, 74690-900, Brazil
| | - Jamal Rafique
- Instituto de Química, Universidade Federal de Goiás-UFG, Goiânia, GO, 74690-900, Brazil.
- Instituto de Química, Universidade Federal do Mato Grosso do Sul-UFMS, Campo Grande, MS, 79074-460, Brazil.
| | - Antonio L Braga
- Departamento de Química, Universidade Federal de Santa Catarina-UFSC, Florianópolis, SC, 88040-970, Brazil.
| |
Collapse
|
10
|
Li W, Bei Y, Pan X, Zhu J, Zhang Z, Zhang T, Liu J, Wu D, Li M, Wu Y, Gao J. Selenide-linked polydopamine-reinforced hybrid hydrogels with on-demand degradation and light-triggered nanozyme release for diabetic wound healing. Biomater Res 2023; 27:49. [PMID: 37202774 DOI: 10.1186/s40824-023-00367-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/21/2023] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND Multifunctional hydrogels with controllable degradation and drug release have attracted extensive attention in diabetic wound healing. This study focused on the acceleration of diabetic wound healing with selenide-linked polydopamine-reinforced hybrid hydrogels with on-demand degradation and light-triggered nanozyme release. METHODS Herein, selenium-containing hybrid hydrogels, defined as DSeP@PB, were fabricated via the reinforcement of selenol-end capping polyethylene glycol (PEG) hydrogels by polydopamine nanoparticles (PDANPs) and Prussian blue nanozymes in a one-pot approach in the absence of any other chemical additive or organic solvent based on diselenide and selenide bonding-guided crosslinking, making them accessible for large-scale mass production. RESULTS Reinforcement by PDANPs greatly increases the mechanical properties of the hydrogels, realizing excellent injectability and flexible mechanical properties for DSeP@PB. Dynamic diselenide introduction endowed the hydrogels with on-demand degradation under reducing or oxidizing conditions and light-triggered nanozyme release. The bioactivity of Prussian blue nanozymes afforded the hydrogels with efficient antibacterial, ROS-scavenging and immunomodulatory effects, which protected cells from oxidative damage and reduced inflammation. Further animal studies indicated that DSeP@PB under red light irradiation showed the most efficient wound healing activity by stimulating angiogenesis and collagen deposition and inhibiting inflammation. CONCLUSION The combined merits of DSeP@PB (on-demand degradation, light-triggered release, flexible mechanical robustness, antibacterial, ROS-scavenging and immunomodulatory capacities) enable its high potential as a new hydrogel dressing that can be harnessed for safe and efficient therapeutics for diabetic wound healing.
Collapse
Affiliation(s)
- Wenjing Li
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Ying Bei
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Xiangqiang Pan
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| | - Jian Zhu
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhengbiao Zhang
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Tinglin Zhang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Jieting Liu
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Dan Wu
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Meng Li
- Department of Dermatology, Shanghai Ninth People?s Hospital, Shanghai Jiaotong University, Shanghai, 200010, China.
| | - Yan Wu
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China.
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
11
|
Laskowska A, Pacuła-Miszewska AJ, Obieziurska-Fabisiak M, Jastrzębska A, Gach-Janczak K, Janecka A, Ścianowski J. Facile synthesis of chiral phenylselenides as novel antioxidants and cytotoxic agents. RSC Adv 2023; 13:14698-14702. [PMID: 37197685 PMCID: PMC10184004 DOI: 10.1039/d3ra02475j] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/08/2023] [Indexed: 05/19/2023] Open
Abstract
Organoselenium compounds are well-known for their unique biological properties, including antioxidant, anticancer and anti-inflammatory. They result from the presence of a particular Se-moiety enclosed in a structure that provides physicochemical features necessary for effective drug-target interactions. Looking for a proper drug design that considers the influence of each structural element has to be conducted. In this paper, we have synthesized a series of chiral phenylselenides, possessing an additional N-substituted amide moiety, and evaluated their antioxidant and anticancer potential. The presented derivatives, as a group of enantiomeric and diastereomeric pairs, enabled a thorough investigation of the 3D structure-activity dependence in correlation with the presence of the phenylselanyl group as the potential pharmacophore. The N-indanyl derivatives possessing a cis- and trans-2-hydroxy group were selected as the most promising antioxidants and anticancer agents.
Collapse
Affiliation(s)
- Anna Laskowska
- Department of Organic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University 7 Gagarin Street 87-100 Torun Poland
| | - Agata J Pacuła-Miszewska
- Department of Organic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University 7 Gagarin Street 87-100 Torun Poland
| | - Magdalena Obieziurska-Fabisiak
- Department of Organic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University 7 Gagarin Street 87-100 Torun Poland
| | - Aneta Jastrzębska
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University 7 Gagarin Street 87-100 Torun Poland
| | - Katarzyna Gach-Janczak
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University of Lodz 6/8 Mazowiecka Street 92-215 Lodz Poland
| | - Anna Janecka
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University of Lodz 6/8 Mazowiecka Street 92-215 Lodz Poland
| | - Jacek Ścianowski
- Department of Organic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University 7 Gagarin Street 87-100 Torun Poland
| |
Collapse
|
12
|
Tian SY, Ai JJ, Han JH, Rao W, Shen SS, Sheng D, Wang SY. Photoinduced Construction of Thieno[3,4- c]quinolin-4(5 H)-ones/Selenopheno[3,4- c]quinolin-4(5 H)-ones Using Diphenyl Disulfide or Diphenyl Diselenide as Sulfur or Selenium Sources. J Org Chem 2023; 88:828-837. [PMID: 36577098 DOI: 10.1021/acs.joc.2c01999] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A photocatalytic synthesis of thieno[3,4-c]quinolin-4(5H)-ones/selenopheno[3,4-c]quinolin-4(5H)-ones using diphenyl disulfide or diphenyl diselenide as sulfur or selenium sources was developed. Two C-S/Se bonds and one C-C bond were constructed simultaneously without transition metals and other additives.
Collapse
Affiliation(s)
- Shi-Yin Tian
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Jing-Jing Ai
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Jia-Hui Han
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Weidong Rao
- Key Laboratory of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Shu-Su Shen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 99, Xuefu Road, Huqiu District, Suzhou 215009, P. R. China
| | - Daopeng Sheng
- Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Shun-Yi Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
13
|
de Zordo‐Banliat A, Grollier K, Vigier J, Jeanneau E, Dagousset G, Pegot B, Magnier E, Billard T. Vinylic Trifluoromethylselenolation via Pd‐Catalyzed C−H Activation. Chemistry 2022; 28:e202202299. [DOI: 10.1002/chem.202202299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Indexed: 12/13/2022]
Affiliation(s)
- Arnaud de Zordo‐Banliat
- Institut Lavoisier de Versailles (UMR CNRS 8180) Université Paris-Saclay UVSQ CNRS 78035 Versailles France
| | - Kevin Grollier
- Institute of Chemistry and Biochemistry (ICBMS-UMR CNRS 5246) Univ Lyon CNRS Université Lyon 1 CPE Lyon 1 rue Victor Grignard 69622 Lyon France
| | - Jordan Vigier
- Institute of Chemistry and Biochemistry (ICBMS-UMR CNRS 5246) Univ Lyon CNRS Université Lyon 1 CPE Lyon 1 rue Victor Grignard 69622 Lyon France
| | - Erwann Jeanneau
- Centre de Diffractométrie Henri Longchambon Univ Lyon Université Lyon 1 5 rue de la Doua 69100 Villeurbanne France
| | - Guillaume Dagousset
- Institut Lavoisier de Versailles (UMR CNRS 8180) Université Paris-Saclay UVSQ CNRS 78035 Versailles France
| | - Bruce Pegot
- Institut Lavoisier de Versailles (UMR CNRS 8180) Université Paris-Saclay UVSQ CNRS 78035 Versailles France
| | - Emmanuel Magnier
- Institut Lavoisier de Versailles (UMR CNRS 8180) Université Paris-Saclay UVSQ CNRS 78035 Versailles France
| | - Thierry Billard
- Institute of Chemistry and Biochemistry (ICBMS-UMR CNRS 5246) Univ Lyon CNRS Université Lyon 1 CPE Lyon 1 rue Victor Grignard 69622 Lyon France
| |
Collapse
|
14
|
Peng J, Zheng N, Shen P, Zhao Z, Hu R, Tang BZ. Room temperature polymerizations of selenium and alkynones for the regioselective synthesis of poly(1,4-diselenin)s or polyselenophenes. Chem 2022. [DOI: 10.1016/j.chempr.2022.07.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
15
|
Guo R, Zhang X, Bu X, Wang M, Zhao B, Gao Y, Jia Q, Wang Y. Se
‐(Fluoromethyl) Benzenesulfonoselenoates: Shelf‐Stable, Easily Available Reagents for Monofluoromethylselenolation. Chemistry 2022; 28:e202200981. [DOI: 10.1002/chem.202200981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Rui‐Li Guo
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education School of Foreign Languages College of Chemistry & Materials Science Northwest University Xi'an 710069 P. R. China
| | - Xing‐Long Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education School of Foreign Languages College of Chemistry & Materials Science Northwest University Xi'an 710069 P. R. China
| | - Xian‐Pan Bu
- Ankang R&D Center for Se-enriched Products, Key Laboratory of Se-enriched Products Development and Quality Control Ministry of Agriculture and Rural Affairs Ankang Shaanxi 725000 P. R. China
| | - Meng‐Yue Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education School of Foreign Languages College of Chemistry & Materials Science Northwest University Xi'an 710069 P. R. China
| | - Bao‐Yin Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education School of Foreign Languages College of Chemistry & Materials Science Northwest University Xi'an 710069 P. R. China
| | - Ya‐Ru Gao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education School of Foreign Languages College of Chemistry & Materials Science Northwest University Xi'an 710069 P. R. China
| | - Qiong Jia
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education School of Foreign Languages College of Chemistry & Materials Science Northwest University Xi'an 710069 P. R. China
| | - Yong‐Qiang Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education School of Foreign Languages College of Chemistry & Materials Science Northwest University Xi'an 710069 P. R. China
| |
Collapse
|
16
|
Doerner CV, Scheide MR, Nicoleti CR, Durigon DC, Idiarte VD, Sousa MJA, Mendes SR, Saba S, Neto JSS, Martins GM, Rafique J, Braga AL. Versatile Electrochemical Synthesis of Selenylbenzo[b]Furan Derivatives Through the Cyclization of 2-Alkynylphenols. Front Chem 2022; 10:880099. [PMID: 35655705 PMCID: PMC9152116 DOI: 10.3389/fchem.2022.880099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/08/2022] [Indexed: 01/01/2023] Open
Abstract
We report an electrochemical oxidative intramolecular cyclization reaction between 2-alkynylphenol derivatives and different diselenides species to generate a wide variety of substituted-benzo[b]furans. Driven by the galvanostatic electrolysis assembled in an undivided cell, it provided efficient transformation into oxidant-, base-, and metal-free conditions in an open system at room temperature. With satisfactory functional group compatibility, the products were obtained in good to excellent yields.
Collapse
Affiliation(s)
- Carlos V. Doerner
- Departamento de Química, Universidade Federal de Santa Catarina—UFSC, Florianópolis, Brazil
| | - Marcos R. Scheide
- Departamento de Química, Universidade Federal de Santa Catarina—UFSC, Florianópolis, Brazil
| | - Celso R. Nicoleti
- Departamento de Química, Universidade Federal de Santa Catarina—UFSC, Florianópolis, Brazil
| | - Daniele C. Durigon
- Departamento de Química, Universidade Federal de Santa Catarina—UFSC, Florianópolis, Brazil
| | - Vinícius D. Idiarte
- Departamento de Química, Universidade Federal de Santa Catarina—UFSC, Florianópolis, Brazil
| | - Martinho J. A. Sousa
- Instituto de Química, Universidade Federal do Mato Grosso do Sul.—UFMS, Campo Grande, Brazil
| | - Samuel R. Mendes
- Departamento de Química, Universidade do Estado de Santa Catarina, Joinville, Brazil
| | - Sumbal Saba
- Instituto de Química, Universidade Federal de Goiás—UFG, Goiânia, Brazil
| | - José S. S. Neto
- Departamento de Química, Universidade Federal de Santa Catarina—UFSC, Florianópolis, Brazil
| | - Guilherme M. Martins
- Departamento de Química, Universidade Federal de Santa Catarina—UFSC, Florianópolis, Brazil
- *Correspondence: Guilherme M. Martins, ; Jamal Rafique, , ; Antonio L. Braga,
| | - Jamal Rafique
- Instituto de Química, Universidade Federal do Mato Grosso do Sul.—UFMS, Campo Grande, Brazil
- Instituto de Química, Universidade Federal de Goiás—UFG, Goiânia, Brazil
- *Correspondence: Guilherme M. Martins, ; Jamal Rafique, , ; Antonio L. Braga,
| | - Antonio L. Braga
- Departamento de Química, Universidade Federal de Santa Catarina—UFSC, Florianópolis, Brazil
- Department of Chemical Sciences, Faculty of Science, University of Johannesburg, Doornfontein, South Africa
- *Correspondence: Guilherme M. Martins, ; Jamal Rafique, , ; Antonio L. Braga,
| |
Collapse
|
17
|
Grollier K, Ghiazza C, Tlili A, Billard T, Médebielle M, Vantourout JC. Electrochemical Trifluoromethylselenolation of Activated Alkyl Halides. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kevin Grollier
- ICBMS: Institut de Chimie et Biochimie Moleculaires et Supramoleculaires Chemistry FRANCE
| | - Clément Ghiazza
- ICBMS: Institut de Chimie et Biochimie Moleculaires et Supramoleculaires Chemistry FRANCE
| | - Anis Tlili
- ICBMS: Institut de Chimie et Biochimie Moleculaires et Supramoleculaires Chemistry FRANCE
| | - Thierry Billard
- ICBMS: Institut de Chimie et Biochimie Moleculaires et Supramoleculaires Chemistry FRANCE
| | - Maurice Médebielle
- ICBMS: Institut de Chimie et Biochimie Moleculaires et Supramoleculaires Chemistry FRANCE
| | - Julien Christian Vantourout
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires UMR 5246 - SMITh 1 rue Victor GrignardBâtiment LEDERER 69622 Villeurbanne Cedex FRANCE
| |
Collapse
|
18
|
Goulart HA, Bartz RH, Peglow TJ, Barcellos AM, Cervo R, Cargnelutti R, Jacob RG, Lenardão EJ, Perin G. Synthesis of Seleno-Dibenzocycloheptenones/Spiro[5.5]Trienones by Radical Cyclization of Biaryl Ynones. J Org Chem 2022; 87:4273-4283. [PMID: 35245049 DOI: 10.1021/acs.joc.1c03112] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We report herein an alternative method for the synthesis of seleno-dibenzocycloheptenones and seleno-spiro[5.5]trienones through the radical cyclization of biaryl ynones in the presence of diorganyl diselenides, using Oxone as a green oxidizing agent. The reactions were conducted using acetonitrile as the solvent in a sealed tube at 100 °C. The protocol is operationally simple and scalable, exhibits high regioselectivity, and allows the synthesis of 24 dibenzocycloheptenones/spiro[5.5]trienones in yields of up to 99%, 17 of which are unpublished compounds. Additionally, synthetic transformations of the prepared compounds, such as oxidation and reduction reactions, are demonstrated.
Collapse
Affiliation(s)
- Helen A Goulart
- Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354-96010-900, Pelotas, RS, Brazil
| | - Ricardo H Bartz
- Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354-96010-900, Pelotas, RS, Brazil
| | - Thiago J Peglow
- Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354-96010-900, Pelotas, RS, Brazil
| | - Angelita M Barcellos
- Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354-96010-900, Pelotas, RS, Brazil
| | - Rodrigo Cervo
- Departamento de Química, CCNE, Universidade Federal de Santa Maria - UFSM, 97105-900, Santa Maria, RS, Brazil
| | - Roberta Cargnelutti
- Departamento de Química, CCNE, Universidade Federal de Santa Maria - UFSM, 97105-900, Santa Maria, RS, Brazil
| | - Raquel G Jacob
- Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354-96010-900, Pelotas, RS, Brazil
| | - Eder J Lenardão
- Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354-96010-900, Pelotas, RS, Brazil
| | - Gelson Perin
- Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354-96010-900, Pelotas, RS, Brazil
| |
Collapse
|
19
|
Paixão DB, Soares EGO, Salles HD, Silva CDG, Rampon DS, Schneider PH. Rongalite in PEG-400 as a general and reusable system for the synthesis of 2,5-disubstituted chalcogenophenes. Org Chem Front 2022. [DOI: 10.1039/d2qo01069k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herein we report the use of rongalite in PEG-400 as a general, efficient, and environmentally benign reductive system for the synthesis of a wide range of 2,5-disubstituted chalcogenophenes from elemental sulfur, selenium and tellurium.
Collapse
Affiliation(s)
- Douglas B. Paixão
- Instituto de Química, Departamento de Química Orgânica, Universidade Federal do Rio Grande do Sul (UFRGS), P.O. Box 15003, 91501-970, Porto Alegre, RS, Brazil
| | - Eduardo G. O. Soares
- Instituto de Química, Departamento de Química Orgânica, Universidade Federal do Rio Grande do Sul (UFRGS), P.O. Box 15003, 91501-970, Porto Alegre, RS, Brazil
| | - Helena D. Salles
- Instituto de Química, Departamento de Química Orgânica, Universidade Federal do Rio Grande do Sul (UFRGS), P.O. Box 15003, 91501-970, Porto Alegre, RS, Brazil
| | - Caren D. G. Silva
- Instituto de Química, Departamento de Química Orgânica, Universidade Federal do Rio Grande do Sul (UFRGS), P.O. Box 15003, 91501-970, Porto Alegre, RS, Brazil
| | - Daniel S. Rampon
- Laboratório de Polímeros e Catálise (LAPOCA), Departamento de Química, Universidade Federal do Paraná (UFPR), P.O. Box 19061, 81531-990, Curitiba, PR, Brazil
| | - Paulo H. Schneider
- Instituto de Química, Departamento de Química Orgânica, Universidade Federal do Rio Grande do Sul (UFRGS), P.O. Box 15003, 91501-970, Porto Alegre, RS, Brazil
| |
Collapse
|
20
|
Abdtawfeeq TH, Mahmood EA, Azimi SB, Kadhim MM, Kareem RT, Charati FR, Vessally E. Direct selenosulfonylation of unsaturated compounds: a review. RSC Adv 2022; 12:30564-30576. [PMID: 36337948 PMCID: PMC9597415 DOI: 10.1039/d2ra04128f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/21/2022] [Indexed: 11/05/2022] Open
Abstract
In this review, we have discussed recent developments on the direct selenosulfonylation of unsaturated compounds which lead to the formation of two new carbon-sulfur and carbon-selenium bonds in a single operation. The reactions were classified based on the type of starting unsaturated compound and product. Thus, the review is divided into three major sections. The first describes the current literature on selenosulfonylation of alkenes. The second section covers the available literature on selenosulfonylation of alkynes. The third focuses exclusively on selenosulfonylation of allenes. In this review, we have discussed recent developments on the direct selenosulfonylation of unsaturated compounds which lead to the formation of two new carbon-sulfur and carbon-selenium bonds in a single operation.![]()
Collapse
Affiliation(s)
| | - Evan Abdulkareem Mahmood
- Medical Laboratory Sciences Department, College of Health Sciences, University of Human DevelopmentSulaymaniyahIraq
| | - Seyedeh Bahareh Azimi
- Assessment and Environment Risks Department, Research Center and Environment and Sustainable Development (RCESD)TehranIran
| | - Mustafa M. Kadhim
- Dental Department, Kut University CollegeKutWasit52001Iraq,Research Center, Al-Turath University CollegeBaghdadIraq
| | | | - Faramarz Rostami Charati
- Research Center for Conservation of Culture Relicst (RCCCR), Research Institute of Cultural Heritage & TourismTehranIran
| | - Esmail Vessally
- Department of Chemistry, Payame Noor UniversityP.O. Box 19395-4697TehranIran
| |
Collapse
|
21
|
Preparation of highly transparent poly(meth)acrylates with enhanced refractive indices by radical (co)polymerization of seleno(meth)acrylates. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
22
|
Xu B, Liu S, Li Y, Zhang J, Pan X, Zhu J. Synthesis of Precisely Structured Olefin Copolymers by Phenylseleno Oxidation Elimination. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Bin Xu
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis Department of Polymer Science and Engineering College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 P. R. China
| | - Shaoxiang Liu
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis Department of Polymer Science and Engineering College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 P. R. China
| | - Yingying Li
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis Department of Polymer Science and Engineering College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 P. R. China
| | - Jiandong Zhang
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis Department of Polymer Science and Engineering College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 P. R. China
| | - Xiangqiang Pan
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis Department of Polymer Science and Engineering College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 P. R. China
| | - Jian Zhu
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis Department of Polymer Science and Engineering College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 P. R. China
| |
Collapse
|
23
|
Yaqoob M, Abbasi M, Anwar H, Iqbal J, Asad M, Asiri AM, Iqbal MA. Dative behavior of N-heterocyclic carbenes (NHCs) with selenium in Se-NHC compounds. REV INORG CHEM 2021. [DOI: 10.1515/revic-2021-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
N-heterocyclic carbenes (NHCs) are an eminent class of carbenes having a heterocyclic ring in which a divalent carbon atom is attached directly to a nitrogen atom. In the NHCs, the donation of lone pair is another important research in the dative bonding and not only in NHCs the dative bond plays a functionalized role in the other classes of complex formation like ylidones L → E ← L and carbones L → C ← L. M–NHC bond is L-M sigma-dative bond and NHCs are considered as strong sigma-donor ligands. The clear picture of the M–NHC bond can be better understood by M–NHC pi-interaction. M-L pi interaction is comprised of two steps. One is L → M sigma-donation and M → L π* back bonding. This dative donor nature of NHC and also its behavior in organoselenium is studied through DFT in which it’s optimized structure, bond lengths, molecular vibrations are calculated.
Collapse
Affiliation(s)
- Munazzah Yaqoob
- Department of Chemistry , University of Agriculture Faisalabad , Faisalabad 38040 , Pakistan
| | - Mahvish Abbasi
- Department of Chemistry , University of Agriculture Faisalabad , Faisalabad 38040 , Pakistan
| | - Hira Anwar
- Department of Chemistry , University of Agriculture Faisalabad , Faisalabad 38040 , Pakistan
| | - Javed Iqbal
- Department of Chemistry , University of Agriculture Faisalabad , Faisalabad 38040 , Pakistan
| | - Mohammad Asad
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University , P.O. Box 80203 , Jeddah 21589 , Saudi Arabia
- Chemistry Department , Faculty of Science, King Abdulaziz University , P.O. Box 80203 , Jeddah 21589 , Saudi Arabia
| | - Abdullah M. Asiri
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University , P.O. Box 80203 , Jeddah 21589 , Saudi Arabia
- Chemistry Department , Faculty of Science, King Abdulaziz University , P.O. Box 80203 , Jeddah 21589 , Saudi Arabia
| | - Muhammad Adnan Iqbal
- Department of Chemistry , University of Agriculture Faisalabad , Faisalabad 38040 , Pakistan
- Organometallic & Coordination Chemistry Laboratory , University of Agriculture Faisalabad , Faisalabad 38040 , Pakistan
| |
Collapse
|
24
|
Synthesis and Antibacterial Activity of Selenium-functionalized Poly(ε-caprolactone). CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2638-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
25
|
Fe-mediated nucleophilic trifluoromethylselenolation of activated alkyl bromides via umpolung reactivity of trifluoromethyl tolueneselenosulfinate. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
26
|
Liu S, Pan X, Zhu J. A facile strategy to construct versatile fluorescent probes for the detection of Au3+ and nitroaromatic. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.105017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
27
|
Photo masking via breaking alkyl C Se bond of selenium-containing maleimide polymers by ultraviolet light. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Wu X, He J, Hu R, Tang BZ. Room-Temperature Metal-Free Multicomponent Polymerizations of Elemental Selenium toward Stable Alicyclic Poly(oxaselenolane)s with High Refractive Index. J Am Chem Soc 2021; 143:15723-15731. [PMID: 34520199 DOI: 10.1021/jacs.1c06732] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Selenium-containing polymers are a group of fascinating functional polymers with unique structures, properties, and applications, which have been developed recently but only with limited examples. The challenges of developing selenium-containing polymers with structural and functional diversity include the lack of economic and safe monomers, lack of efficient and convenient synthetic approaches, and poor stability of selenium-involving covalent bonds. In this work, room-temperature metal-free multicomponent polymerizations (MCPs) of elemental selenium, diisocyanides, and dipropargyl alcohols were developed, and polymers with a selenium-containing aliphatic heterocycle, 1,3-oxaselenolane, were synthesized through these MCPs directly from elemental selenium. The alicyclic poly(oxaselenolane)s enjoyed high yields (up to 93%), high molecular weights (up to 15 600 g/mol), high thermal and chemical stability, good solubility and processability. With the structural design of the poly(oxaselenolane)s and their high selenium contents of up to 33.7 wt %, the refractive indices of their spin-coated thin films could reach 1.8026 at 633 nm and maintain 1.7770 at 1700 nm. It is anticipated that these efficient, convenient, mild, and economic multicomponent polymerizations of elemental selenium can promote the selenium-related polymer chemistry and accelerate the exploration of diversified selenium-containing functional polymer materials.
Collapse
Affiliation(s)
- Xiuying Wu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Junxia He
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Rongrong Hu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China.,Shenzhen Institute of Molecular Aggregate Science and Engineering, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen City, Guangdong 518172, China.,AIE Institute, Guangzhou 510530, China
| |
Collapse
|
29
|
Grollier K, Chefdeville E, Jeanneau E, Billard T. Aromatic Trifluoromethylselenolation via Pd-catalyzed C-H functionalization. Chemistry 2021; 27:12910-12916. [PMID: 34142744 DOI: 10.1002/chem.202102121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Indexed: 01/15/2023]
Abstract
The synthesis of trifluoromethylselenolated aromatic molecules via an auxiliary-assisted, palladium catalyzed, C-H bonds functionalization with trifluoromethyl tolueneselenosulfonate as reagent is described. The mono- or bis-products can be preferentially formed. Some mechanistic investigations were realized to better understand the reaction. This methodology was also extended to fluoroalkylselenyl groups.
Collapse
Affiliation(s)
- Kevin Grollier
- Institute of Chemistry and Biochemistry (ICBMS - UMR CNRS 5246), Univ Lyon, CNRS, Université Lyon 1, 43 Bd du 11 novembre 1918, 69622, Lyon, France
| | - Emmanuel Chefdeville
- NMR Centre Univ Lyon, Université Lyon 1, CNRS, 43 Bd du 11 novembre 1918, 69622, Lyon, France
| | - Erwann Jeanneau
- Centre de Diffractométrie Henri Longchambon, Univ Lyon, Université Lyon 1, 5 rue de la Doua, 69100, Villeurbanne, France
| | - Thierry Billard
- Institute of Chemistry and Biochemistry (ICBMS - UMR CNRS 5246), Univ Lyon, CNRS, Université Lyon 1, 43 Bd du 11 novembre 1918, 69622, Lyon, France.,CERMEP - In vivo imaging, Groupement Hospitalier Est, 59 Bd Pinel, 69677, Lyon, France
| |
Collapse
|
30
|
Eom T, Khan A. Micellar Assembly and Disassembly of Organoselenium Block Copolymers through Alkylation and Dealkylation Processes. Polymers (Basel) 2021; 13:2456. [PMID: 34372061 PMCID: PMC8348486 DOI: 10.3390/polym13152456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 11/17/2022] Open
Abstract
The aim of this work is to demonstrate that the alkylation and dealkylation of selenium atoms is an effective tool in controlling polymer amphiphilicity and, hence, its assembly and disassembly process in water. To establish this concept, poly(ethylene glycol)-block-poly(glycidyl methacrylate) was prepared. A post-synthesis modification with phenyl selenolate through a base-catalyzed selenium-epoxy 'click' reaction then gave rise to the side-chain selenium-containing block copolymer with an amphiphilic character. This polymer assembled into micellar structures in water. However, silver tetrafluoroborate-promoted alkylation of the selenium atoms resulted in the formation of hydrophilic selenonium tetrafluoroborate salts. This enhancement in the chemical polarity of the second polymer block removed the amphiphilic character from the polymer chain and led to the disassembly of the micellar structures. This process could be reversed by restoring the original amphiphilic polymer character through the dealkylation of the cations.
Collapse
Affiliation(s)
| | - Anzar Khan
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul 02841, Korea;
| |
Collapse
|
31
|
Botteselle GV, Elias WC, Bettanin L, Canto RFS, Salin DNO, Barbosa FAR, Saba S, Gallardo H, Ciancaleoni G, Domingos JB, Rafique J, Braga AL. Catalytic Antioxidant Activity of Bis-Aniline-Derived Diselenides as GPx Mimics. Molecules 2021; 26:molecules26154446. [PMID: 34361597 PMCID: PMC8347129 DOI: 10.3390/molecules26154446] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 12/02/2022] Open
Abstract
Herein, we describe a simple and efficient route to access aniline-derived diselenides and evaluate their antioxidant/GPx-mimetic properties. The diselenides were obtained in good yields via ipso-substitution/reduction from the readily available 2-nitroaromatic halides (Cl, Br, I). These diselenides present GPx-mimetic properties, showing better antioxidant activity than the standard GPx-mimetic compounds, ebselen and diphenyl diselenide. DFT analysis demonstrated that the electronic properties of the substituents determine the charge delocalization and the partial charge on selenium, which correlate with the catalytic performances. The amino group concurs in the stabilization of the selenolate intermediate through a hydrogen bond with the selenium.
Collapse
Affiliation(s)
- Giancarlo V. Botteselle
- Departamento de Química, Universidade Estadual do Centro-Oeste (UNICENTRO), Guarapuava 85040-167, PR, Brazil
- Correspondence: (G.V.B.); (J.R.); (A.L.B.)
| | - Welman C. Elias
- Departamento de Química, Universidade Federal de Santa Catarina (UFSC), Florianópolis 88040-970, SC, Brazil; (W.C.E.); (L.B.); (D.N.O.S.); (F.A.R.B.); (H.G.); (J.B.D.)
| | - Luana Bettanin
- Departamento de Química, Universidade Federal de Santa Catarina (UFSC), Florianópolis 88040-970, SC, Brazil; (W.C.E.); (L.B.); (D.N.O.S.); (F.A.R.B.); (H.G.); (J.B.D.)
| | - Rômulo F. S. Canto
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, RS, Brazil;
| | - Drielly N. O. Salin
- Departamento de Química, Universidade Federal de Santa Catarina (UFSC), Florianópolis 88040-970, SC, Brazil; (W.C.E.); (L.B.); (D.N.O.S.); (F.A.R.B.); (H.G.); (J.B.D.)
| | - Flavio A. R. Barbosa
- Departamento de Química, Universidade Federal de Santa Catarina (UFSC), Florianópolis 88040-970, SC, Brazil; (W.C.E.); (L.B.); (D.N.O.S.); (F.A.R.B.); (H.G.); (J.B.D.)
| | - Sumbal Saba
- Instituto de Química—IQ, Universidade Federal de Goiás—(UFG), Goiânia 74690-900, GO, Brazil;
| | - Hugo Gallardo
- Departamento de Química, Universidade Federal de Santa Catarina (UFSC), Florianópolis 88040-970, SC, Brazil; (W.C.E.); (L.B.); (D.N.O.S.); (F.A.R.B.); (H.G.); (J.B.D.)
| | - Gianluca Ciancaleoni
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy;
| | - Josiel B. Domingos
- Departamento de Química, Universidade Federal de Santa Catarina (UFSC), Florianópolis 88040-970, SC, Brazil; (W.C.E.); (L.B.); (D.N.O.S.); (F.A.R.B.); (H.G.); (J.B.D.)
| | - Jamal Rafique
- Instituto de Química—INQUI, Universidade Federal do Mato Grosso do Sul (UFMS), Campo Grande 79074-460, MS, Brazil
- Correspondence: (G.V.B.); (J.R.); (A.L.B.)
| | - Antonio L. Braga
- Departamento de Química, Universidade Federal de Santa Catarina (UFSC), Florianópolis 88040-970, SC, Brazil; (W.C.E.); (L.B.); (D.N.O.S.); (F.A.R.B.); (H.G.); (J.B.D.)
- Department of Chemical Sciences, Faculty of Science, University of Johannesburg, Doornfontein 2028, South Africa
- Correspondence: (G.V.B.); (J.R.); (A.L.B.)
| |
Collapse
|
32
|
Sun N, Zheng K, Sun P, Chen Y, Jin L, Hu B, Shen Z, Hu X. Trichloroisocyanuric Acid‐Promoted Synthesis of Arylselenides and Aryltellurides from Diorganyl Dichalcogenides and Arylboronic Acids at Ambient Temperature. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Nan Sun
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310032 People's Republic of China
| | - Kai Zheng
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310032 People's Republic of China
| | - Pengyuan Sun
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310032 People's Republic of China
| | - Yang Chen
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310032 People's Republic of China
| | - Liqun Jin
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310032 People's Republic of China
| | - Baoxiang Hu
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310032 People's Republic of China
| | - Zhenlu Shen
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310032 People's Republic of China
| | - Xinquan Hu
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310032 People's Republic of China
| |
Collapse
|
33
|
Yao Q, Wu G, Hao H, Lu H, Gao Y. Redox-Mediated Reversible Supramolecular Assemblies Driven by Switch and Interplay of Peptide Secondary Structures. Biomacromolecules 2021; 22:2563-2572. [PMID: 33961410 DOI: 10.1021/acs.biomac.1c00300] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The construction of reversible supramolecular self-assembly in vivo remains a significant challenge. Here, we demonstrate the redox-triggered reversible supramolecular self-assembly governed by the "check and balance" of two secondary conformations within a brushlike peptide-selenopolypeptide conjugate. The conjugate constitutes a polypeptide backbone whose side chain contains selenoether functional moieties and double bonds to be readily grafted with β-sheet-prone short-peptide NapFFC. The backbone of the conjugate initially assumes a robust and rigid α-helical conformation, which inhibits the supramolecular assembly of the short peptide in the side chain and yields an overall irregular aggregate morphology under native/reduced conditions. Upon oxidation of the selenoether to more hydrophilic selenoxide, the backbone helix switches to a flexible and disordered conformation, which unleashes the side-chain NapFFC self-assembly into nanofibrils via the adoption of β-sheet conformation. The reversible switch of the supramolecular morphology enables efficient loading and tumor-microenvironment-triggered release of anticancer drugs for in vivo cancer treatment with satisfactory efficacy and biocompatibility. The interplay and interaction between two well-defined secondary structures within one scaffold offer tremendous opportunity for the design and construction of functional supramolecular biomaterials.
Collapse
Affiliation(s)
- Qingxin Yao
- CAS Center of Excellence for Nanoscience, Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guangqi Wu
- Beijing National Laboratory for Molecular Sciences Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Hao Hao
- CAS Center of Excellence for Nanoscience, Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Hua Lu
- Beijing National Laboratory for Molecular Sciences Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Yuan Gao
- CAS Center of Excellence for Nanoscience, Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
34
|
Zhou J, Zhu Y. Forging C−S(Se) Bonds by Nickel‐catalyzed Decarbonylation of Carboxylic Acid and Cleavage of Aryl Dichalcogenides. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jing‐Ya Zhou
- College of Pharmaceutical Sciences Soochow University Suzhou 215123 China
| | - Yong‐Ming Zhu
- College of Pharmaceutical Sciences Soochow University Suzhou 215123 China
| |
Collapse
|
35
|
Grollier K, De Zordo‐Banliat A, Bourdreux F, Pegot B, Dagousset G, Magnier E, Billard T. (Trifluoromethylselenyl)methylchalcogenyl as Emerging Fluorinated Groups: Synthesis under Photoredox Catalysis and Determination of the Lipophilicity. Chemistry 2021; 27:6028-6033. [DOI: 10.1002/chem.202100053] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Indexed: 12/28/2022]
Affiliation(s)
- Kevin Grollier
- Institute of Chemistry and Biochemistry (ICBMS, UMR CNRS 5246) Univ Lyon, Université Lyon 1, CNRS, CPE INSA 43 Bd du 11 novembre 1918 69622 Villeurbanne France
| | - Arnaud De Zordo‐Banliat
- Institut Lavoisier de Versailles UMR CNRS 8180) Université Paris-Saclay, UVSQ, CNRS 78035 Versailles France
| | - Flavien Bourdreux
- Institut Lavoisier de Versailles UMR CNRS 8180) Université Paris-Saclay, UVSQ, CNRS 78035 Versailles France
| | - Bruce Pegot
- Institut Lavoisier de Versailles UMR CNRS 8180) Université Paris-Saclay, UVSQ, CNRS 78035 Versailles France
| | - Guillaume Dagousset
- Institut Lavoisier de Versailles UMR CNRS 8180) Université Paris-Saclay, UVSQ, CNRS 78035 Versailles France
| | - Emmanuel Magnier
- Institut Lavoisier de Versailles UMR CNRS 8180) Université Paris-Saclay, UVSQ, CNRS 78035 Versailles France
| | - Thierry Billard
- Institute of Chemistry and Biochemistry (ICBMS, UMR CNRS 5246) Univ Lyon, Université Lyon 1, CNRS, CPE INSA 43 Bd du 11 novembre 1918 69622 Villeurbanne France
- CERMEP-In vivo imaging 59 Bd Pinel 69677 Lyon France
| |
Collapse
|
36
|
Rafique J, Rampon DS, Azeredo JB, Coelho FL, Schneider PH, Braga AL. Light-mediated Seleno-Functionalization of Organic Molecules: Recent Advances. CHEM REC 2021; 21:2739-2761. [PMID: 33656248 DOI: 10.1002/tcr.202100006] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/12/2021] [Accepted: 02/18/2021] [Indexed: 01/21/2023]
Abstract
Organoselenium compounds constitute an important class of substances with applications in the biological, medicinal and material sciences as well as in modern organic synthesis, attracting considerable attention from the scientific community. Therefore, the construction of the C-Se bond via facile, efficient and sustainable strategies to access complex scaffolds from simple substrates are an appealing and hot topic. Visible light can be regarded as an alternative source of energy and is associated with environmentally-friendly processes. Recently, the use of visible-light mediated seleno-functionalization has emerged as an ideal and powerful route to obtain high-value selenylated products, with diminished cost and waste. This approach, involving photo-excited substrates/catalyst and single-electron transfer (SET) between substrates in the presence of visible light has been successfully used in the versatile and direct insertion of organoselenium moieties in activated and unactivated C(sp3 )-H, C(sp2 )-H, C(sp)-H bonds as well as C-heteroatom bonds. In most cases, ease of operation and accessibility of the light source (LEDs or commercial CFL bulbs) makes this approach more attractive and sustainable than the traditional strategies.
Collapse
Affiliation(s)
- Jamal Rafique
- Instituto de Química (INQUI), Universidade Federal de Mato Grosso do Sul -UFMS, Campo Grande, 79074-460, MS -, Brazil
| | - Daniel S Rampon
- Departamento de Química, Universidade Federal do Paraná (UFPR), Curitiba, 81531-990, PR Brazil
| | - Juliano B Azeredo
- Departamento de Farmácia, Universidade Federal do Pampa, Uruguaiana, 97500-970, RS -, Brazil
| | - Felipe L Coelho
- Instituto de Química, Departamento de Química Orgânica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, 91501-970, RS, Brazil
| | - Paulo H Schneider
- Instituto de Química, Departamento de Química Orgânica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, 91501-970, RS, Brazil
| | - Antonio L Braga
- Departamento de Química, Universidade Federal de Santa Catarina-UFSC, Florianópolis, 88040-900, SC, Brazil
| |
Collapse
|
37
|
Liu S, Li Q, Li Y, Zhang J, Pan X, Zhu J, Zhu X. Controllable Radical Polymerization of Selenide Functionalized Vinyl Monomers and Its Application in Redox Responsive Photonic Crystals. Macromol Rapid Commun 2021; 42:e2000764. [PMID: 33544949 DOI: 10.1002/marc.202000764] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/24/2021] [Indexed: 12/30/2022]
Abstract
Selenium-containing monomer (p-phenylseleno) styrene (p-PhSeSt) is polymerized by reversible addition-fragmentation chain transfer polymerization. Polymer, (P(p-PhSeSt)), with controlled molecular weight and narrow molecular weight is obtained. The selenide moiety in obtained P(p-PhSeSt) can be selectively oxidized to selenoxide or selenone groups by H2 O2 or NaClO, respectively. These oxidized groups can be further reduced to selenide by Na2 S2 O4 . The structure changing of polymers during such redox cycle is characterized by nuclear magnetic resonance, X-ray photoelectron spectroscopy, and size exclusion chromatography. Properties, such as thermal performance, glass transition temperature, water contact angles, and refractive indices, of the resulting polymers are systematically investigated before and after oxidation. In addition, SiO2 inverse opal photonic crystal (IOPC) is fabricated by sacrificial polymer colloidal template method. Owing to changes of the RIs of P(p-PhSeSt) after selective oxidation, the predictable change of PC bandgap as a redox-responsive PC sensor is successfully realized, which provides new perspectives for modulating photonic crystals.
Collapse
Affiliation(s)
- Shaoxiang Liu
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Qilong Li
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Yingying Li
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Jiandong Zhang
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Xiangqiang Pan
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Jian Zhu
- State Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Xiulin Zhu
- Department of Polymer Science and Engineering, College of Chemistry Chemical Engineering and RIRI Science, Soochow University, Suzhou, 215123, P. R. China.,Global Institute of Software Technology, Suzhou, 215163, P. R. China
| |
Collapse
|
38
|
Lin X, Li J, Zhang J, Liu S, Lin X, Pan X, Zhu J, Zhu X. Living cationic polymerization of vinyl ethers initiated by electrophilic selenium reagents under ambient conditions. Polym Chem 2021. [DOI: 10.1039/d0py01691h] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We present a living cationic polymerization of vinyl ethers utilizing electrophilic selenium reagents as initiators and pentacarbonylbromomanganese (Mn(CO)5Br) as the catalyst.
Collapse
Affiliation(s)
- Xia Lin
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Jiajia Li
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Jiandong Zhang
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Shaoxiang Liu
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Xiaofang Lin
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Xiangqiang Pan
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Jian Zhu
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Xiulin Zhu
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| |
Collapse
|
39
|
Abstract
A one-pot four-component synthesis of diselenocarbamates was established from the combination of diselanes, selenium powder, chloroform and amines under mild conditions.
Collapse
Affiliation(s)
- Lai Li
- College of Chemistry and Materials Engineering, Wenzhou University, Chashan University Town, Wenzhou, Zhejiang Province 325035, People's Republic of China
| | - Xiaohong Peng
- College of Chemistry and Materials Engineering, Wenzhou University, Chashan University Town, Wenzhou, Zhejiang Province 325035, People's Republic of China
| | - Jianmei Lu
- College of Chemistry and Materials Engineering, Wenzhou University, Chashan University Town, Wenzhou, Zhejiang Province 325035, People's Republic of China
| | - Xuefeng Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, People's Republic of China
| |
Collapse
|
40
|
Tironi M, Dix S, Hopkinson MN. Deoxygenative nucleophilic difluoromethylselenylation of carboxylic acids and alcohols with BT-SeCF2H. Org Chem Front 2021. [DOI: 10.1039/d1qo01104a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BT-SeCF2H is introduced as a nucleophilic reagent for the deoxygenative difluoromethylselenylation of readily available carboxylic acid and alcohols.
Collapse
Affiliation(s)
- Matteo Tironi
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstrasse 34-36, 14195 Berlin, Germany
| | - Stefan Dix
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstrasse 34-36, 14195 Berlin, Germany
| | - Matthew N. Hopkinson
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstrasse 34-36, 14195 Berlin, Germany
| |
Collapse
|
41
|
Grollier K, Taponard A, De Zordo-Banliat A, Magnier E, Billard T. Metal-free nucleophilic trifluoromethylselenolation via an iodide-mediated umpolung reactivity of trifluoromethylselenotoluenesulfonate. Beilstein J Org Chem 2020; 16:3032-3037. [PMID: 33363671 PMCID: PMC7736694 DOI: 10.3762/bjoc.16.252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/02/2020] [Indexed: 12/25/2022] Open
Abstract
We report herein a practical method to generate CF3Se- (and RFSe-) anions from shelf-stable reagents under iodide activation. Metal-free nucleophilic trifluoromethylselenolations have been then performed with this in situ-generated anion. Perfluoroalkylselenolations have also been described.
Collapse
Affiliation(s)
- Kevin Grollier
- Institute of Chemistry and Biochemistry (ICBMS-UMR CNRS 5246), Univ Lyon, Université Lyon 1, CNRS, CPE, INSA, 43 Bd du 11 novembre 1918, 69622 Villeurbanne, France
| | - Alexis Taponard
- Institute of Chemistry and Biochemistry (ICBMS-UMR CNRS 5246), Univ Lyon, Université Lyon 1, CNRS, CPE, INSA, 43 Bd du 11 novembre 1918, 69622 Villeurbanne, France
| | - Arnaud De Zordo-Banliat
- Université Paris-Saclay, UVSQ, CNRS, UMR 8180, Institut Lavoisier de Versailles, 78035 Versailles Cedex, France
| | - Emmanuel Magnier
- Université Paris-Saclay, UVSQ, CNRS, UMR 8180, Institut Lavoisier de Versailles, 78035 Versailles Cedex, France
| | - Thierry Billard
- Institute of Chemistry and Biochemistry (ICBMS-UMR CNRS 5246), Univ Lyon, Université Lyon 1, CNRS, CPE, INSA, 43 Bd du 11 novembre 1918, 69622 Villeurbanne, France.,CERMEP-In vivo imaging, Groupement Hospitalier Est, 59 Bd Pinel, 69677 Lyon, France
| |
Collapse
|
42
|
Silva MS, Alves D, Hartwig D, Jacob RG, Perin G, Lenardão EJ. Selenium‐NMR Spectroscopy in Organic Synthesis: From Structural Characterization Toward New Investigations. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000582] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Márcio S. Silva
- LASOL – CCQFA Universidade Federal de Pelotas – UFPel – P.O. Box 354 – 96010-900 Pelotas, RS Brazil
| | - Diego Alves
- LASOL – CCQFA Universidade Federal de Pelotas – UFPel – P.O. Box 354 – 96010-900 Pelotas, RS Brazil
| | - Daniela Hartwig
- LASOL – CCQFA Universidade Federal de Pelotas – UFPel – P.O. Box 354 – 96010-900 Pelotas, RS Brazil
| | - Raquel G. Jacob
- LASOL – CCQFA Universidade Federal de Pelotas – UFPel – P.O. Box 354 – 96010-900 Pelotas, RS Brazil
| | - Gelson Perin
- LASOL – CCQFA Universidade Federal de Pelotas – UFPel – P.O. Box 354 – 96010-900 Pelotas, RS Brazil
| | - Eder J. Lenardão
- LASOL – CCQFA Universidade Federal de Pelotas – UFPel – P.O. Box 354 – 96010-900 Pelotas, RS Brazil
| |
Collapse
|
43
|
Eom T, Khan A. Selenonium Polyelectrolyte Synthesis through Post-Polymerization Modifications of Poly (Glycidyl Methacrylate) Scaffolds. Polymers (Basel) 2020; 12:E2685. [PMID: 33202976 PMCID: PMC7697662 DOI: 10.3390/polym12112685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 02/02/2023] Open
Abstract
Atom transfer radical polymerization of glycidyl methacrylate monomer with poly(ethylene glycol)-based macroinitiators leads to the formation of reactive block copolymers. The epoxide side-chains of these polymers can be subjected to a regiospecific base-catalyzed nucleophilic ring-opening reaction with benzeneselenol under ambient conditions. The ß-hydroxy selenide linkages thus formed can be alkylated to access polyselenonium salts. 77Se-NMR indicates the formation of diastereomers upon alkylation. In such a manner, sequential post-polymerization modifications of poly(glycidyl methacrylate) scaffolds via selenium-epoxy and selenoether alkylation reactions furnish practical access to poly(ethylene glycol)-based cationic organoselenium copolymers.
Collapse
Affiliation(s)
| | - Anzar Khan
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul 02841, Korea;
| |
Collapse
|
44
|
Grollier K, Taponard A, Ghiazza C, Magnier E, Billard T. Environmentally Compatible Access to α‐Trifluoromethylseleno‐Enones. Helv Chim Acta 2020. [DOI: 10.1002/hlca.202000185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Kevin Grollier
- Institute of Chemistry and Biochemistry (ICBMS-UMR CNRS 5246) Univ Lyon Université Lyon 1 CNRS, CPE, INSA, 43 Bd du 11 novembre 1918 FR-69622 Villeurbanne France
| | - Alexis Taponard
- Institute of Chemistry and Biochemistry (ICBMS-UMR CNRS 5246) Univ Lyon Université Lyon 1 CNRS, CPE, INSA, 43 Bd du 11 novembre 1918 FR-69622 Villeurbanne France
| | - Clément Ghiazza
- Institute of Chemistry and Biochemistry (ICBMS-UMR CNRS 5246) Univ Lyon Université Lyon 1 CNRS, CPE, INSA, 43 Bd du 11 novembre 1918 FR-69622 Villeurbanne France
| | - Emmanuel Magnier
- Université Paris-Saclay UVSQ CNRS UMR 8180 Institut Lavoisier de Versailles, FR- 78035 Versailles Cedex France
| | - Thierry Billard
- Institute of Chemistry and Biochemistry (ICBMS-UMR CNRS 5246) Univ Lyon Université Lyon 1 CNRS, CPE, INSA, 43 Bd du 11 novembre 1918 FR-69622 Villeurbanne France
- CERMEP−In vivo imaging, Groupement Hospitalier Est 59 Bd Pinel FR-69677 Lyon France
| |
Collapse
|
45
|
Eom T, Khan A. Polyselenonium salts: synthesis through sequential selenium-epoxy 'click' chemistry and Se-alkylation. Chem Commun (Camb) 2020; 56:14271-14274. [PMID: 33124621 DOI: 10.1039/d0cc06653b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
With the help of amphiphilic homopolymers, this work explores three new avenues in polymer chemistry: (i) the 'click' nature of the selenium-epoxy reaction, (ii) alkylation of the seleno-ethers as a means to prepare cationic polyelectrolytes, and (iii) the antibacterial activity of polyselenonium salts.
Collapse
Affiliation(s)
- Taejun Eom
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul 02841, Korea.
| | | |
Collapse
|