1
|
Jackulin F, Senthil Kumar P, Boobalan C, Rangasamy G. Degradation of Remazol Brilliant Blue Dye Using Persulfate Activated by Fe 3O 4@PDA Nanoparticles: Kinetic Studies, Radical Determination, and Phytotoxicity Test. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39268767 DOI: 10.1021/acs.langmuir.4c02476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
In the current research work, an advanced oxidation process was applied to the degradation of Remazol brilliant blue dye (RBBD) using a sulfate radical. Fe3O4@PDA nanoparticles were synthesized using coprecipitation and self-polymerization techniques. Nanoparticle formation was confirmed by XRD, FTIR, FESEM-EDX, VSM, and XPS analyses. The crystalline nature of the material showed that it possessed a spherical shape with an Ms value of 58 emu/g. The elemental composition and binding energy from EDX and XPS analyses showed successful doping. Batch studies were conducted, and experimental studies showed that the optimum condition for degradation of 90 ppm of RBBD was 0.3 g/L of nanomaterial, 20 mM PS at pH 3, achieving 91.35% degradation. The kinetic model suitable for this study was a pseudo-second-order kinetic model with R2 value >0.9. From the radical identification tests, sulfate radicals played a dominant role in degradation, and to confirm it, EPR analysis was conducted using DMPO. A stability test was performed for 5 cycles in which the degradation efficiency was reduced appreciably. From XPS, XRD, and EDX analyses, the elemental composition and oxidation state of the recycled material used in the fifth cycle showed variation in a negligible manner when compared to the fresh catalyst used in the first cycle of the degradation experiment. Intermediate identification was done by GCMS analysis, and it disclosed the formation of aliphatic products from the degradation of RBBD with less toxicity. Phytotoxicity analysis was conducted using green grams for 10 days, and it proved that intermediates formed in the solution were nontoxic to the plants. Additionally, TOC and COD removal % were attained to be 80.021 and 80.903%, respectively, which confirm the mineralization efficacy. Hence, this research work proved the efficient performance of the catalyst for RBBD degradation with less formation of intermediates, and therefore, this technique is most suitable for the reduction of water pollution.
Collapse
Affiliation(s)
- Fetcia Jackulin
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam 603110, Tamil Nadu, India
- Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam 603110, Tamil Nadu, India
| | - Ponnusamy Senthil Kumar
- Centre for Pollution Control and Environmental Engineering, School of Engineering and Technology, Pondicherry University, Kalapet, Puducherry 605014, India
| | - Chitra Boobalan
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam 603110, Tamil Nadu, India
- Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam 603110, Tamil Nadu, India
| | - Gayathri Rangasamy
- Department of Civil Engineering, Faculty of Engineering, Karpagam Academy of Higher Education, Pollachi Main Road, Eachanari Post, Coimbatore 641021, Tamil Nadu, India
| |
Collapse
|
2
|
Deng Y, Che Q, Li Y, Luo J, Gao X, He Y, Liu Y, Liu T, Zhao X, Hu X, Zhao W. Non-radical activation of persulfate with Bi 2O 3/BiO 1.3I 0.4 for efficient degradation of propranolol under visible light. J Environ Sci (China) 2024; 142:57-68. [PMID: 38527896 DOI: 10.1016/j.jes.2023.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 03/27/2024]
Abstract
Non-radical activation of persulfate (PS) by photocatalysts is an effective approach for removing organic pollutants from aqueous environments. In this study, a novel Bi2O3/BiO1.3I0.4 heterojunction was synthesized using a facile solvothermal approach and used for the first time for non-radical activation of PS to degrade propranolol (PRO) in the presence of visible light. The findings found that the degradation rate of PRO in the Bi2O3/BiO1.3I0.4/PS system was significantly increased from 19% to more than 90% within 90 min compared to the Bi2O3/BiO1.3I0.4 system. This indicated that the composite system exerted an excellent synergistic effect between the photocatalyst and the persulfate-based oxygenation. Quenching tests and electron paramagnetic resonance demonstrated that the non-radical pathway with singlet oxygen as the active species played a major role in the photocatalytic process. The existence of photo-generated holes during the reaction could also be directly involved in the oxidation of pollutants. Meanwhile, a possible PRO degradation pathway was also proposed. Furthermore, the impacts of pH, humic acid and common anions on the PRO degradation by the Bi2O3/BiO1.3I0.4/PS were explored, and the system's stability and reusability were also studied. This study exhibits a highly productive catalyst for PS activation via a non-radical pathway and provides a new idea for the degradation of PRO.
Collapse
Affiliation(s)
- Yuehua Deng
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China; Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi'an 710054, China.
| | - Qianqian Che
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Yani Li
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Jiating Luo
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Xiang Gao
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Yan He
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Yiling Liu
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Tong Liu
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Xiaolong Zhao
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong 999077, China
| | - Xiaobin Hu
- School of Life Science, Huzhou University, Huzhou 313000, China
| | - Wei Zhao
- School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, China.
| |
Collapse
|
3
|
Yang SQ, Ye RQ, Cui YH, Liu ZQ, Sun K, Yu YZ. Transformation of metoprolol in UV/PDS process: Role and mechanisms of degradation and polymerization. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134498. [PMID: 38733782 DOI: 10.1016/j.jhazmat.2024.134498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/27/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
Advanced oxidation processes for the treatment of organic pollutants in wastewater suffer from difficulties in mineralization, potential risks of dissolved residues, and high oxidant consumption. In this study, radical-initiated polymerization is dominated in an UV/peroxydisulfate (PDS) process to eliminate organic pollutant of pharmaceutical metoprolol (MTP). Compared with an ideal degradation-based UV/PDS process, the present process can save four fifths of PDS consumption at the same dissolved organic carbon removal of 47.3%. Simultaneously, organic carbon can be recovered from aqueous solution by separating solid polymers at a ratio of 50% of the initial chemical oxygen demand. The chemical structure of products was analyzed to infer the transformation pathways of MTP. Unlike previous studies on simple organic pollutants that the polymerization can occur independently, the polymerization of MTP is dependent on the partial degradation of MTP, and the main monomer in polymerization is a dominant degradation product (4-(2-methoxyethyl)-phenol, denoted as DP151). The separated solid polymers are formed by repeated oxidation and coupling of DP151 or its derivatives through a series of intermediate oligomers. This proof-of-concept study demonstrates the advantage of polymerization-dominated mechanism on dealing with large organic molecules with complex structures, as well as the potential of UV/PDS process for simultaneous organic pollution reduction and organic carbon recovery from aqueous solution.
Collapse
Affiliation(s)
- Sui-Qin Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Hongshan District, Wuhan 430074, PR China; School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Rui-Qiu Ye
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Hongshan District, Wuhan 430074, PR China
| | - Yu-Hong Cui
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Hongshan District, Wuhan 430074, PR China.
| | - Zheng-Qian Liu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Hongshan District, Wuhan 430074, PR China
| | - Kai Sun
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Hongshan District, Wuhan 430074, PR China
| | - Yu-Ze Yu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Hongshan District, Wuhan 430074, PR China
| |
Collapse
|
4
|
Liu X, Zhou Y, Sun S, Bao S. Study on the behavior and mechanism of NiFe-LDHs used for the degradation of tetracycline in the photo-Fenton process. RSC Adv 2023; 13:31528-31540. [PMID: 37908668 PMCID: PMC10614753 DOI: 10.1039/d3ra05475f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/14/2023] [Indexed: 11/02/2023] Open
Abstract
An environment-friendly 3D NiFe-LDHs photocatalyst was fabricated via a simple hydrothermal method and characterized by means of SEM, XRD, BET, XPS and FT-IR. It is a highly efficient heterogeneous photo-Fenton catalyst for the degradation of TC-HCl under visible light irradiation. After exploring the effects of catalyst dosage, initial concentration of TC-HCl, solution pH and H2O2 concentrations, the optimal reaction conditions were determined. The experiment results showed that the degradation efficiency can reach 99.11% through adding H2O2 to constitute a photo-Fenton system after adsorption for 30 min and visible light for 60 min. After four cycles, the degradation rate decay is controlled within 21.2%, indicating that NiFe-LDHs have excellent reusable performance. The experimental results of environmental factors indicate that Fe2+ and Ca2+ promoted the degradation of TC-HCl, both Cl- and CO32- inhibited the degradation of TC-HCl. Two other antibiotics (OTC and FT) were selected for research and found to be effectively removed in this system, achieving effective degradation of a variety of typical new pollutants. The radical trapping tests and ESR detection showed that ·OH and ·O2- were the main active substances for TC degradation in the photo-Fenton system. By further measuring the intermediate products of photodegradation, the degradation pathway of TC-HCl was inferred. The toxicity analysis demonstrated that the overall toxicity of the identified intermediates was reduced in this system. This study provides a theoretical and practical basis for the removal of TC in aquatic environments.
Collapse
Affiliation(s)
- Xia Liu
- Changchun Univ. Sci. & Technol., Sch Chem. & Environm. Engn. Changchun 130022 P. R. China
| | - Yuting Zhou
- Changchun Univ. Sci. & Technol., Sch Chem. & Environm. Engn. Changchun 130022 P. R. China
| | - Shuanghui Sun
- Changchun Univ. Sci. & Technol., Sch Chem. & Environm. Engn. Changchun 130022 P. R. China
| | - Siqi Bao
- Changchun Univ. Sci. & Technol., Sch Chem. & Environm. Engn. Changchun 130022 P. R. China
| |
Collapse
|
5
|
Cao Y, Li J, Zhao Y, Zhao Y, Qiu W, Pang S, Jiang J. Degradation of metoprolol by UV/sulfite as an advanced oxidation or reduction process: The significant role of oxygen. J Environ Sci (China) 2023; 128:107-116. [PMID: 36801026 DOI: 10.1016/j.jes.2022.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 06/18/2023]
Abstract
The degradation of metoprolol (MTP) by the UV/sulfite with oxygen as an advanced reduction process (ARP) and that without oxygen as an advanced oxidation process (AOP) was comparatively studied herein. The degradation of MTP by both processes followed the first-order rate law with comparable reaction rate constants of 1.50×10-3sec-1 and 1.20×10-3sec-1, respectively. Scavenging experiments demonstrated that both eaq- and H• played a crucial role in MTP degradation by the UV/sulfite as an ARP, while SO4•- was the dominant oxidant in the UV/sulfite AOP. The degradation kinetics of MTP by the UV/sulfite as an ARP and AOP shared a similar pH dependence with a minimum rate obtained around pH 8. The results could be well explained by the pH impacts on the MTP speciation and sulfite species. Totally six transformation products (TPs) were identified from MTP degradation by the UV/sulfite ARP, and two additional ones were detected in the UV/sulfite AOP. The benzene ring and ether groups of MTP were proposed as the major reactive sites for both processes based on molecular orbital calculations by density functional theory (DFT). The similar degradation products of MTP by the UV/sulfite process as an ARP and AOP indicated that eaq-/H• and SO4•- might share similar reaction mechanisms, primarily including hydroxylation, dealkylation, and H abstraction. The toxicity of MTP solution treated by the UV/sulfite AOP was calculated to be higher than that in the ARP by the Ecological Structure Activity Relationships (ECOSAR) software, due to the accumulation of TPs with higher toxicity.
Collapse
Affiliation(s)
- Ying Cao
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University at Zhuhai, Zhuhai 519087, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Juan Li
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University at Zhuhai, Zhuhai 519087, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Yanxin Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yumeng Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wei Qiu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Suyan Pang
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, School of Municipal and Environmental Engineering, Jilin Jianzhu University, Changchun 130118, China
| | - Jin Jiang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| |
Collapse
|
6
|
Gong Z, Xie J, Liu J, Liu T, Chen J, Li J, Gan J. Oxidation towards enrofloxacin degradation over nanoscale zero-valent copper: mechanism and products. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:38700-38712. [PMID: 36585582 DOI: 10.1007/s11356-022-24984-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Enrofloxacin (ENR) is a widely used veterinary fluoroquinolone antibiotic and is frequently detected in water environments. The degradation of ENR was examined utilizing molecular oxygen mediation using nanometer zero-valent copper (nZVC) as the catalyst in this work. The dosage of nZVC, initial pH, and reaction temperature were investigated as contributing factors to ENR degradation. The effects of Cl-, NO3-, SO42-, and humic acid on the degradation of ENR were investigated. The actual effects were evaluated using natural water. The reactive oxygen species (ROS) that participated in the reaction were identified, their generation mechanisms were elucidated, and the effects on ENR degradation were assessed. More emphasis was given to exploring ENR degradation and transformation pathways via analyses of HPLC-TOF-MS. Data showed that at 35 ℃, with an initial pH of 3 and exposed to air, an nZVC dose of 0.5 g·L-1 degraded ENR by 99.51% dramatically. HO• radicals were identified as the dominant ROS, and conversions among Cu0, Cu+, and Cu2+ played crucial roles in the generation of ROS. The destruction mechanism of ENR was speculated based on analyses of HPLC-TOF-MS results as the transformation of the piperazine ring into an oxidized state with a -COOH substitution with HO•, which caused ENR to be mineralized and converted into CO2, H2O, and [Formula: see text]. The ECOSAR program has been used to evaluate the toxicity of ENR and its degradation products, and oxidative degradation of nZVC significantly reduced its toxicity and increased its biodegradability. This research proposes a capable and practical method for removing ENR from water.
Collapse
Affiliation(s)
- Zhiqiang Gong
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, 430223, China
- School of Environmental Engineering, Wuhan Textile University, Wuhan, Hubei, 430073, People's Republic of China
| | - Junpu Xie
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, 430223, China
- School of Environmental Engineering, Wuhan Textile University, Wuhan, Hubei, 430073, People's Republic of China
| | - Jingxin Liu
- School of Environmental Engineering, Wuhan Textile University, Wuhan, Hubei, 430073, People's Republic of China
| | - Ting Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, 430223, China
| | - Jianwu Chen
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, 430223, China
| | - Jinping Li
- School of Environmental Engineering, Wuhan Textile University, Wuhan, Hubei, 430073, People's Republic of China.
| | - Jinhua Gan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, 430223, China.
| |
Collapse
|
7
|
Mahmoudi S, Fadaei S, Taheri E, Fatehizadeh A, Aminabhavi TM. Direct red 89 dye degradation by advanced oxidation process using sulfite and zero valent under ultraviolet irradiation: Toxicity assessment and adaptive neuro-fuzzy inference systems modeling. ENVIRONMENTAL RESEARCH 2022; 211:113059. [PMID: 35257689 DOI: 10.1016/j.envres.2022.113059] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/16/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Sulfate-based advanced oxidation process mediated by zero-valent iron (ZVI) and ultraviolet radiation for the decomposition of sulfite salts resulted in the formation of strong oxidizing species (sulfate and hydroxide radicals) in aqueous solution is reported. Degradation of direct red 89 (DR89) dye via UV/ZVI/sulfite process was systematically investigated to evaluate the effect of pH, ZVI dose, sulfite, initial DR89 concentration, and reaction time on DR89 degradation. The synergy factor of UV/ZVI/sulfite process was found to be 2.23-times higher than the individual processes including ZVI, sulfite and UV. By increasing the ZVI dose from 100 mg/L to 300 mg/L, dye degradation was linearly enhanced from 67.12 ± 3.36% to 82.40 ± 4.12% by the UV/ZVI/sulfite process due to enhanced ZVI corrosion and sulfite activation. The highest degradation efficiency of 99.61 ± 0.02% was observed at pH of 5.0, [ZVI]0 = 300 mg/L, and [sulfite]0 = 400 mg/L. Toxicity assessment by Lepidium sativum demonstrated that treated dye solution by UV/ZVI/sulfite was within the non-toxic range. The application of optimal adaptive neuro-fuzzy inference system (ANFIS) to predict DR89 degradation indicated high accuracy of ANFIS model (R2 = 0.97 and RMSE = 0.051) via the UV/ZVI/sulfite process. It is suggested that UV/ZVI/sulfite process is suitable for industrial wastewater treatment.
Collapse
Affiliation(s)
- Sara Mahmoudi
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saeid Fadaei
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ensiyeh Taheri
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Fatehizadeh
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Tejraj M Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi, 580031, India; School of Engineering, University of Petroleum and Energy Studies, Dehradun, India.
| |
Collapse
|
8
|
Advanced Oxidation Processes Based on Sulfate Radicals for Wastewater Treatment: Research Trends. WATER 2021. [DOI: 10.3390/w13172445] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this work, the recent trends in the application of the sulfate radical-based advanced oxidation processes (SR-AOPs) for the treatment of wastewater polluted with emerging contaminants (ECs) and pathogenic load were systematically studied due to the high oxidizing power ascribed to these technologies. Additionally, because of the economic benefits and the synergies presented in terms of efficiency in ECs degradation and pathogen inactivation, the combination of the referred to AOPs and conventional treatments, including biological processes, was covered. Finally, the barriers and limitations related to the implementation of SR-AOPs were described, highlighting the still scarce full-scale implementation and the high operating-costs associated, especially when solar energy cannot be used in the oxidation systems.
Collapse
|
9
|
Vieira Y, Pereira HA, Leichtweis J, Mistura CM, Foletto EL, Oliveira LFS, Dotto GL. Effective treatment of hospital wastewater with high-concentration diclofenac and ibuprofen using a promising technology based on degradation reaction catalyzed by Fe 0 under microwave irradiation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:146991. [PMID: 33865131 DOI: 10.1016/j.scitotenv.2021.146991] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/17/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
Real hospital wastewater was effectively treated by a promising technology based on degradation reaction catalyzed by Fe0 under microwave irradiation in this work. Fe0 powders were synthesized and characterized by different techniques, resulting in a single-phase sample with spherical particles. Optimum experimental conditions were determined by a central composite rotatable design combined with a response surface methodology, resulting in 96.8% of chemical oxygen demand reduction and 100% organic carbon removal, after applying MW power of 780 W and Fe0 dosage of 0.36 g L-1 for 60 min. Amongst the several organic compounds identified in the wastewater sample, diclofenac and ibuprofen were present in higher concentrations; therefore, they were set as target pollutants. Both compounds were completely degraded in 35 min of reaction time. Their plausible degradation pathways were investigated and proposed. Overall, the method developed in this work effectively removed high concentrations of pharmaceuticals in hospital wastewater.
Collapse
Affiliation(s)
- Yasmin Vieira
- Graduate Program in Chemistry, Federal University of Santa Maria, 97105-900 Santa Maria, Brazil
| | - Hércules A Pereira
- Graduate Program in Chemistry, Federal University of Santa Maria, 97105-900 Santa Maria, Brazil
| | - Jandira Leichtweis
- Graduate Program in Chemistry, Federal University of Santa Maria, 97105-900 Santa Maria, Brazil
| | - Clóvia M Mistura
- Institute of Exact Sciences and Geosciences, University of Passo Fundo, BR 285, 99052-900 Passo Fundo, Brazil.
| | - Edson L Foletto
- Graduate Program in Chemical Engineering, Federal University of Santa Maria, 97105-900, Brazil
| | - Luis F S Oliveira
- Universidad de la Costa, Department of Civil and Environmental Engineering, Barranquilla, Colombia.
| | - Guilherme L Dotto
- Graduate Program in Chemistry, Federal University of Santa Maria, 97105-900 Santa Maria, Brazil; Graduate Program in Chemical Engineering, Federal University of Santa Maria, 97105-900, Brazil.
| |
Collapse
|
10
|
Wang B, Deng C, Ma W, Sun Y. Modified nanoscale zero-valent iron in persulfate activation for organic pollution remediation: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:34229-34247. [PMID: 34002318 DOI: 10.1007/s11356-021-13972-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
Under the action of different activators, persulfate can produce sulfate radicals (SO4·-) with strong oxidizing ability, which can destruct many organic compounds. Meanwhile, persulfate is widely used in groundwater and soil remediation because of its fast reaction and wide application. With the high specific surface area and reactivity of nanoscale zero-valent iron (nZVI), it can enhance the degradation efficiency of the persulfate system on organic pollutants in soil and water as a persulfate activator. However, nZVI is easy to get oxidized and has a tendency to aggregation. To solve these problems, a variety of nZVI modification methods have been put forward and put into to applications in the activation of persulfate. This article will give a systematic introduction of the background and problems of nZVI-activated persulfate in the remediation of organic pollution. In addition, the modification methods and mechanisms of nZVI are summarized, and the applications and progress of modified nZVI-activated persulfate are reviewed. The factors that affect the removal of organic compounds by the activation system are discussed as well. Worldwide, the field studies and full-scale remediation using modified nZVI in persulfate activation are yet limited. However, the already known cases reveal the good prospect of applying modified nZVI in persulfate activation to organic pollution remediation.
Collapse
Affiliation(s)
- Bing Wang
- Department of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, Sichuan, China.
- Sichuan Provincial Key Laboratory of Environmental Pollution Prevention on Oil and Gas Fields and Environmental Safety, Chengdu, 610500, China.
| | - Chaoxiao Deng
- Department of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, Sichuan, China
| | - Wei Ma
- Department of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, Sichuan, China
| | - Yubo Sun
- Department of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, Sichuan, China
| |
Collapse
|
11
|
Voigt M, Bartels I, Schmiemann D, Votel L, Hoffmann-Jacobsen K, Jaeger M. Metoprolol and Its Degradation and Transformation Products Using AOPs-Assessment of Aquatic Ecotoxicity Using QSAR. Molecules 2021; 26:3102. [PMID: 34067394 PMCID: PMC8196942 DOI: 10.3390/molecules26113102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 11/17/2022] Open
Abstract
Pharmaceuticals are found in waterbodies worldwide. Conventional sewage treatment plants are often not able to eliminate these micropollutants. Hence, Advanced Oxidation Processes (AOPs) have been heavily investigated. Here, metoprolol is exposed to UV irradiation, hydrogen peroxide, and ozonation. Degradation was analyzed using chemical kinetics both for initial and secondary products. Photo-induced irradiation enhanced by hydrogen peroxide addition accelerated degradation more than ozonation, leading to complete elimination. Degradation and transformation products were identified by high-performance liquid-chromatography coupled to high-resolution higher-order mass spectrometry. The proposed structures allowed to apply Quantitative Structure-Activity Relationship (QSAR) analysis to predict ecotoxicity. Degradation products were generally associated with a lower ecotoxicological hazard to the aquatic environment according to OECD QSAR toolbox and VEGA. Comparison of potential structural isomers suggested forecasts may become more reliable with larger databases in the future.
Collapse
Affiliation(s)
- Melanie Voigt
- Department of Chemistry and ILOC, Niederrhein University of Applied Sciences, Adlerstraße 32, D-47798 Krefeld, Germany; (M.V.); (I.B.); (D.S.); (L.V.); (K.H.-J.)
| | - Indra Bartels
- Department of Chemistry and ILOC, Niederrhein University of Applied Sciences, Adlerstraße 32, D-47798 Krefeld, Germany; (M.V.); (I.B.); (D.S.); (L.V.); (K.H.-J.)
- Faculty of Chemistry, University Duisburg-Essen, Universitätsstraße 2, D-45141 Essen, Germany
| | - Dorothee Schmiemann
- Department of Chemistry and ILOC, Niederrhein University of Applied Sciences, Adlerstraße 32, D-47798 Krefeld, Germany; (M.V.); (I.B.); (D.S.); (L.V.); (K.H.-J.)
- Faculty of Chemistry, University Duisburg-Essen, Universitätsstraße 2, D-45141 Essen, Germany
| | - Lars Votel
- Department of Chemistry and ILOC, Niederrhein University of Applied Sciences, Adlerstraße 32, D-47798 Krefeld, Germany; (M.V.); (I.B.); (D.S.); (L.V.); (K.H.-J.)
| | - Kerstin Hoffmann-Jacobsen
- Department of Chemistry and ILOC, Niederrhein University of Applied Sciences, Adlerstraße 32, D-47798 Krefeld, Germany; (M.V.); (I.B.); (D.S.); (L.V.); (K.H.-J.)
| | - Martin Jaeger
- Department of Chemistry and ILOC, Niederrhein University of Applied Sciences, Adlerstraße 32, D-47798 Krefeld, Germany; (M.V.); (I.B.); (D.S.); (L.V.); (K.H.-J.)
| |
Collapse
|
12
|
Gao YQ, Rao YY, Ning H, Yin DQ, Gao NY. MoS 2-assisted Fe 2+/peroxymonosulfate oxidation for the abatement of phenacetin: efficiency, mechanisms and toxicity evaluation. RSC Adv 2021; 11:33149-33159. [PMID: 35493592 PMCID: PMC9042310 DOI: 10.1039/d1ra05892d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/04/2021] [Indexed: 11/30/2022] Open
Abstract
In this study, molybdenum disulfide (MoS2) was chosen as a co-catalyst to enhance the removal efficiency of phenacetin (PNT) in water by a ferrous ion-activated peroxymonosulfate (Fe2+/PMS) process. Operating parameters, such as the initial solution pH and chemical dose on PNT degradation efficiency were investigated and optimized. Under an initial pH of 3, an Fe2+ dose of 25 μM, a PMS dose of 125 μM and a MoS2 dose of 0.1 g L−1, the degradation efficiency of PNT reached 94.3%, within 15 min. The presence of common water constituents including Cl−, HCO3−, SO42− and natural organic matter (NOM) will inhibit degradation of PNT in the MoS2/Fe2+/PMS system. Radical quenching tests combined with electron paramagnetic resonance (EPR) results indicated that in addition to free radical species (˙OH, SO4˙− and O2˙−), nonradical reactive species (1O2) were also crucial for PNT degradation. The variations in the composition and crystalline structure of the MoS2 before and after the reaction were characterized by XPS and XRD. Further, the degradation pathways of PNT were proposed according to the combined results of LC/TOF/MS and DFT calculations, and primarily included hydroxylation of the aromatic ring, cleavage of the C–N bond of the acetyl-amino group, and cleavage of the C–O bond of the ethoxy group. Finally, toxicity assessment of PNT and its products was predicted using the ECOSAR program. Performance, mechanisms and toxicity evaluation of PNT degradation by the MoS2/Fe2+/PMS system were investigated.![]()
Collapse
Affiliation(s)
- Yu-qiong Gao
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yan-yan Rao
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Han Ning
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Da-qiang Yin
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Nai-yun Gao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|