1
|
Zhou X, Wang J, Ma D, Shen Y, Zhao Y, Wu J. Electrochemical synthesis of phosphorylated azaspiro[4.5]di/trienones through dearomative spirocyclization. Chem Commun (Camb) 2024; 60:7351-7354. [PMID: 38916454 DOI: 10.1039/d4cc02638a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Cp2Fe-mediated electrochemical synthesis of a diverse array of phosphorylated azaspiro[4.5]di/trienones has been developed, which demonstrated broad substrate scope and good diastereoselectivity. It represents the first example of electrochemical synthesis of phosphorylated azaspiro[4.5]di/trienones, circumventing the need for external oxidants and high temperatures. Moreover, a plausible mechanism including radical-initiated dearomative cyclization driven by ferrocenium cations has been provided, which was supported by the related mechanistic study.
Collapse
Affiliation(s)
- Xiaocong Zhou
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China.
| | - Jian Wang
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China.
| | - Dumei Ma
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Yirui Shen
- School of Materials and Chemical Engineering, Ningbo University of Technology, 315211 Ningbo, Zhejiang, China
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China.
- College of Chemistry and Chemical Engineering, Xiamen University, 361005 Xiamen, Fujian, China
| | - Ju Wu
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China.
| |
Collapse
|
2
|
Zeng JH, Du DT, Liu BE, Zhang ZQ, Zhan ZP. Photoredox-Catalyzed Phosphonocarboxylation of Allenes with Phosphine Oxides and CO 2. J Org Chem 2023; 88:14789-14796. [PMID: 37816195 DOI: 10.1021/acs.joc.3c01583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Phosphonocarboxylation of allenes with diarylphosphine oxides and CO2 via visible-light photoredox catalysis was developed for the first time. This work provided practical and sustainable access to highly valuable but otherwise difficult-to-access linear allylic β-phosphonyl carboxylic acids in moderate yields with exclusive regio- and stereoselectivity. This method was also characterized by step and atom economy and transition-metal free and mild conditions. Preliminary mechanistic studies suggested that allyl-methyl carbanion species are the key intermediates.
Collapse
Affiliation(s)
- Jia-Hao Zeng
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361001, Fujian, People's Republic of China
| | - Deng-Tao Du
- Gulei Innovation Institute, Xiamen University, Zhangzhou 363100, Fujian, People's Republic of China
| | - Bao-En Liu
- Gulei Innovation Institute, Xiamen University, Zhangzhou 363100, Fujian, People's Republic of China
| | - Zhen-Qiang Zhang
- Yunnan Precious Metals Laboratory Company, Ltd., Kunming 650106, Yunnan, People's Republic of China
| | - Zhuang-Ping Zhan
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361001, Fujian, People's Republic of China
- Gulei Innovation Institute, Xiamen University, Zhangzhou 363100, Fujian, People's Republic of China
| |
Collapse
|
3
|
Lin D, Coe M, Krishnamurti V, Ispizua-Rodriguez X, Surya Prakash GK. Recent Advances in Visible Light-Mediated Radical Fluoro-alkylation, -alkoxylation, -alkylthiolation, -alkylselenolation, and -alkylamination. CHEM REC 2023; 23:e202300104. [PMID: 37212421 DOI: 10.1002/tcr.202300104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/20/2023] [Indexed: 05/23/2023]
Abstract
In the last few years, many reagents and protocols have been developed to allow for the efficient fluorofunctionalization of a diverse set of scaffolds ranging from alkanes, alkenes, alkynes, and (hetero)arenes. The concomitant rise of organofluorine chemistry and visible light-mediated synthesis have synergistically expanded the fields and have mutually benefitted from developments in both fields. In this context, visible light driven formations of radicals containing fluorine have been a major focus for the discovery of new bioactive compounds. This review details the recent advances and progress made in visible light-mediated fluoroalkylation and heteroatom centered radical generation.
Collapse
Affiliation(s)
- Daniel Lin
- Loker Hydrocarbon Research Institute Department of Chemistry, University of Southern California, 837 Bloom Walk, 90089-1661, Los Angeles, CA, USA
| | - Matthew Coe
- Loker Hydrocarbon Research Institute Department of Chemistry, University of Southern California, 837 Bloom Walk, 90089-1661, Los Angeles, CA, USA
| | - Vinayak Krishnamurti
- Loker Hydrocarbon Research Institute Department of Chemistry, University of Southern California, 837 Bloom Walk, 90089-1661, Los Angeles, CA, USA
| | - Xanath Ispizua-Rodriguez
- Loker Hydrocarbon Research Institute Department of Chemistry, University of Southern California, 837 Bloom Walk, 90089-1661, Los Angeles, CA, USA
| | - G K Surya Prakash
- Loker Hydrocarbon Research Institute Department of Chemistry, University of Southern California, 837 Bloom Walk, 90089-1661, Los Angeles, CA, USA
| |
Collapse
|
4
|
Hyeon Ka C, Kim S, Jin Cho E. Visible Light-Induced Metal-Free Fluoroalkylations. CHEM REC 2023; 23:e202300036. [PMID: 36942971 DOI: 10.1002/tcr.202300036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/02/2023] [Indexed: 03/23/2023]
Abstract
Fluoroalkylation is a crucial synthetic process that enables the modification of molecules with fluoroalkyl groups, which can enhance the properties of compounds and have potential applications in medicine and materials science. The utilization of visible light-induced, metal-free methods is of particular importance as it provides an environmentally friendly alternative to traditional methods and eliminates the potential risks associated with metal-catalyst toxicity. This Account describes our studies on visible light-induced, metal-free fluoroalkylation processes, which include the use of organic photocatalysts or EDA complexes. We have utilized organophotocatalysts such as Nile red, tri(9-anthryl)borane, and an indole-based tetracyclic complex, as well as catalyst-free EDA chemistry through photoactive halogen bond formation or an unconventional transient ternary complex formation with nucleophilic fluoroalkyl source. A variety of π-systems including arenes/heteroarenes, alkenes, and alkynes have been successfully fluoroalkylated under the developed reaction conditions.
Collapse
Affiliation(s)
- Cheol Hyeon Ka
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Seoyeon Kim
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Eun Jin Cho
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| |
Collapse
|
5
|
Pan F, Li H, Wang X, Luo L, Lin Y, Yu Q, Xie W, Zhang L. Synthesis of sulfur-containing benzo[ b]pyrrolo[2,1- c][1,4]oxazine-3,9-diones: blue light promoted radical cyclization process. RSC Adv 2023; 13:13911-13918. [PMID: 37197573 PMCID: PMC10184271 DOI: 10.1039/d3ra02247a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 04/30/2023] [Indexed: 05/19/2023] Open
Abstract
The selective and controllable construction of spio-tricyclic skeletons through visible light promoted radical cyclization still remains challenging. Herein, a general and convenient protocol for the blue light-promoted radical-mediated cascade spiro-cyclization/Michael addition of N-arylpropiolamides with thiophenols under metal-free conditions was developed. In this protocol, commercially available hydrochloric acid was employed as the cheap promoter and air as the sustainable oxidant. In addition, many functional groups tolerate the reaction conditions and produce a series of sulfur-containing benzo[b]pyrrolo[2,1-c][1,4]oxazine-3,9-diones.
Collapse
Affiliation(s)
- Feng Pan
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University Kunming 650224 Yunnan China
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology Xiangtan 411201 Hunan China
| | - Haohu Li
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University Kunming 650224 Yunnan China
| | | | - Liwen Luo
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University Kunming 650224 Yunnan China
| | - Yanfei Lin
- College of Biological, Chemical Sciences and Engineering, Jiaxing University Jiaxing 314001 Zhejiang China
| | - Qingkai Yu
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University Kunming 650224 Yunnan China
| | - Wenlin Xie
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology Xiangtan 411201 Hunan China
| | - Lianpeng Zhang
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University Kunming 650224 Yunnan China
| |
Collapse
|
6
|
Hu X, Guo H, Jiang H, Zheng R, Zhou Y, Wang L. Visible-light-induced C(sp 3)-H thiocyanation of pyrazolin-5-ones: a practical synthesis of 4-thiocyanated 5-hydroxy-1 H-pyrazoles. Org Biomol Chem 2023; 21:2232-2235. [PMID: 36810647 DOI: 10.1039/d3ob00092c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
A direct, aerobic and visible light photocatalytic approach to synthesize 4-thiocyanated 5-hydroxy-1H-pyrazoles via cross-coupling of pyrazolin-5-ones with ammonium thiocyanate is described. Under redox-neutral and metal-free conditions, a series of 4-thiocyanated 5-hydroxy-1H-pyrazoles could be easily and efficiently obtained in good to high yields by using low-toxicity and inexpensive ammonium thiocyanate as the thiocyanate source.
Collapse
Affiliation(s)
- Xiurong Hu
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China.,School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China.
| | - Haichang Guo
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China.
| | - Huajiang Jiang
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China.
| | - Renhua Zheng
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China.
| | - Yaqin Zhou
- Department of Chemistry, Taizhou Jiaxin Metering and Testing Co. Ltd., Taizhou, Zhejiang 317000, P. R. China.
| | - Lei Wang
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China. .,Department of Chemistry, Taizhou Jiaxin Metering and Testing Co. Ltd., Taizhou, Zhejiang 317000, P. R. China.
| |
Collapse
|
7
|
Synthesis of Ester-Containing Chroman-4-Ones via Cascade Radical Annulation of 2-(Allyloxy)Arylaldehydes with Oxalates under Metal Free Conditions. Int J Mol Sci 2023; 24:ijms24055028. [PMID: 36902464 PMCID: PMC10003100 DOI: 10.3390/ijms24055028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
A convenient and practical method for the synthesis of bioactive ester-containing chroman-4-ones through the cascade radical cyclization of 2-(allyloxy)arylaldehydes and oxalates is described. The preliminary studies suggest that an alkoxycarbonyl radical might be involved in the current transformation, which was generated via the decarboxylation of oxalates in the presence of (NH4)2S2O8.
Collapse
|
8
|
Mulina OM, Bityukov OV, Vil’ VA, Terent’ev AO. Photo- and Electrochemically Initiated Thiocyanation Reactions. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022120028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
9
|
Zeng FL, Zhang ZY, Yin PC, Cheng FK, Chen XL, Qu LB, Cao ZY, Yu B. Visible-Light-Induced Cascade Cyclization of 3-(2-(Ethynyl)phenyl)quinazolinones to Phosphorylated Quinolino[2,1- b]quinazolinones. Org Lett 2022; 24:7912-7917. [PMID: 36269864 DOI: 10.1021/acs.orglett.2c02930] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
3-(2-(Ethynyl)phenyl)quinazolinones were designed and synthesized as a class of novel and efficient skeletons for phosphorylation/cyclization reactions. Under visible light irradiation, a series of phosphorylated quinolino[2,1-b]quinazolinones (35 examples, up to 87% yield) were first synthesized from 3-(2-(ethynyl)phenyl)quinazolinones and diarylphosphine oxides by using 4CzIPN as a photocatalyst under mild conditions. This reaction was also applicable under sunlight irradiation. Moreover, the reaction efficiency could be significantly improved under continuous-flow conditions.
Collapse
Affiliation(s)
- Fan-Lin Zeng
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Zhi-Yang Zhang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Peng-Cheng Yin
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Fu-Kun Cheng
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xiao-Lan Chen
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Ling-Bo Qu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Zhong-Yan Cao
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Bing Yu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
10
|
Raji Reddy C, Kolgave DH, Ajaykumar U, Ramesh R. Copper(II)-catalyzed oxidative ipso-annulation of N-arylpropiolamides and biaryl ynones with 1,3-diketones: construction of diketoalkyl spiro-trienones. Org Biomol Chem 2022; 20:6879-6889. [PMID: 35972321 DOI: 10.1039/d2ob01282k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An unprecedented copper-catalyzed ipso-annulation reaction of N-(p-methoxyaryl)propiolamides with 1,3-diketones has been developed, which enables the assembly of diketoalkylated spiro[4.5]trienones involving oxidative dearomatization in the presence of ammonium persulfate [(NH4)2S2O8] as the oxidant. This protocol was extended to biaryl ynones, efficiently affording the diketoalkylated spiro[5.5]trienones in good yields. The significance of the diketoalkyl functionality has been illustrated by further transformation into 3-pyrazoyl spiro-trienone, a structurally unique motif.
Collapse
Affiliation(s)
- Chada Raji Reddy
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad - 500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Dattahari H Kolgave
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad - 500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Uprety Ajaykumar
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad - 500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Remya Ramesh
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad - 500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| |
Collapse
|
11
|
Luo K, Zhao Y, Tang Z, Li W, Lin J, Jin Y. Visible-Light-Induced Dual C(sp 3)-H Bond Functionalization of Tertiary Amine via Hydrogen Transfer to Carbene and Subsequent Cycloaddition. Org Lett 2022; 24:6335-6340. [PMID: 35985018 DOI: 10.1021/acs.orglett.2c02557] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we describe the dual C(sp3)-H bond functionalization of a tertiary amine through hydride-transfer-induced dehydrogenation, followed by cycloaddition, using an easily preparable diazoester as a new type hydride-acceptor precursor under mild, redox-neutral conditions. With carbene as a hydrogen acceptor, this method was demonstrated by the preparation of a broad range of functionalized isoxazoldines in moderate to good yields.
Collapse
Affiliation(s)
- Kaixiu Luo
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Yongqiang Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Zhiliang Tang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Weina Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Jun Lin
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Yi Jin
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| |
Collapse
|
12
|
Beukeaw D, Rattanasupaponsak N, Kittikool T, Phakdeeyothin K, Phomphrai K, Yotphan S. Metal‐Free Site‐Selective Direct Oxidative Phosphorylation of Pyrazolones. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
13
|
Zhang Z, Cao X, Song X, Wang G, Shi B, Li X, Ma N, Liu L, Zhang G. Metal-free nucleophilic 7,8-dearomatization of quinolines: Spiroannulation of aminoquinoline protected amino acids. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Gao F, Xiao W, Li S, Yu B. A Polyniobotungstate-Based Hybrid for Visible-Light-Induced Phosphorylation of N-Aryl-Tetrahydroisoquinoline. ACS APPLIED MATERIALS & INTERFACES 2022; 14:19278-19284. [PMID: 35446531 DOI: 10.1021/acsami.1c23753] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A new organic-inorganic hybrid based on a Nb/W mixed-addendum polyoxometalate with the formula H14[(Co(H2O)3)2(C10H8N2)4(P4W30Nb6O123)]·4(C10H8N2)·8H2O (Co-POM) has been synthesized by the solvothermal method and characterized by single-crystal X-ray diffraction (XRD), powder X-ray diffraction (PXRD), elemental analysis, FTIR spectroscopy, UV-vis absorption spectrum, and thermogravimetric analysis (TGA). Importantly, visible-light-absorption peaks around 525 nm for Co-POM indicated that this material should have potential in visible-light-induced organic reactions. Herein, we disclosed visible-light-promoted phosphorylation of N-aryl-tetrahydroisoquinoline using Co-POM as an efficient heterogeneous photocatalyst. In this procedure, diverse phosphorus reagents are compatible at room temperature and in an O2 atmosphere, giving the corresponding products in good to excellent yields (up to 97%). Simultaneously, this heterogeneous photocatalyst can be recycled up to ten times with a negligible decrease in yield, showing outstanding sustainability and recyclability.
Collapse
Affiliation(s)
- Fan Gao
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Kexue Road No. 100, Zhengzhou 450001, China
| | - Wanru Xiao
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Shujun Li
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Bing Yu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Kexue Road No. 100, Zhengzhou 450001, China
| |
Collapse
|
15
|
Cheng Y, Qu Z, Chen S, Ji X, Deng G, Huang H. Visible‐Light‐Induced Photoredox 1,1‐Dichloromethylation of Alkenes with Chloroform. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yingjie Cheng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education College of Chemistry Xiangtan University Xiangtan 411105 People's Republic of China
| | - Zhonghua Qu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education College of Chemistry Xiangtan University Xiangtan 411105 People's Republic of China
| | - Shiru Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education College of Chemistry Xiangtan University Xiangtan 411105 People's Republic of China
| | - Xiaochen Ji
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education College of Chemistry Xiangtan University Xiangtan 411105 People's Republic of China
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 People's Republic of China
| | - Guo‐Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education College of Chemistry Xiangtan University Xiangtan 411105 People's Republic of China
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 People's Republic of China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education College of Chemistry Xiangtan University Xiangtan 411105 People's Republic of China
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 People's Republic of China
| |
Collapse
|
16
|
Environment Friendly g-C3N4-Based Catalysts and Their Recent Strategy in Organic Transformations. HIGH ENERGY CHEMISTRY 2022. [PMCID: PMC8960706 DOI: 10.1134/s0018143922020102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Organic molecules synthesized in an environmentally friendly manner have excellent therapeutic potential. The entire preparation technique was examined in the existence of a light source, implying that light has been replaced by heating and the usage of dangerous chemicals has decreased, resulting in less pollution of the environment. The advantages of these nanocarbon catalysts include high efficiency, environmentally friendly synthesis, eco-friendly, inexpensive, and non-corrodible. In organic transformations, solid metal base/metal-free catalysts produce better results. Here, the metal-free semiconductor g-C3N4 was used to demonstrate the catalytic behavior of organic conversions. g-C3N4 is a two-dimensional material and a p‑type semiconductor to enhance the photocatalytic activity. The excellent properties of g-C3N4 sheet lead to the support of metals to form metal-organic frameworks. Most of the reactions gained positive response under visible light irradiation. This review will inspire readers in widen the applications of g-C3N4 based catalyst in various organic transformation reactions.
Collapse
|
17
|
Li HC, Li GN, Sun K, Chen XL, Jiang MX, Qu LB, Yu B. Ce(III)/Photoassisted Synthesis of Amides from Carboxylic Acids and Isocyanates. Org Lett 2022; 24:2431-2435. [DOI: 10.1021/acs.orglett.2c00699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Hao-Cong Li
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Guan-Nan Li
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Kai Sun
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xiao-Lan Chen
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Ming-Xuan Jiang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Ling-Bo Qu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Bing Yu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
18
|
Karmaker PG, Alam MA, Huo F. Recent advances in photochemical and electrochemically induced thiocyanation: a greener approach for SCN-containing compound formation. RSC Adv 2022; 12:6214-6233. [PMID: 35424569 PMCID: PMC8981651 DOI: 10.1039/d1ra09060g] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/10/2022] [Indexed: 12/28/2022] Open
Abstract
Techniques utilizing photo- and electrochemically induced reactions have been developed to accelerate organic processes. These techniques use light or electrical energy (electron transfer) as a direct energy source without using an initiator or reagent. Thiocyanates are found in biologically active and pharmacological compounds and can be converted into various functional groups. It is one of the most prominent organic scaffolds. Significant development in photo- and electro-chemically induced thiocyanation procedures has been made in recent years for the conception of carbon-sulfur bonds and synthesis of pharmaceutically important molecules. This review discusses different photo- and electro-chemically driven thiocyanation C(sp3)-SCN, C(sp2)-SCN, and C(sp)-SCN bond conception processes that may be useful to green organothiocyanate synthesis. We focus on the synthetic and mechanistic characteristics of organic photo- and electrochemically accelerated C-SCN bond formation thiocyanation reactions to highlight major advances in this novel green and sustainable research field.
Collapse
Affiliation(s)
- Pran Gopal Karmaker
- School of Chemistry and Chemical Engineering, Analytical Testing Center, Institute of Micro & Nano Intelligent Sensing, Neijiang Normal University Neijiang 641100 P. R. China
| | - Md Asraful Alam
- School of Chemical Engineering, Zhengzhou University Zhengzhou 450001 Henan China
| | - Feng Huo
- School of Chemistry and Chemical Engineering, Analytical Testing Center, Institute of Micro & Nano Intelligent Sensing, Neijiang Normal University Neijiang 641100 P. R. China
| |
Collapse
|
19
|
Liang Y, Wang S, Jia H, Chen B, Zhu F, Huo Z. Trifluoromethylthiolative spirocyclization of biaryl ynones without leaving groups on the para-position of dearomatized aryl rings. NEW J CHEM 2022. [DOI: 10.1039/d2nj01056a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A direct and efficient strategy for the oxidative spirocyclization of biaryl ynones has been developed, where nonsubstituted groups were on the para-position of the dearomatized aryl rings.
Collapse
Affiliation(s)
- You Liang
- Co-Innovation Center for Modern Production Technology of Grain Crop/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, P. R. China
- College of Plant Science, Tarim University, Alaer 843300, P. R. China
| | - Sijin Wang
- Co-Innovation Center for Modern Production Technology of Grain Crop/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, P. R. China
| | - Huijuan Jia
- Co-Innovation Center for Modern Production Technology of Grain Crop/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, P. R. China
| | - Beibei Chen
- College of Plant Science, Tarim University, Alaer 843300, P. R. China
| | - Feng Zhu
- Plant Protection and Plant Quarantine Station of Jiangsu Province, Nanjing 210014, P. R. China
| | - Zhongyang Huo
- Co-Innovation Center for Modern Production Technology of Grain Crop/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, P. R. China
| |
Collapse
|
20
|
Shen LY, Sun Y, Wang YQ, Li B, Yang WC, Dai P. K2S2O8-promoted radical trifluoromethylthiolation/spirocyclization for the synthesis of SCF3‑featured spiro[5,5]trienones. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132649] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
21
|
Yuan JW, Chen Q, Wu WT, Zhao JJ, Yang LR, Xiao YM, Mao P, Qu LB. Selectfluor-mediated construction of 3-arylselenenyl and 3,4-bisarylselenenyl spiro[4.5]trienones via cascade annulation of N-phenylpropiolamides with diselenides. NEW J CHEM 2022. [DOI: 10.1039/d2nj00869f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A cascade annulation of N-phenylpropiolamides with diselenides leading to the construction of 3-arylselenenyl spiro[4.5]trienones was realized under mild conditions with Selectfluor as the sole oxidant.
Collapse
Affiliation(s)
- Jin-Wei Yuan
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Qian Chen
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Wen-Tao Wu
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jian-Jun Zhao
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Liang-Ru Yang
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yong-Mei Xiao
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Pu Mao
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Ling-Bo Qu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
22
|
Li JN, Li ZJ, Shen LY, Li P, Zhang Y, Yang WC. Selective polychloromethylation and halogenation of alkynes with polyhaloalkanes. Org Biomol Chem 2022; 20:6659-6666. [DOI: 10.1039/d2ob01053d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We disclosed a selective polychloromethylation and halogenation reaction of alkynes via a radical addition/spirocyclization cascade sequence, in which applying polyhaloalkanes as the precursor of polyhalomethyl and halogen radical. Across this...
Collapse
|
23
|
Yuan JW, Shen L, Ma M, Feng S, Yang W, Yang L, Xiao YM, Zhang S, Qu L. Visible-Light-Induced Tandem Difluoroalkylated Spirocyclization of N-Arylpropiolamides: Access to C3-Difluoroacetylated Spiro[4,5]trienones. NEW J CHEM 2022. [DOI: 10.1039/d2nj00131d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A visible-light-catalyzed difluoroacetylated spirocyclization of N-arylpropiolamides with ethyl bromodifluoroacetate as a CF2CO2Et radical precursor is described. This approach allows the formation of two carbon-carbon bonds and one carbon-oxygen bond in...
Collapse
|
24
|
Chen JY, Huang J, Sun K, He WM. Recent advances in transition-metal-free trifluoromethylation with Togni's reagents. Org Chem Front 2022. [DOI: 10.1039/d1qo01504d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Transition-metal-free trifluoromethylations have attracted significant research interest driven by the increasing importance of CF3-containing compounds.
Collapse
Affiliation(s)
- Jin-Yang Chen
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Jing Huang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Kai Sun
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Kexue Road No. 100, Zhengzhou 450001, China
| | - Wei-Min He
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
25
|
Mo K, Zhou X, Wu J, Zhao Y. Radical-induced denitration of N-( p-nitrophenyl)propiolamides coupled with dearomatization: access to phosphonylated/trifluoromethylated azaspiro[4.5]-trienones. Chem Commun (Camb) 2021; 58:1306-1309. [PMID: 34913445 DOI: 10.1039/d1cc05724c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A robust dearomative denitration of nitroarene derivatives induced by a radical ipso-cyclization process has been developed, delivering valuable phosphonated or trifluoromethylated azaspiro[4.5]trienones with good functional group tolerance. This represents a convenient and powerful approach to activate nitroarenes in a radical manner.
Collapse
Affiliation(s)
- Kangdong Mo
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China.
| | - Xiaocong Zhou
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China.
| | - Ju Wu
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China. .,Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Zhejiang, China.
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China. .,Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Zhejiang, China.
| |
Collapse
|
26
|
Liu Z, Zhong S, Ji X, Deng GJ, Huang H. Photoredox Cyclization of N-Arylacrylamides for Synthesis of Dihydroquinolinones. Org Lett 2021; 24:349-353. [PMID: 34904433 DOI: 10.1021/acs.orglett.1c04015] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Metal- and additive-free photoredox cyclization of N-arylacrylamides is herein reported that provides a concise access to the formation of dihydroquinolinones. In this protocol, sustainable visible light was used as the energy source, and the organic light-emitting molecule 4CzIPN served as the efficient photocatalyst. This reaction system features exclusive 6-endo-trig cyclization selectivity with a generally good yield of a range of functionalized dihydroquinolinones and dihydrobenzoquinolinones. Mechanistical studies reveal the feasibility of both 1,3-H shift and intersystem crossing of the diradical intermediate.
Collapse
Affiliation(s)
- Zhaosheng Liu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Shuai Zhong
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Xiaochen Ji
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
27
|
Yuan JW, Mou CX, Zhang Y, Hu WY, Yang LR, Xiao YM, Mao P, Zhang SR, Qu LB. Transition-metal catalyzed oxidative spirocyclization of N-aryl alkynamides with methylarenes under microwave irradiation. Org Biomol Chem 2021; 19:10348-10358. [PMID: 34812461 DOI: 10.1039/d1ob01970h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A practical synthetic route to construct a variety of 3-benzyl spiro[4,5]trienones was developed via transition-metal Cu/Ag-catalyzed oxidative ipso-annulation of activated alkynes with unactivated toluenes using TBPB as an oxidant under microwave irradiation. This method allows the formation of two carbon-carbon bonds and one carbon-oxygen bond in a single reaction through a sequence of C-H oxidative coupling, ipso-carbocyclization and dearomatization. The advantages of this protocol are its operational simplicity and broad substrate scope, and the ability to afford the desired products in moderate to good yields.
Collapse
Affiliation(s)
- Jin-Wei Yuan
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China.
| | - Chen-Xu Mou
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China.
| | - Yang Zhang
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China.
| | - Wen-Yu Hu
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China.
| | - Liang-Ru Yang
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China.
| | - Yong-Mei Xiao
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China.
| | - Pu Mao
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China.
| | - Shou-Ren Zhang
- Henan Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, P. R. China
| | - Ling-Bo Qu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
28
|
Chalcogenative spirocyclization of N-aryl propiolamides with diselenides/disulfides promoted by Selectfluor. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2021. [DOI: 10.1515/znb-2021-0154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Abstract
A practical and efficient synthetic route to construct a variety of 3-arylselenenyl/3-arylthio spiro[4.5]trienones was developed using Selectfluor reagent as a mild oxidant. This reaction proceeds via a sequence of electrophilic cation addition, spirocyclization and dearomatization, then offers an approach to introduce Se/S-centered cation into the C–C triple bonds. The utility of this protocol were justified by the excellent compatibility of a wide range of functional groups, good yields and scalability under mild reaction conditions.
Collapse
|
29
|
Ung SP, Perepichka I, Li C. Visible‐Light Mediated Photooxidative Phosphorylation of Benzylamines: A Novel and Mild Pathway Towards α‐Aminophosphorus Compounds. Helv Chim Acta 2021. [DOI: 10.1002/hlca.202100190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sosthène P.‐M. Ung
- Department of Chemistry and FQRNT Centre for Green Chemistry and Catalysis McGill University 801 Sherbrooke Street West Montreal, Quebec H3A 0B8 Canada
| | - Inna Perepichka
- Department of Chemistry and FQRNT Centre for Green Chemistry and Catalysis McGill University 801 Sherbrooke Street West Montreal, Quebec H3A 0B8 Canada
| | - Chao‐Jun Li
- Department of Chemistry and FQRNT Centre for Green Chemistry and Catalysis McGill University 801 Sherbrooke Street West Montreal, Quebec H3A 0B8 Canada
| |
Collapse
|
30
|
Xia D, Duan XF. Iron-Catalyzed Dearomatization of Biaryl Ynones with Aldehydes via Double C-H Functionalization in Eco-Benign Solvents: Highly Atom-Economical Synthesis of Acylated Spiro[5.5]trienones. J Org Chem 2021; 86:15263-15275. [PMID: 34643395 DOI: 10.1021/acs.joc.1c01870] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The multiple C-H bonds of biaryl ynones render the 6-exo-trig regioselective C-H activation dearomatization to spiro[5.5]trienones challenging since the competing reactions of C-H bonds on Ar1 or the ortho-C-H bonds on Ar3 may result in 5-exo-trig cyclization to indenones or 6-exo-trig ortho-dearomatization, respectively. We here report an unprecendented dearomatization of biaryl ynones with aldehydes via double C-H functionalization where a regiospecific remote unactivated para-C-H functionalization of biaryl ynones efficiently furnishes acylated spiro[5.5]trienones. This cascade cyclization features a green catalyst and solvent and high atom- and step-economy.
Collapse
Affiliation(s)
- Dong Xia
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xin-Fang Duan
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
31
|
Zhang M, Shen L, Dong S, Li B, Meng F, Si W, Yang W. DTBP‐Mediated Cascade Spirocyclization and Dearomatization of Biaryl Ynones: Facile Access to Spiro[5.5]trienones through C(sp
3
)−H Bond Functionalization. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100656] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ming‐Ming Zhang
- Guangling College and Institute of Pesticide of School of Horticulture and Plant Protection Yangzhou University Yangzhou 225009 P. R. China
| | - Liu‐Yu Shen
- Guangling College and Institute of Pesticide of School of Horticulture and Plant Protection Yangzhou University Yangzhou 225009 P. R. China
| | - Sa Dong
- Guangling College and Institute of Pesticide of School of Horticulture and Plant Protection Yangzhou University Yangzhou 225009 P. R. China
| | - Bing Li
- Guangling College and Institute of Pesticide of School of Horticulture and Plant Protection Yangzhou University Yangzhou 225009 P. R. China
| | - Fei Meng
- Guangling College and Institute of Pesticide of School of Horticulture and Plant Protection Yangzhou University Yangzhou 225009 P. R. China
| | - Wei‐Jie Si
- College of Chemistry and Chemical Engineering Anyang Normal University Anyang 455000 P. R. China
| | - Wen‐Chao Yang
- Guangling College and Institute of Pesticide of School of Horticulture and Plant Protection Yangzhou University Yangzhou 225009 P. R. China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety Yangzhou University Yangzhou 225009 P. R. China
| |
Collapse
|
32
|
Li HC, Sun K, Li X, Wang SY, Chen XL, He SQ, Qu LB, Yu B. Metal-Free Photosynthesis of Alkylated Benzimidazo[2,1- a]isoquinoline-6(5 H)-ones and Indolo[2,1- a]isoquinolin-6(5 H)-ones in PEG-200. J Org Chem 2021; 86:9055-9066. [PMID: 34157844 DOI: 10.1021/acs.joc.1c01022] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A visible-light-induced decarboxylation reaction was developed for the synthesis of alkylated benzimidazo[2,1-a]isoquinoline-6(5H)-ones and indolo[2,1-a]isoquinolin-6(5H)-ones under metal-free conditions. Impressively, metal catalysts and traditionally volatile organic solvents could be effectively avoided.
Collapse
Affiliation(s)
- Hao-Cong Li
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Kai Sun
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xiang Li
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Si-Yang Wang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xiao-Lan Chen
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Shuai-Qi He
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Ling-Bo Qu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Bing Yu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
33
|
Hou H, Zhou B, Wang J, Sun D, Yu H, Chen X, Han Y, Shi Y, Yan C, Zhu S. Visible-light-induced ligand to metal charge transfer excitation enabled phosphorylation of aryl halides. Chem Commun (Camb) 2021; 57:5702-5705. [PMID: 33982720 DOI: 10.1039/d1cc01858b] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We herein described a visible light induced nickel(II)-catalyzed cross-coupling of secondary phosphine oxides with aryl halides. The Ni(I) species and chlorine atom radical Cl˙ were generated via the ligand to metal charge transfer (LMCT) process of the NiCl2(PPh3)2, which allows nickel(IV)-phosphorus species in situ formation, giving various tertiary phosphine oxides under photocatalyst-free conditions.
Collapse
Affiliation(s)
- Hong Hou
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China.
| | - Bing Zhou
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China.
| | - Jiawei Wang
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China.
| | - Duhao Sun
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China.
| | - Huaguang Yu
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University, Wuhan 430056, China
| | - Xiaoyun Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212005, China
| | - Ying Han
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China.
| | - Yaocheng Shi
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China.
| | - Chaoguo Yan
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China.
| | - Shaoqun Zhu
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
34
|
Kittikool T, Phakdeeyothin K, Chantarojsiri T, Yotphan S. Manganese‐Promoted Regioselective Direct
C3
‐Phosphinoylation of 2‐Pyridones. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Tanakorn Kittikool
- Department of Chemistry and Center of Excellence for Innovation in Chemistry Faculty of Science Mahidol University Rama VI Road 10400 Bangkok Thailand
| | - Kunita Phakdeeyothin
- Department of Chemistry and Center of Excellence for Innovation in Chemistry Faculty of Science Mahidol University Rama VI Road 10400 Bangkok Thailand
| | - Teera Chantarojsiri
- Department of Chemistry and Center of Excellence for Innovation in Chemistry Faculty of Science Mahidol University Rama VI Road 10400 Bangkok Thailand
| | - Sirilata Yotphan
- Department of Chemistry and Center of Excellence for Innovation in Chemistry Faculty of Science Mahidol University Rama VI Road 10400 Bangkok Thailand
| |
Collapse
|
35
|
Shen J, Li QW, Zhang XY, Wang X, Li GZ, Li WZ, Yang SD, Yang B. Tf2O/DMSO-Promoted P–O and P–S Bond Formation: A Scalable Synthesis of Multifarious Organophosphinates and Thiophosphates. Org Lett 2021; 23:1541-1547. [DOI: 10.1021/acs.orglett.0c04127] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jian Shen
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Qi-Wei Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Xin-Yue Zhang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Xue Wang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Gui-Zhi Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Wen-Zuo Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Shang-Dong Yang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Bin Yang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| |
Collapse
|
36
|
Bryden MA, Zysman-Colman E. Organic thermally activated delayed fluorescence (TADF) compounds used in photocatalysis. Chem Soc Rev 2021; 50:7587-7680. [PMID: 34002736 DOI: 10.1039/d1cs00198a] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Organic compounds that show Thermally Activated Delayed Fluorescence (TADF) have become wildly popular as next-generation emitters in organic light emitting diodes (OLEDs). Since 2016, a subset of these have found increasing use as photocatalysts. This review comprehensively highlights their potential by documenting the diversity of the reactions where an organic TADF photocatalyst can be used in lieu of a noble metal complex photocatalyst. Beyond the small number of TADF photocatalysts that have been used to date, the analysis conducted within this review reveals the wider potential of organic donor-acceptor TADF compounds as photocatalysts. A discussion of the benefits of compounds showing TADF for photocatalysis is presented, which paints a picture of a very promising future for organic photocatalyst development.
Collapse
Affiliation(s)
- Megan Amy Bryden
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UK.
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UK.
| |
Collapse
|