1
|
Merli D, Cutaia A, Hallulli I, Bonanni A, Alberti G. Molecularly Imprinted Polypyrrole-Modified Screen-Printed Electrode for Dopamine Determination. Polymers (Basel) 2024; 16:2528. [PMID: 39274160 PMCID: PMC11397747 DOI: 10.3390/polym16172528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/01/2024] [Accepted: 09/05/2024] [Indexed: 09/16/2024] Open
Abstract
This paper introduces a quantitative method for dopamine determination. The method is based on a molecularly imprinted polypyrrole (e-MIP)-modified screen-printed electrode, with differential pulse voltammetry (DPV) as the chosen measurement technique. The dopamine molecules are efficiently entrapped in the polymeric film, creating recognition cavities. A comparison with bare and non-imprinted polypyrrole-modified electrodes clearly demonstrates the superior sensitivity, selectivity, and reproducibility of the e-MIP-based one; indeed, a sensitivity of 0.078 µA µM-1, a detection limit (LOD) of 0.8 µM, a linear range between 0.8 and 45 µM and a dynamic range of up to 350 µM are achieved. The method was successfully tested on fortified synthetic and human urine samples to underline its applicability as a screening method for biomedical tests.
Collapse
Affiliation(s)
- Daniele Merli
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Alessandra Cutaia
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Ines Hallulli
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Alessandra Bonanni
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Giancarla Alberti
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
2
|
Pan TM, Lin LA, Ding HY, Her JL, Pang ST. A simple and highly sensitive flexible sensor with extended-gate field-effect transistor for epinephrine detection utilizing InZnSnO sensing films. Talanta 2024; 275:126178. [PMID: 38692052 DOI: 10.1016/j.talanta.2024.126178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
This study introduces a straightforward method for depositing InZnSnO films onto flexible polyimide substrates at room temperature, enabling their application in electrochemical pH sensing and the detection of epinephrine. A comprehensive analysis of these sensing films, spanning structural, morphological, compositional, and profiling characteristics, was conducted using diverse techniques, including X-ray diffraction, atomic force microscopy, X-ray photoelectron spectroscopy, and secondary ion mass spectroscopy. The investigation into the influence of oxygen flow rates on the performance of InZnSnO sensitive films revealed a significant correlation between their structural properties and sensing capabilities. Notably, exposure to an oxygen flow rate of 30/2 (Ar/O2) the ratio of resulted in the InZnSnO sensitive film demonstrating outstanding pH sensitivity at 59.58 mV/pH within a broad pH range of 2-12, surpassing the performance observed with other oxygen flow rates. Moreover, under this specific condition, the film exhibited excellent stability, with a minimal drift rate of 0.14 mV/h at pH 7 and a low hysteresis voltage of 1.8 mV during a pH cycle of 7 → 4→7 → 10→7. Given the critical role of epinephrine in mammalian central nervous and hormone systems, monitoring its levels is essential for assessing human health. To facilitate the detection of epinephrine, we utilized the carboxyl group of 4-formylphenylboronic acid to enable a reaction with the amino group of the 3-aminopropyltriethoxysilane-coated InZnSnO film. Through optimization, the resulting InZnSnO-based flexible sensor displayed a broad and well-defined linear relationship within the concentration range of 10-7 to 0.1 μM. In practical applications, this sensor proved effective in analyzing epinephrine in human serum, showcasing notable selectivity, stability, and reproducibility. The promising outcomes of this study underscore the potential for future applications, leveraging the advantages of electrochemical sensors, including affordability, rapid response, and user-friendly operation.
Collapse
Affiliation(s)
- Tung-Ming Pan
- Department of Electronics Engineering, Chang Gung University, Taoyuan City 33302, Taiwan; Division of Urology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan City 33305, Taiwan.
| | - Li-An Lin
- Department of Electronics Engineering, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Hong-Yan Ding
- Department of Electronics Engineering, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Jim-Long Her
- Division of Natural Science, Center for General Education, Chang Gung University, Taoyuan 33302, Taiwan
| | - See-Tong Pang
- Division of Urology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan City 33305, Taiwan
| |
Collapse
|
3
|
Alsoghier HM, Abd-Elsabour M, Alhamzani AG, Abou-Krisha MM, Assaf HF. Real samples sensitive dopamine sensor based on poly 1,3-benzothiazol-2-yl((4-carboxlicphenyl)hydrazono)acetonitrile on a glassy carbon electrode. Sci Rep 2024; 14:16601. [PMID: 39025924 PMCID: PMC11258363 DOI: 10.1038/s41598-024-65192-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
Herein, a novel electrochemical sensor that was used for the first time for sensitive and selective detection of dopamine (DA) was fabricated. The new sensor is based on the decoration of the glassy carbon electrode surface (GC) with a polymer film of 1,3-Benzothiazol-2-yl((4-carboxlicphenyl)hydrazono)) acetonitrile (poly(BTCA). The prepared (poly(BTCA) was examined by using different techniques such as 1H NMR, 13C NMR, FTIR, and UV-visible spectroscopy. The electrochemical investigations of DA were assessed using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The results obtained showed that the modifier increased the electrocatalytic efficiency with a noticeable increase in the oxidation peak current of DA in 0.1 M phosphate buffer solution (PBS) at an optimum pH of 7.0 and scan rate of 200 mV/s when compared to unmodified GC. The new sensor displays a good performance for detecting DA with a limit of detection (LOD 3σ), and limit of quantification (LOQ 10σ) are 0.28 nM and 94 nM respectively. The peak current of DA is linearly proportional to the concentration in the range from 0.1 to 10.0 µM. Additionally, the fabricated electrode showed sufficient reproducibility, stability, and selectivity for DA detection in the presence of different interferents. The proposed poly(BTCA)/GCE sensor was effectively applied to detect DA in the biological samples.
Collapse
Affiliation(s)
- Hesham M Alsoghier
- Chemistry Department, Faculty of Science, South Valley University, Qena, 83523, Egypt.
| | - Mohamed Abd-Elsabour
- Chemistry Department, Faculty of Science, Luxor University, Luxor, 85951, Egypt.
| | - Abdulrahman G Alhamzani
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 11623, Riyadh, Saudi Arabia
| | - Mortaga M Abou-Krisha
- Chemistry Department, Faculty of Science, South Valley University, Qena, 83523, Egypt
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 11623, Riyadh, Saudi Arabia
| | - Hytham F Assaf
- Chemistry Department, Faculty of Science, South Valley University, Qena, 83523, Egypt
| |
Collapse
|
4
|
Abeywardena SBY, Yue Z, Wallace GG, Innis PC. Novel 3D textile structures and geometries for electrofluidics. Electrophoresis 2024; 45:1171-1181. [PMID: 38837441 DOI: 10.1002/elps.202400020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/03/2024] [Accepted: 05/14/2024] [Indexed: 06/07/2024]
Abstract
The integration of microfluidics with electric field control, commonly referred to as electrofluidics, has led to new opportunities for biomedical analysis. The requirement for closed microcapillary channels in microfluidics, typically formed via complex microlithographic fabrication approaches, limits the direct accessibility to the separation processes during conventional electrofluidic devices. Textile structures provide an alternative and low-cost approach to overcome these limitations via providing open and surface-accessible capillary channels. Herein, we investigate the potential of different 3D textile structures for electrofluidics. In this study, 12 polyester yarns were braided around nylon monofilament cores of different diameters to produce functional 3D core-shell textile structures. Capillary electrophoresis performances of these 3D core-shell textile structures both before and after removing the nylon core were evaluated in terms of mobility and bandwidth of a fluorescence marker compound. It was shown that the fibre arrangement and density govern the inherent capillary formation within these textile structures which also impacts upon the solute analyte mobility and separation bandwidth during electrophoretic studies. Core-shell textile structures with a 0.47 mm nylon core exhibited the highest fluorescein mobility and presented a narrower separation bandwidth. This optimal textile structure was readily converted to different geometries via a simple heat-setting of the central nylon core. This approach can be used to fabricate an array of miniaturized devices that possess many of the basic functionalities required in electrofluidics while maintaining open surface access that is otherwise impractical in classical approaches.
Collapse
Affiliation(s)
- Sujani B Y Abeywardena
- ARC Centre of Excellence for Electromaterials Science (ACES), Intelligent Polymer Research Institute (IPRI), Australian Institute for Innovative Materials (AIIM), Innovation Campus, University of Wollongong, North Wollongong, New South Wales, Australia
| | - Zhilian Yue
- ARC Centre of Excellence for Electromaterials Science (ACES), Intelligent Polymer Research Institute (IPRI), Australian Institute for Innovative Materials (AIIM), Innovation Campus, University of Wollongong, North Wollongong, New South Wales, Australia
| | - Gordon G Wallace
- ARC Centre of Excellence for Electromaterials Science (ACES), Intelligent Polymer Research Institute (IPRI), Australian Institute for Innovative Materials (AIIM), Innovation Campus, University of Wollongong, North Wollongong, New South Wales, Australia
| | - Peter C Innis
- ARC Centre of Excellence for Electromaterials Science (ACES), Intelligent Polymer Research Institute (IPRI), Australian Institute for Innovative Materials (AIIM), Innovation Campus, University of Wollongong, North Wollongong, New South Wales, Australia
| |
Collapse
|
5
|
Lin Y, Shao WW, Wu D, Zhang T, Fei DN, Kong YN, Gao YF, Zhao SC, Liu RL. Spatially confined CuFe 2O 4 nanosphere in N/O-codoped porous carbon mimetics for triple-mode sensing of antibiotics and visual detection of neurotransmitters in biofluids. Anal Chim Acta 2024; 1306:342598. [PMID: 38692791 DOI: 10.1016/j.aca.2024.342598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/03/2024] [Accepted: 04/11/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND Carbon-based nanozymes have recently received enormous concern, however, there is still a huge challenge for inexpensive and large-scale synthesis of magnetic carbon-based "Two-in-One" mimics with both peroxidase (POD)-like and laccase-like activities, especially their potential applications in multi-mode sensing of antibiotics and neurotransmitters in biofluids. Although some progresses have been made in this field, the feasibility of biomass-derived carbon materials with both POD-like and laccase-like activities by polyatomic doping strategy is still unclear. In addition, multi-mode sensing platform can provide a more reliable result because of the self-validation, self-correction and mutual agreement. Nevertheless, the use of magnetic carbon-based nanozyme sensors for the multi-mode detection of antibiotics and neurotransmitters have not been investigated. RESULTS We herein report a shrimp shell-derived N, O-codoped porous carbon confined magnetic CuFe2O4 nanosphere with outstanding laccase-like and POD-like activities for triple-mode sensing of antibiotic d-penicillamine (D-PA) and chloramphenicol (CPL), as well as colorimetric detection of neurotransmitters in biofluids. The magnetic CuFe2O4/N, O-codoped porous carbon (MCNPC) armored mimetics was successfully fabricated using a combined in-situ coordination and high-temperature crystallization method. The synthesized MCNPC composite with superior POD-like activity can be used for colorimetric/temperature/smartphone-based triple-mode detection of D-PA and CPL in goat serum. Importantly, the MCNPC nanozyme can also be used for colorimetric analysis of dopamine and epinephrine in human urine. SIGNIFICANCE This work not only offered a novel strategy to large-scale, cheap synthesize magnetic carbon-based "Two-in-One" armored mimetics, but also established the highly sensitive and selective platforms for triple-mode monitoring D-PA and CPL, as well as colorimetric analysis of neurotransmitters in biofluids without any tanglesome sample pretreatment.
Collapse
Affiliation(s)
- Ying Lin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, PR China
| | - Wan-Wan Shao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, PR China
| | - Dan Wu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, PR China
| | - Tong Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, PR China
| | - Dan-Ni Fei
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, PR China
| | - Ya-Nan Kong
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, PR China
| | - Yi-Fan Gao
- School of Biology and Medicine, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Shu-Chang Zhao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, PR China
| | - Rui-Lin Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, PR China.
| |
Collapse
|
6
|
Zhang T, Zhu J, Xie M, Meng K, Yao G, Pan T, Gao M, Cheng H, Lin Y. Highly Sensitive Wearable Sensor Based on (001)-Orientated TiO 2 for Real-Time Electrochemical Detection of Dopamine, Tyrosine, and Paracetamol. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312238. [PMID: 38319031 DOI: 10.1002/smll.202312238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/22/2024] [Indexed: 02/07/2024]
Abstract
The concentration of dopamine (DA) and tyrosine (Tyr) reflects the condition of patients with Parkinson's disease, whereas moderate paracetamol (PA) can help relieve their pain. Therefore, real-time measurements of these bioanalytes have important clinical implications for patients with Parkinson's disease. However, previous sensors suffer from either limited sensitivity or complex fabrication and integration processes. This work introduces a simple and cost-effective method to prepare high-quality, flexible titanium dioxide (TiO2) thin films with highly reactive (001)-facets. The as-fabricated TiO2 film supported by a carbon cloth electrode (i.e., TiO2-CC) allows excellent electrochemical specificity and sensitivity to DA (1.390 µA µM-1 cm-2), Tyr (0.126 µA µM-1 cm-2), and PA (0.0841 µA µM-1 cm-2). More importantly, accurate DA concentration in varied pH conditions can be obtained by decoupling them within a single differential pulse voltammetry measurement without additional sensing units. The TiO2-CC electrochemical sensor can be integrated into a smart diaper to detect the trace amount of DA or an integrated skin-interfaced patch with microfluidic sampling and wireless transmission units for real-time detection of the sweat Try and PA concentration. The wearable sensor based on TiO2-CC prepared by facile manufacturing methods holds great potential in the daily health monitoring and care of patients with neurological disorders.
Collapse
Affiliation(s)
- Tianyao Zhang
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Jia Zhu
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, 324000, China
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Maowen Xie
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Ke Meng
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Guang Yao
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Taisong Pan
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Min Gao
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Huanyu Cheng
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Yuan Lin
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, China
- Medico-Engineering Cooperation on Applied Medicine Research Center, University of Electronics Science and Technology of China, Chengdu, 610054, China
| |
Collapse
|
7
|
M R K, Panicker LR, Narayan R, Kotagiri YG. Biopolymer-protected graphene-Fe 3O 4 nanocomposite based wearable microneedle sensor: toward real-time continuous monitoring of dopamine. RSC Adv 2024; 14:7131-7141. [PMID: 38414985 PMCID: PMC10898425 DOI: 10.1039/d4ra00110a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/20/2024] [Indexed: 02/29/2024] Open
Abstract
Neurological disorders can occur in the human body as a result of nano-level variations in the neurotransmitter levels. Patients affected by neuropsychiatric disorders, that are chronic require continuous monitoring of these neurotransmitter levels for effective disease management. The current work focus on developing a highly sensitive and personalized sensor for continuous monitoring of dopamine. Here we propose a wearable microneedle-based electrochemical sensor, to continuously monitor dopamine in interstitial fluid (ISF). A chitosan-protected hybrid nanomaterial Fe3O4-GO composite has been used as a chemical recognition element protected by Nafion antifouling coating layer. The morphological and physiochemical characterizations of the nanocomposite were carried out with XRD, XPS, FESEM, EDAX and FT-IR. The principle of the developed sensor relies on orthogonal detection of dopamine with square wave voltammetry and chronoamperometric techniques. The microneedle sensor array exhibited an attractive analytical performance toward detecting dopamine in phosphate buffer and artificial ISF. The limit of detection (LOD) of the developed sensor was observed to be low, 90 nM in square wave voltammetry and 0.6 μM in chronoamperometric analysis. The practical applicability of the microneedle sensor array has been demonstrated on a skin-mimicking phantom gel model. The microneedle sensor also exhibited good long-term storage stability, reproducibility, and sensitivity. All of these promising results suggest that the proposed microneedle sensor array could be reliable for the continuous monitoring of dopamine.
Collapse
Affiliation(s)
- Keerthanaa M R
- Department of Chemistry, Indian Institute of Technology Palakkad Palakkad Kerala 678 557 India
| | - Lakshmi R Panicker
- Department of Chemistry, Indian Institute of Technology Palakkad Palakkad Kerala 678 557 India
| | - Roger Narayan
- Department of Biomedical Engineering, NC State University Raleigh NC 27695 USA
| | - Yugender Goud Kotagiri
- Department of Chemistry, Indian Institute of Technology Palakkad Palakkad Kerala 678 557 India
| |
Collapse
|
8
|
Roychoudhury A, Raj R. Role of 3D printing in microfluidics and applications. NEXT-GENERATION SMART BIOSENSING 2024:67-107. [DOI: 10.1016/b978-0-323-98805-6.00004-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
9
|
Thamilselvan A, Dang TV, Kim MI. Highly Conductive Peroxidase-like Ce-MoS 2 Nanoflowers for the Simultaneous Electrochemical Detection of Dopamine and Epinephrine. BIOSENSORS 2023; 13:1015. [PMID: 38131775 PMCID: PMC10742101 DOI: 10.3390/bios13121015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
The accurate and simultaneous detection of neurotransmitters, such as dopamine (DA) and epinephrine (EP), is of paramount importance in clinical diagnostic fields. Herein, we developed cerium-molybdenum disulfide nanoflowers (Ce-MoS2 NFs) using a simple one-pot hydrothermal method and demonstrated that they are highly conductive and exhibit significant peroxidase-mimicking activity, which was applied for the simultaneous electrochemical detection of DA and EP. Ce-MoS2 NFs showed a unique structure, comprising MoS2 NFs with divalent Ce ions. This structural design imparted a significantly enlarged surface area of 220.5 m2 g-1 with abundant active sites as well as enhanced redox properties, facilitating electron transfer and peroxidase-like catalytic action compared with bare MoS2 NFs without Ce incorporation. Based on these beneficial features, Ce-MoS2 NFs were incorporated onto a screen-printed electrode (Ce-MoS2 NFs/SPE), enabling the electrochemical detection of H2O2 based on their peroxidase-like activity. Ce-MoS2 NFs/SPE biosensors also showed distinct electrocatalytic oxidation characteristics for DA and EP, consequently yielding the highly selective, sensitive, and simultaneous detection of target DA and EP. Dynamic linear ranges for both DA and EP were determined to be 0.05~100 μM, with detection limits (S/N = 3) of 28 nM and 44 nM, respectively. This study shows the potential of hierarchically structured Ce-incorporated MoS2 NFs to enhance the detection performances of electrochemical biosensors, thus enabling extensive applications in healthcare, diagnostics, and environmental monitoring.
Collapse
Affiliation(s)
| | | | - Moon Il Kim
- Department of BioNano Technology, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam 13120, Gyeonggi, Republic of Korea; (A.T.); (T.V.D.)
| |
Collapse
|
10
|
Ryu JJ, Jang CH. A liquid crystal-based sensor exploiting the aptamer-mediated recognition at the aqueous/liquid crystal interface for sensitive detection of serotonin. Biotechnol Appl Biochem 2023; 70:1972-1982. [PMID: 37479671 DOI: 10.1002/bab.2503] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 07/08/2023] [Indexed: 07/23/2023]
Abstract
We report here a liquid crystal (LC)-based sensor for detecting serotonin (5-HT); the proposed sensor uses target-specific aptamer recognition at a cationic surfactant decorated-aqueous/LC interface. Our detection strategy focuses on the orientational transition of LCs upon biological interactions at the interface. In this sensing system, the cationic surfactant hexadecyltrimethylammonium bromide (CTAB) forms a self-assembled monolayer at the aqueous/LC interface and triggers the homeotropic orientation of LCs. After introducing the 5-HT specific aptamer, an electrostatic attraction occurs between the cationic CTAB and anionic aptamer. This interaction destructs the surfactant monolayer at the interface, inducing reorganization of LC alignment from homeotropic to tilted conditions. In the increasing 5-HT levels, specific binding between 5-HT and the aptamer diminishes the interaction between the aptamer and CTAB, thereby maintaining the homeotropic alignment of LCs. The orientational transition of the LCs was observed under a polarized optical microscope. The developed biosensor has a linear detection range from 1 to 1000 nM and a detection limit of 1.68 nM. Moreover, the sensor was applied to a human urine sample and a detection limit of 2.25 nM was obtained. Overall, the designed LC-based sensor is a sensitive, simple, cost effective, and selective platform for detecting 5-HT in aqueous solutions.
Collapse
Affiliation(s)
- Je-Jin Ryu
- Department of Chemistry, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Chang-Hyun Jang
- Department of Chemistry, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
11
|
Govindaraju R, Govindaraju S, Yun K, Kim J. Fluorescent-Based Neurotransmitter Sensors: Present and Future Perspectives. BIOSENSORS 2023; 13:1008. [PMID: 38131768 PMCID: PMC10742055 DOI: 10.3390/bios13121008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
Neurotransmitters (NTs) are endogenous low-molecular-weight chemical compounds that transmit synaptic signals in the central nervous system. These NTs play a crucial role in facilitating signal communication, motor control, and processes related to memory and learning. Abnormalities in the levels of NTs lead to chronic mental health disorders and heart diseases. Therefore, detecting imbalances in the levels of NTs is important for diagnosing early stages of diseases associated with NTs. Sensing technologies detect NTs rapidly, specifically, and selectively, overcoming the limitations of conventional diagnostic methods. In this review, we focus on the fluorescence-based biosensors that use nanomaterials such as metal clusters, carbon dots, and quantum dots. Additionally, we review biomaterial-based, including aptamer- and enzyme-based, and genetically encoded biosensors. Furthermore, we elaborate on the fluorescence mechanisms, including fluorescence resonance energy transfer, photon-induced electron transfer, intramolecular charge transfer, and excited-state intramolecular proton transfer, in the context of their applications for the detection of NTs. We also discuss the significance of NTs in human physiological functions, address the current challenges in designing fluorescence-based biosensors for the detection of NTs, and explore their future development.
Collapse
Affiliation(s)
- Rajapriya Govindaraju
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam Daero, Seongnam-si 13120, Gyeonggi-do, Republic of Korea;
| | - Saravanan Govindaraju
- Department of Bio Nanotechnology, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea; (S.G.); (K.Y.)
| | - Kyusik Yun
- Department of Bio Nanotechnology, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea; (S.G.); (K.Y.)
| | - Jongsung Kim
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam Daero, Seongnam-si 13120, Gyeonggi-do, Republic of Korea;
| |
Collapse
|
12
|
Abdollahi Aghdam A, Chamanara M, Laripour R, Ebrahimi M. Micro-extraction, pre-concentration, and microfluidic-based separation of organophosphate insecticides followed by the miniaturized electrochemical detection system. BIOIMPACTS : BI 2023; 14:25288. [PMID: 38938753 PMCID: PMC11199932 DOI: 10.34172/bi.2023.25288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/20/2022] [Accepted: 07/02/2022] [Indexed: 06/29/2024]
Abstract
Introduction A new analytical method based on the coupling of microextraction and microfluidics was developed and investigated for the pre-concentration, separation, and electrochemical detection of fenitrothion (FT) and parathion (PA) at the sub-ppm concentrations. Methods In the first step, the microchip capillary electrophoresis technique was used to serve as a separation and detection system. Analytes were injected in the 40 mm long microchannel with 10 mm sidearms. Then, they were separated by applying a direct electrical field (+1800 V) between the buffer and detection reservoirs. 2-(n-morpholino)ethanesulfonic acid (MES) buffer (20 mM, pH 5) was used as a running buffer. The electrochemical detection was performed using three Pt microelectrodes with the width of working, counter, and reference electrodes (50, 250, and 250 µm, respectively) in the out-channel approach. Results The system was devised to have the optimum detection potential equal to -1.2 V vs. pseudo-reference electrode. The dimensions of the SU-8 channel have 20 µm depth and 50 µm width. In the second step, an air-assisted liquid-liquid microextraction technique was used to extract and preconcentration of analytes from human blood plasma. Then, 1, 2 di-bromoethan was used as extractant solvent, the analytes were preconcentrated, and the sedimented solvent (50 µL) was evaporated in a 60 ˚C water bath followed by substitution of running buffer containing 10% ethanol. The optimal extraction cycles were found to be 8 with adding 1% NaCl to the aqueous phase. Analyzing time of the mentioned analytes was less than 100s, the precision range was 3.3 - 8.2 with a linear range of 0.8-100 ppm and 1.2-100 ppm for FT and PA, respectively. The extraction recoveries were about 91% and 87% for FT and PA, respectively. The detection limits for FT and PA were 240 and 360 ppb, respectively. Finally, the reliability of the method was investigated by GC-FID. Conclusion The proposed method and device were validated and can be used as in situ and portable detection systems for detecting fenitrothion and parathion insecticides.
Collapse
Affiliation(s)
- Abdollah Abdollahi Aghdam
- Department of Toxicology and Pharmacology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohsen Chamanara
- Department of Toxicology and Pharmacology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
- Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Reza Laripour
- Department of Social and Preventive Medicine, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Mohsen Ebrahimi
- Department of Toxicology and Pharmacology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
- Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Liu N, Zhao S, Li Y, Li M, Guo Y, Luo X. Gold nanoparticles-decorated peptide hydrogel for antifouling electrochemical dopamine determination. Mikrochim Acta 2023; 190:199. [PMID: 37140766 DOI: 10.1007/s00604-023-05785-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/12/2023] [Indexed: 05/05/2023]
Abstract
A reliable and brief ultralow fouling electrochemical sensing system capable of monitoring targets in complex biological media was constructed and validated based on gold nanoparticles-peptide hydrogel-modified screen-printed electrode. The self-assembled zwitterionic peptide hydrogel was prepared by a newly designed peptide sequence of Phe-Phe-Cys-Cys-(Glu-Lys)3 with the N-terminal modified with a fluorene methoxycarbonyl group. The thiol groups on cysteine of the designed peptide are able to self-assemble with AuNPs to form a three-dimensional nanonetwork structure, which showed satisfactory antifouling capability in complex biological media (human serum). The developed gold nanoparticles-peptide hydrogel-based electrochemical sensing platform displayed notably sensing properties for dopamine determination, with a wide linear range (from 0.2 nM to 1.9 μM), a low limit of detection (0.12 nM), and an excellent selectivity. This highly sensitive and ultralow fouling electrochemical sensor was fabricated via simple preparation with concise components that avoid the accumulation of layers with single functional material and complex activation processes. This ultralow fouling and highly sensitive strategy based on the gold nanoparticles-peptide hydrogel with a three-dimensional nanonetwork offers a solution to the current situation of various low-fouling sensing systems facing impaired sensitivity and provides a potential path for the practical application of electrochemical sensors.
Collapse
Affiliation(s)
- Nianzu Liu
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Shuju Zhao
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Yanxin Li
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Mingxuan Li
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Yingshu Guo
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Xiliang Luo
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China.
| |
Collapse
|
14
|
Wang H, Feng Z, Lin F, Zhao Y, Hu Y, Yang Q, Zou Y, Zhao Y, Yang R. Research on Temperature-Switched Dopamine Electrochemical Sensor Based on Thermosensitive Polymers and MWCNTs. Polymers (Basel) 2023; 15:polym15061465. [PMID: 36987245 PMCID: PMC10058576 DOI: 10.3390/polym15061465] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
A temperature-controlled electrochemical sensor was constructed based on a composite membrane composed of temperature-sensitive polymer poly (N-isopropylacrylamide) (PNIPAM) and carboxylated multi-walled carbon nanotubes (MWCNTs-COOH). The sensor has good temperature sensitivity and reversibility in detecting Dopamine (DA). At low temperatures, the polymer is stretched to bury the electrically active sites of carbon nanocomposites. Dopamine cannot exchange electrons through the polymer, representing an “OFF” state. On the contrary, in a high-temperature environment, the polymer shrinks to expose electrically active sites and increases the background current. Dopamine can normally carry out redox reactions and generate response currents, indicating the “ON” state. In addition, the sensor has a wide detection range (from 0.5 μM to 150 μM) and low LOD (193 nM). This switch-type sensor provides new avenues for the application of thermosensitive polymers.
Collapse
Affiliation(s)
- Haixiu Wang
- School of Science, Xi’an University of Technology, Xi’an 710048, China
| | - Zufei Feng
- School of Science, Xi’an University of Technology, Xi’an 710048, China
- Correspondence:
| | - Fupeng Lin
- School of Science, Xi’an University of Technology, Xi’an 710048, China
| | - Yan Zhao
- School of Science, Xi’an University of Technology, Xi’an 710048, China
| | - Yangfan Hu
- School of Science, Xi’an University of Technology, Xi’an 710048, China
| | - Qian Yang
- School of Science, Xi’an University of Technology, Xi’an 710048, China
| | - Yiming Zou
- School of Science, Xi’an University of Technology, Xi’an 710048, China
| | - Yingjuan Zhao
- School of Science, Xi’an University of Technology, Xi’an 710048, China
| | - Rong Yang
- International Research Center for Composite and Intelligent Manufacturing Technology, Institute of Chemical Power Sources, Materials and Engineering College, Xi’an University of Technology, Xi’an 710048, China
| |
Collapse
|
15
|
Mahanta B, Al Mamun H, Konwar M, Patar S, Saikia P, Jyoti Borthakur L. Non‐Enzymatic Electrochemical Biosensor for Dopamine Detection Using MoS
2
/rGO/Ag Nanostructure. ChemistrySelect 2023. [DOI: 10.1002/slct.202205030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Baishali Mahanta
- Department of Chemistry Gauhati University Guwahati Assam 781014 India
| | - Hasan Al Mamun
- Department of Chemistry Nowgong College (Autonomous) Nagaon Assam Pin-782001 India
| | - Madhabi Konwar
- Department of Chemistry Gauhati University Guwahati Assam 781014 India
| | - Shyamalee Patar
- Department of Chemistry Gauhati University Guwahati Assam 781014 India
| | - Pranjal Saikia
- Department of Chemistry Nowgong College (Autonomous) Nagaon Assam Pin-782001 India
| | | |
Collapse
|
16
|
Sangubotla R, Won S, Kim J. Boronic acid-modified fluorescent sensor using coffee biowaste-based carbon dots for the detection of dopamine. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
17
|
Shi Y, Hu K, Mei L, Yang X, Shi Y, Wu X, Li XM, Miao M, Zhang S. SnO2 quantum dots-functionalized Ti3C2 MXene nanosheets for electrochemical determination of dopamine in body fluids. Mikrochim Acta 2022; 189:451. [DOI: 10.1007/s00604-022-05555-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/28/2022] [Indexed: 11/21/2022]
|
18
|
Rational incorporation of strontium pyrophosphate/hexagonal boron nitride composite for trace level electrochemical sensing of dopamine. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Eluwale Elugoke S, Esther Fayemi O, Saheed Adekunle A, Ganesh PS, Kim SY, Ebenso EE. Sensitive and selective neurotransmitter epinephrine detection at a carbon quantum dots/copper oxide nanocomposite. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.117120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
20
|
Silva-Neto HA, Arantes IV, Ferreira AL, do Nascimento GH, Meloni GN, de Araujo WR, Paixão TR, Coltro WK. Recent advances on paper-based microfluidic devices for bioanalysis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
21
|
Rizalputri LN, Anshori I, Handayani M, Gumilar G, Septiani NLW, Hartati YW, Annas MS, Purwidyantri A, Prabowo BA, Yuliarto B. Facile and controllable synthesis of monodisperse gold nanoparticle bipyramid for electrochemical dopamine sensor. NANOTECHNOLOGY 2022; 34:055502. [PMID: 36301678 DOI: 10.1088/1361-6528/ac9d3f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
We demonstrated potential features of gold nanoparticle bipyramid (AuNB) for an electrochemical biosensor. The facile synthesis method and controllable shape and size of the AuNB are achieved through the optimization of cetyltrimethylammonium chloride (CTAC) surfactant over citric acid (CA) ratio determining the control of typically spherical Au seed size and its transition into a penta-twinned crystal structure. We observe that the optimized ratio of CTAC and CA facilitates flocculation control in which Au seeds with size as tiny as ∼14.8 nm could be attained and finally transformed into AuNB structures with an average length of ∼55 nm with high reproducibility. To improve the electrochemical sensing performance of a screen-printed carbon electrode, surface modification with AuNB via distinctive linking procedures effectively enhanced the electroactive surface area by 40%. Carried out for the detection of dopamine, a neurotransmitter frequently linked to the risk of Parkinson's, Alzheimer's, and Huntington's diseases, the AuNB decorated-carbon electrode shows outstanding electrocatalytic activity that improves sensing performance, including high sensitivity, low detection limit, wide dynamic range, high selectivity against different analytes, such as ascorbic acid, uric acid and urea, and excellent reproducibility.
Collapse
Affiliation(s)
- Lavita Nuraviana Rizalputri
- Department of Nanotechnology, Graduate School, Bandung Institute of Technology, Bandung, Indonesia
- Research Center for Nanoscience and Nanotechnology (RCNN), Bandung Institute of Technology, Bandung, Indonesia
| | - Isa Anshori
- Research Center for Nanoscience and Nanotechnology (RCNN), Bandung Institute of Technology, Bandung, Indonesia
- Department of Biomedical Engineering, Bandung Institute of Technology, Bandung, Indonesia
| | - Murni Handayani
- Research Center for Advanced Materials, National Research and Innovation Agency (BRIN), Tangerang Selatan, Indonesia
| | - Gilang Gumilar
- Research Center for Nanoscience and Nanotechnology (RCNN), Bandung Institute of Technology, Bandung, Indonesia
- Advanced Functional Materials Laboratory, Engineering Physics Department, Bandung Institute of Technology, Bandung, Indonesia
| | - Ni Luh Wulan Septiani
- Research Center for Advanced Materials, National Research and Innovation Agency (BRIN), Tangerang Selatan, Indonesia
| | - Yeni Wahyuni Hartati
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, Indonesia
- Research Center of Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Bandung, Indonesia
| | | | - Agnes Purwidyantri
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, United Kingdom
| | - Briliant Adhi Prabowo
- Research Center for Electronics, National Research and Innovation Agency (BRIN), Bandung, Indonesia
- International Iberian Nanotechnology Laboratory, Braga, Portugal
| | - Brian Yuliarto
- Research Center for Nanoscience and Nanotechnology (RCNN), Bandung Institute of Technology, Bandung, Indonesia
| |
Collapse
|
22
|
Nix C, Ghassemi M, Crommen J, Fillet M. Overview on microfluidics devices for monitoring brain disorder biomarkers. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
23
|
Wang M, Gong Q, Liu W, Tan S, Xiao J, Chen C. Applications of capillary electrophoresis in the fields of environmental, pharmaceutical, clinical and food analysis (2019-2021). J Sep Sci 2022; 45:1918-1941. [PMID: 35325510 DOI: 10.1002/jssc.202100727] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 11/09/2022]
Abstract
So far, the potential of capillary electrophoresis (CE) in the application fields has been increasingly excavated due to the advantages of simple operation, short analysis time, high-resolution, less sample consumption and low cost. This review examines the implementations and advancements of CE in different application fields (environmental, pharmaceutical, clinical and food analysis) covering the literature from 2019 to 2021. In addition, ultrasmall sample injection volume (nanoliter range) and short optical path lead to relatively low concentration sensitivity of the most frequently used UV-absorption spectrophotometric detection, so the pretreatment technology being developed has been gradually utilized to overcome this problem. Despite the review is focused on the development of CE in the fields of environmental, pharmaceutical, clinical and food analysis, the new sample pretreatment techniques of microextraction and enrichment which fit excellently to CE in recent three years are also described briefly. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mengyao Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Qian Gong
- Department of Pharmacy, Hunan Cancer Hospital/ The Affiliated Cancer Hospital of School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Wenfang Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Songwen Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Jian Xiao
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Chuanpin Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
| |
Collapse
|
24
|
Zhou R, Tu B, Xia D, He H, Cai Z, Gao N, Chang G, He Y. High-performance Pt/Ti3C2Tx MXene based graphene electrochemical transistor for selective detection of dopamine. Anal Chim Acta 2022; 1201:339653. [DOI: 10.1016/j.aca.2022.339653] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 11/29/2022]
|
25
|
Kamal Eddin FB, Fen YW, Omar NAS, Liew JYC, Daniyal WMEMM. Femtomolar detection of dopamine using surface plasmon resonance sensor based on chitosan/graphene quantum dots thin film. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 263:120202. [PMID: 34333400 DOI: 10.1016/j.saa.2021.120202] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/23/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Due to the crucial role of dopamine (DA) in health and peripheral nervous systems, it is particularly important to develop an efficient and accurate sensor to monitor and determine DA concentrations for diagnostic purposes and diseases prevention. Up to now, using surface plasmon resonance (SPR) sensors in DA determination is very limited and its application still at the primary stage. In this work, a simple and ultra-sensitive SPR sensor was constructed for DA detection by preparation of chitosan- graphene quantum dots (CS-GQDs) thin film as the sensing layer. Other SPR measurements were conducted using different sensing layers; GQDs, CS for comparison. The proposed thin films were prepared by spin coating technique. The developed CS-GQDs thin film-based SPR sensor was successfully tested in DA concentration range from 0 fM to 1 pM. The designed SPR sensor showed outstanding performance in detecting DA sensitively (S = 0.011°/fM, R2 = 0.8174) with low detection limit of 1.0 fM has been achieved for the first time. The increased angular shift of SPR dip, narrow full width half maximum of the SPR curves, excellent signal-to-noise ratio and figure of merit, and a binding affinity constant (KA) of 2.962 PM-1 demonstrated the potential of this sensor to detect DA with high accuracy. Overall, it was concluded that the proposed sensor would serve as a valuable tool in clinical diagnostic for the serious neurological disorders. This in turns has a significant socio-economic impact.
Collapse
Affiliation(s)
- Faten Bashar Kamal Eddin
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Yap Wing Fen
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Functional Devices Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Nur Alia Sheh Omar
- Functional Devices Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Josephine Ying Chyi Liew
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | | |
Collapse
|
26
|
Wang W, Zhang B, Zhang Y, Ma P, Wang X, Sun Y, Song D, Fei Q. Colorimetry and SERS dual-mode sensing of serotonin based on functionalized gold nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 261:120057. [PMID: 34119772 DOI: 10.1016/j.saa.2021.120057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 06/12/2023]
Abstract
In this study, we reported a colorimetry and SERS dual-mode sensing of serotonin (5-HT) based on functionalized gold nanoparticles (AuNPs). Based on the amino and hydroxyl groups in 5-HT can react with dithiobis succinimidyl propionate (DSP) and N-acetyl-L-cysteine (NALC) respectively, we synthesized two kinds of functionalized AuNPs (DSP-AuNPs and NALC-AuNPs). A double interaction between functionalized nanoparticles and the hydroxyl and the amino group of serotonin led to interparticle-crosslinking aggregation. The aggregation of the two functionalized AuNPs can cause the plasmon coupling of AuNPs resulting in a color change visible to the naked eye and the enlargement of SERS "hot spot" area and the enhancement of SERS signal. Furthermore, two kinds of functionalized AuNPs can specifically recognize 5-HT and effectively reduce the interference of biomolecules with similar structure to 5-HT in the experiment. This dual-mode system has the advantages of low detection limit, high sensitivity and good selectivity, and the detection limit is 0.15 nmol L-1. Besides, the system was applied to the determination of 5-HT content in human serum, and the relative standard deviation (RSD) was lower than 3.75%, which indicated that the system had a good application prospect in the determination of biological samples.
Collapse
Affiliation(s)
- Wei Wang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Bo Zhang
- International Center of Future Science, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Yue Zhang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Pinyi Ma
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Xinghua Wang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Ying Sun
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Daqian Song
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Qiang Fei
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China.
| |
Collapse
|
27
|
Ma Q, Qiao J, Liu Y, Qi L. Colorimetric monitoring of serum dopamine with promotion activity of gold nanocluster-based nanozymes. Analyst 2021; 146:6615-6620. [PMID: 34590627 DOI: 10.1039/d1an01511g] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Over the past few decades, metal nanoparticles have been actively investigated as enzyme mimetic nanomaterials. However, the catalytic activity of gold nanocluster (AuNCs)-based nanozymes is relatively low. It is still a great challenge to improve the enzyme-mimic catalytic property of AuNCs, and to explore the roles of the charges on the surface of the nanozymes and reactive oxygen species in the catalytic reaction systems. This study describes a simple synthesis of AuNCs capped with papain (P@AuNCs). The as-prepared P@AuNCs exhibited an efficient peroxidase-mimic ability via the catalytic oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of hydrogen peroxide. Interestingly, the negatively charged dopamine was able to trigger the aggregration of the positively charged P@AuNCs and reactive oxygen species generated in the oxidation process, resulting in a remarkable catalytic activity promotion of P@AuNCs. Based on this principle, a protocol for the highly selective and sensitive monitoring of dopamine has been constructed with the colour change from pale blue to deep blue. The ultraviolet-visible absorbance of P@AuNCs-TMB at the wavelength of 650 nm showed a good linear relationship with the dopamine concentration ranging from 2.0 μM to 25.0 μM (R2 = 0.990). The limit of detection was 0.8 μM. Furthermore, dopamine was monitored in a drug metabolic process following the abdominal injection in rats using the proposed colorimetric assay. It offers an easy approach for the fabrication of AuNCs-based nanozymes with an improved catalytic activity, and provides a great potential application in the measuring of real serum drugs.
Collapse
Affiliation(s)
- Qian Ma
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China. .,School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, P. R. China
| | - Juan Qiao
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China. .,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Yufei Liu
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, P. R. China
| | - Li Qi
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China. .,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
28
|
He J, Liu J, Liu Y, Liyin Z, Wu X, Song G, Hou Y, Wang R, Zhao W, Sun H. Trace carbonyl analysis in water samples by integrating magnetic molecular imprinting and capillary electrophoresis. RSC Adv 2021; 11:32841-32851. [PMID: 35493566 PMCID: PMC9042219 DOI: 10.1039/d1ra05084b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/21/2021] [Indexed: 12/28/2022] Open
Abstract
In order to obtain high derivatization efficiency, the overuse of derivative agent 2,4-dinitrophenylhydrazine (2,4-DNPH) is necessary for carbonyl detection. But, the 2,4-DNPH residue will cause background interferences and limit the pre-concentration factor of the target analytes. In order to overcome the bottleneck problems, the magnetic molecularly imprinted polymer based solid-phase extraction (MMIPs-SPE) method was developed with 2,4-dinitroaniline (2,4-DNAN) as the dummy template. The characteristics and selectivity of the MMIPs were investigated. Under the optimized conditions, the enrichment of carbonyls-DNPH derivatives with simultaneous removal of the surplus 2,4-DNPH was achieved. By coupling with capillary electrophoresis (CE), a satisfactory analytical performance was obtained with the detection limit ranging from 1.2 to 8.7 μg L−1 for 8 carbonyls. The MMIPs-SPE-CE method was applied successfully for the carbonyl assessment in stream water, tap water and bottled water. In addition, the migration of carbonyls in bottled drinking water was investigated under UV irradiation and heating. By integrating MMIPs-SPE method and CE, the enrichment of carbonyls-DNPH derivatives with simultaneous removal of the surplus derivative agent 2,4-DNPH can be achieved.![]()
Collapse
Affiliation(s)
- Jiahua He
- College of Environmental Science and Engineering, Guangzhou University Guangzhou 510006 Guangdong China
| | - Jiawei Liu
- College of Environmental Science and Engineering, Guangzhou University Guangzhou 510006 Guangdong China
| | - Yangyang Liu
- College of Environmental Science and Engineering, Guangzhou University Guangzhou 510006 Guangdong China
| | - Zhengxi Liyin
- College of Environmental Science and Engineering, Guangzhou University Guangzhou 510006 Guangdong China
| | - Xiaoyi Wu
- College of Environmental Science and Engineering, Guangzhou University Guangzhou 510006 Guangdong China
| | - Gang Song
- College of Environmental Science and Engineering, Guangzhou University Guangzhou 510006 Guangdong China
| | - Yeyang Hou
- College of Environmental Science and Engineering, Guangzhou University Guangzhou 510006 Guangdong China
| | - Ruixi Wang
- College of Environmental Science and Engineering, Guangzhou University Guangzhou 510006 Guangdong China
| | - Wenfeng Zhao
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University Xuzhou 221116 P. R. China
| | - Hui Sun
- College of Environmental Science and Engineering, Guangzhou University Guangzhou 510006 Guangdong China .,Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources Guangzhou 510006 Guangdong China
| |
Collapse
|
29
|
Tai WC, Chang YC, Chou D, Fu LM. Lab-on-Paper Devices for Diagnosis of Human Diseases Using Urine Samples-A Review. BIOSENSORS 2021; 11:260. [PMID: 34436062 PMCID: PMC8393526 DOI: 10.3390/bios11080260] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 12/23/2022]
Abstract
In recent years, microfluidic lab-on-paper devices have emerged as a rapid and low-cost alternative to traditional laboratory tests. Additionally, they were widely considered as a promising solution for point-of-care testing (POCT) at home or regions that lack medical infrastructure and resources. This review describes important advances in microfluidic lab-on-paper diagnostics for human health monitoring and disease diagnosis over the past five years. The review commenced by explaining the choice of paper, fabrication methods, and detection techniques to realize microfluidic lab-on-paper devices. Then, the sample pretreatment procedure used to improve the detection performance of lab-on-paper devices was introduced. Furthermore, an in-depth review of lab-on-paper devices for disease measurement based on an analysis of urine samples was presented. The review concludes with the potential challenges that the future development of commercial microfluidic lab-on-paper platforms for human disease detection would face.
Collapse
Affiliation(s)
- Wei-Chun Tai
- Department of Oral and Maxillofacial Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
| | - Yu-Chi Chang
- Department of Engineering Science, National Cheng Kung University, Tainan 701, Taiwan;
| | - Dean Chou
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan;
| | - Lung-Ming Fu
- Department of Engineering Science, National Cheng Kung University, Tainan 701, Taiwan;
- Graduate Institute of Materials Engineering, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| |
Collapse
|
30
|
Emadoddin M, Mozaffari SA, Ebrahimi F. An antifouling impedimetric sensor based on zinc oxide embedded polyvinyl alcohol nanoplatelets for wide range dopamine determination in the presence of high concentration ascorbic acid. J Pharm Biomed Anal 2021; 205:114278. [PMID: 34365189 DOI: 10.1016/j.jpba.2021.114278] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/11/2021] [Accepted: 07/21/2021] [Indexed: 01/17/2023]
Abstract
Dopamine determination is of great importance for the early diagnosis of neurological diseases. However, dopamine sensors mostly encounter important challenges such as surface fouling and interference of co-existing biochemicals. Here, nanoplatelets of zinc oxide embedded polyvinyl alcohol (NP-ZnO/PVA) were utilized for providing an efficient fouling-free surface for selective dopamine determination in concentrations as high as 3 mM of dopamine in the presence of ascorbic acid interference. The fouling-free properties was provided mainly by pH-inducibility of the NP-ZnO/PVA nanocomposite at the rationally adjusted sensing conditions. ZnO plays a vital role in the electrocatalytic oxidation of dopamine, and PVA provides surface functional groups that minimize the surface interactions with interferences or fouling agents. The NP-ZnO/PVA nanocomposite fabrication process was performed by PVA assisted ZnO electro-synthesis onto the surface of fluorine-doped tin oxide (FTO) conducting glass. The fabricated FTO/NP-ZnO/PVA sensor was characterized utilizing FE-SEM, EDX, XRD, TGA-DTG, BET-BJH and FTIR techniques. Impedimetric determination of dopamine was performed in the wide linear range from 20.0 nM to 3.0 mM with a low detection limit of 5.0 nM. The applicability of FTO/NP-ZnO/PVA for dopamine determination was successfully tested in real samples. The NP-ZnO/PVA provides a great prospective to be an efficacious material for the construction of dopamine electrochemical sensing platforms.
Collapse
Affiliation(s)
- Motahhare Emadoddin
- Thin Layer and Nanotechnology Laboratory, Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), P.O. Box 33535-111, Tehran, Iran
| | - Sayed Ahmad Mozaffari
- Thin Layer and Nanotechnology Laboratory, Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), P.O. Box 33535-111, Tehran, Iran.
| | - Fateme Ebrahimi
- Thin Layer and Nanotechnology Laboratory, Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), P.O. Box 33535-111, Tehran, Iran
| |
Collapse
|
31
|
Li Y, Shen Y, Zhang Y, Zeng T, Wan Q, Lai G, Yang N. A UiO-66-NH 2/carbon nanotube nanocomposite for simultaneous sensing of dopamine and acetaminophen. Anal Chim Acta 2021; 1158:338419. [PMID: 33863410 DOI: 10.1016/j.aca.2021.338419] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 02/27/2021] [Accepted: 03/13/2021] [Indexed: 12/31/2022]
Abstract
Carbon nanomaterials are quite promising to be combined with metal-organic frameworks (MOFs) to enhance the sensing ability of both materials. In this work, a MOF nanoparticle of UiO-66-NH2 is integrated with carbon nanotubes (CNTs) (UiO-66-NH2/CNTs) with a facile solvothermal method. The morphology, surface area and properties of this UiO-66-NH2/CNTs nanocomposite was investigated using electron microscopy, XRD, XPS, BET analysis and electrochemical techniques. Catalytic oxidation of dopamine (DA) and acetaminophen (AC) on this nanocomposite was achieved, owing to a 3D hybrid structure or a large electroactive surface area, excellent electrical conductivity, a large number of active sites of this nanocomposite. It was further utilized as a sensing platform to establish an electrochemical sensor for the monitoring of both DA and AC. The enhanced oxidation signals led to the voltametric sensing of DA and AC in a broad linear range from 0.03 to 2.0 μM and low detection limits (S/N = 3) of 15 and 9 nM for DA and AC, respectively. The proposed sensor also possessed good reproducibility, repeatability, long-term stability, selectivity, and satisfactory recovery in serum samples analysis. Therefore, it has the great potential for the accurate quantification of DA and AC in complex matrixes.
Collapse
Affiliation(s)
- Yao Li
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Hubei Key Lab of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430073, China
| | - Yuli Shen
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Hubei Key Lab of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430073, China
| | - Yuanyuan Zhang
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Hubei Key Lab of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430073, China; Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, Hubei Normal University, Huangshi, 435002, China.
| | - Ting Zeng
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Hubei Key Lab of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430073, China
| | - Qijin Wan
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Hubei Key Lab of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, 430073, China
| | - Guosong Lai
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, Hubei Normal University, Huangshi, 435002, China
| | - Nianjun Yang
- Institute of Materials Engineering, University of Siegen, 57076, Siegen, Germany
| |
Collapse
|
32
|
Panapimonlawat T, Phanichphant S, Sriwichai S. Electrochemical Dopamine Biosensor Based on Poly(3-aminobenzylamine) Layer-by-Layer Self-Assembled Multilayer Thin Film. Polymers (Basel) 2021; 13:1488. [PMID: 34066377 PMCID: PMC8125673 DOI: 10.3390/polym13091488] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/01/2021] [Accepted: 05/03/2021] [Indexed: 11/27/2022] Open
Abstract
Dopamine (DA) is an important neurotransmitter which indicates the risk of several neurological diseases. The selective determination with low detection limit is necessary for early diagnosis and prevention of neurological diseases associated with abnormal concentration of DA. The purpose of this study is to fabricate a poly(3-aminobenzylamine)/poly(sodium 4-styrenesulfonate) (PABA/PSS) multilayer thin film for use as an electrochemical DA biosensor. The PABA was firstly synthesized using a chemical oxidation method of 3-aminobenzylamine (ABA) monomer with ammonium persulfate (APS) as an oxidant. For electrochemical biosensor, the PABA/PSS thin film was fabricated on fluorine doped tin oxide (FTO)-coated glass substrate using the layer-by-layer (LBL) self-assembly method. The optimized number of bilayers was achieved using SEM and cyclic voltammetry (CV) results. The electroactivity of the optimized LBL thin film toward detection of DA in neutral solution was studied by CV and amperometry. The PABA/PSS thin film showed good sensitivity for DA sensing with sensitivity of 6.922 nA·cm-2·µM-1 and linear range of 0.1-1.0 µM (R2 = 0.9934), with low detection limit of 0.0628 µM, long-term stability and good reproducibility. In addition, the selectivity of the PABA/PSS thin film for detection of DA under the common interferences (i.e., ascorbic acid, uric acid and glucose) was also presented. The prepared PABA/PSS thin film showed the powerful efficiency for future use as DA biosensor in real sample analysis.
Collapse
Affiliation(s)
- Tayanee Panapimonlawat
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sukon Phanichphant
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Saengrawee Sriwichai
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand;
| |
Collapse
|
33
|
Promsuwan K, Soleh A, Saisahas K, Saichanapan J, Kanatharana P, Thavarungkul P, Guo C, Li CM, Limbut W. Discrimination of dopamine by an electrode modified with negatively charged manganese dioxide nanoparticles decorated on a poly(3,4 ethylenedioxythiophene)/reduced graphene oxide composite. J Colloid Interface Sci 2021; 597:314-324. [PMID: 33872888 DOI: 10.1016/j.jcis.2021.03.162] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 11/25/2022]
Abstract
A unique nanocomposite was fabricated using negatively charged manganese dioxide nanoparticles, poly (3,4-ethylenedioxythiophene) and reduced graphene oxide (MnO2/PEDOT/rGO). The nanocomposite was deposited on a glassy carbon electrode (GCE) functionalized with amino groups. The modified GCE was used to electrochemically detect dopamine (DA). The surface morphology, charge effect and electrochemical behaviours of the modified GCE were characterized by scanning electron microscopy, energy dispersive X-ray analysis (EDX), cyclic voltammetry and electrochemical impedance spectroscopy, respectively. The MnO2/PEDOT/rGO/GCE exhibited excellent performance towards DA sensing with a linear range between 0.05 and 135 µM with a lowest detection limit of 30 nM (S/N = 3). Selectivity towards DA was high in the presence of high concentrations of the typical interferences ascorbic acid and uric acid. The stability and reproducibility of the electrode were good. The sensor accurately determined DA in human serum. The synergic effect of the multiple components of the fabricated nanocomposite were critical to the good DA sensing performance. rGO provided a conductive backbone, PEDOT directed the uniform growth of MnO2 and adsorbed DA via pi-pi and electrostatic interaction, while the negatively charged MnO2 provided adsorption and catalytic sites for protonated DA. This work produced a promising biosensor that sensitively and selectively detected DA.
Collapse
Affiliation(s)
- Kiattisak Promsuwan
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, HatYai, Songkhla 90112, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Asamee Soleh
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, HatYai, Songkhla 90112, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Kasrin Saisahas
- Forensic Science Programme, School of Health Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Jenjira Saichanapan
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Proespichaya Kanatharana
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, HatYai, Songkhla 90112, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Panote Thavarungkul
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, HatYai, Songkhla 90112, Thailand; Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Chunxian Guo
- Institute of Materials Science & Devices, Suzhou University of Science and Technology, Suzhou 215011, PR China.
| | - Chang Ming Li
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637457, Singapore; Institute for Clean Energy & Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, PR China; Institute of Materials Science & Devices, Suzhou University of Science and Technology, Suzhou 215011, PR China.
| | - Warakorn Limbut
- Center of Excellence for Trace Analysis and Biosensor, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, HatYai, Songkhla 90112, Thailand; Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand.
| |
Collapse
|
34
|
Zhang M, Zhang Y, Yang C, Ma C, Tang J. A smartphone-assisted portable biosensor using laccase-mineral hybrid microflowers for colorimetric determination of epinephrine. Talanta 2021; 224:121840. [DOI: 10.1016/j.talanta.2020.121840] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/25/2020] [Accepted: 10/28/2020] [Indexed: 12/17/2022]
|
35
|
Abstract
The present review deals with the recent progress made in the field of the electrochemical detection of serotonin by means of electrochemical sensors based on various nanomaterials incorporated in the sensitive element. Due to the unique chemical and physical properties of these nanomaterials, it was possible to develop sensitive electrochemical sensors with excellent analytical performances, useful in the practice. The main electrochemical sensors used in serotonin detection are based on carbon electrodes modified with carbon nanotubes and various materials, such as benzofuran, polyalizarin red-S, poly(L-arginine), Nafion/Ni(OH)2, or graphene oxide, incorporating silver-silver selenite nanoparticles, as well as screen-printed electrodes modified with zinc oxide or aluminium oxide. Also, the review describes the nanocomposite sensors based on conductive polymers, tin oxide-tin sulphide, silver/polypyrole/copper oxide or a hybrid structure of cerium oxide-gold oxide nanofibers together with ruthenium oxide nanowires. The presentation focused on describing the sensitive materials, characterizing the sensors, the detection techniques, electroanalytical properties, validation and use of sensors in lab practice.
Collapse
|