1
|
Bajrai LH, Faizo AA, Alkhaldy AA, Dwivedi VD, Azhar EI. Repositioning of anti-dengue compounds against SARS-CoV-2 as viral polyprotein processing inhibitor. PLoS One 2022; 17:e0277328. [PMID: 36383621 PMCID: PMC9668197 DOI: 10.1371/journal.pone.0277328] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022] Open
Abstract
A therapy for COVID-19 (Coronavirus Disease 19) caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) remains elusive due to the lack of an effective antiviral therapeutic molecule. The SARS-CoV-2 main protease (Mpro), which plays a vital role in the viral life cycle, is one of the most studied and validated drug targets. In Several prior studies, numerous possible chemical entities were proposed as potential Mpro inhibitors; however, most failed at various stages of drug discovery. Repositioning of existing antiviral compounds accelerates the discovery and development of potent therapeutic molecules. Hence, this study examines the applicability of anti-dengue compounds against the substrate binding site of Mpro for disrupting its polyprotein processing mechanism. An in-silico structure-based virtual screening approach is applied to screen 330 experimentally validated anti-dengue compounds to determine their affinity to the substrate binding site of Mpro. This study identified the top five compounds (CHEMBL1940602, CHEMBL2036486, CHEMBL3628485, CHEMBL200972, CHEMBL2036488) that showed a high affinity to Mpro with a docking score > -10.0 kcal/mol. The best-docked pose of these compounds with Mpro was subjected to 100 ns molecular dynamic (MD) simulation followed by MM/GBSA binding energy. This showed the maximum stability and comparable ΔG binding energy against the reference compound (X77 inhibitor). Overall, we repurposed the reported anti-dengue compounds against SARS-CoV-2-Mpro to impede its polyprotein processing for inhibiting SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Leena H. Bajrai
- Special Infectious Agents Unit – BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Biochemistry Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Arwa A. Faizo
- Special Infectious Agents Unit – BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Areej A. Alkhaldy
- Special Infectious Agents Unit – BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Clinical Nutrition Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Vivek Dhar Dwivedi
- Center for Bioinformatics, Computational and Systems Biology, Pathfinder Research and Training Foundation, Greater Noida, India
- Bioinformatics Research Division, Quanta Calculus, Greater Noida, India
| | - Esam I. Azhar
- Special Infectious Agents Unit – BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
2
|
Abdelkarem FM, Nafady AM, Allam AE, Mostafa MAH, Al Haidari RA, Hassan HA, Zaki MEA, Assaf HK, Kamel MR, Zidan SAH, Sayed AM, Shimizu K. A Comprehensive In Silico Study of New Metabolites from Heteroxenia fuscescens with SARS-CoV-2 Inhibitory Activity. Molecules 2022; 27:molecules27217369. [PMID: 36364194 PMCID: PMC9657797 DOI: 10.3390/molecules27217369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/22/2022] [Accepted: 10/27/2022] [Indexed: 12/02/2022] Open
Abstract
Chemical investigation of the total extract of the Egyptian soft coral Heteroxenia fuscescens, led to the isolation of eight compounds, including two new metabolites, sesquiterpene fusceterpene A (1) and a sterol fuscesterol A (4), along with six known compounds. The structures of 1–8 were elucidated via intensive studies of their 1D, 2D-NMR, and HR-MS analyses, as well as a comparison of their spectral data with those mentioned in the literature. Subsequent comprehensive in-silico-based investigations against almost all viral proteins, including those of the new variants, e.g., Omicron, revealed the most probable target for these isolated compounds, which was found to be Mpro. Additionally, the dynamic modes of interaction of the putatively active compounds were highlighted, depending on 50-ns-long MDS. In conclusion, the structural information provided in the current investigation highlights the antiviral potential of H. fuscescens metabolites with 3β,5α,6β-trihydroxy steroids with different nuclei against SARS-CoV-2, including newly widespread variants.
Collapse
Affiliation(s)
- Fahd M. Abdelkarem
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Alaa M. Nafady
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Ahmed E. Allam
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
- Correspondence: (A.E.A.); (M.E.A.Z.)
| | - Mahmoud A. H. Mostafa
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
- Department of Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, Taibah University, Al Madinah Al Munawarah 41477, Saudi Arabia
| | - Rwaida A. Al Haidari
- Department of Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, Taibah University, Al Madinah Al Munawarah 41477, Saudi Arabia
| | - Heba Ali Hassan
- Department of Pharmacognosy, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt
| | - Magdi E. A. Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
- Correspondence: (A.E.A.); (M.E.A.Z.)
| | - Hamdy K. Assaf
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Mohamed R. Kamel
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Sabry A. H. Zidan
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Ahmed M. Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt
| | - Kuniyoshi Shimizu
- Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
3
|
Targeting Natural Plant Metabolites for Hunting SARS-CoV-2 Omicron BA.1 Variant Inhibitors: Extraction, Molecular Docking, Molecular Dynamics, and Physicochemical Properties Study. Curr Issues Mol Biol 2022; 44:5028-5047. [PMID: 36286057 PMCID: PMC9600405 DOI: 10.3390/cimb44100342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/12/2022] [Accepted: 10/18/2022] [Indexed: 12/02/2022] Open
Abstract
(1) Background: SARS-CoV-2 Omicron BA.1 is the most common variation found in most countries and is responsible for 99% of cases in the United States. To overcome this challenge, there is an urgent need to discover effective inhibitors to prevent the emerging BA.1 variant. Natural products, particularly flavonoids, have had widespread success in reducing COVID-19 prevalence. (2) Methods: In the ongoing study, fifteen compounds were annotated from Echium angustifolium and peach (Prunus persica), which were computationally analyzed using various in silico techniques. Molecular docking calculations were performed for the identified phytochemicals to investigate their efficacy. Molecular dynamics (MD) simulations over 200 ns followed by molecular mechanics Poisson–Boltzmann surface area calculations (MM/PBSA) were performed to estimate the binding energy. Bioactivity was also calculated for the best components in terms of drug likeness and drug score. (3) Results: The data obtained from the molecular docking study demonstrated that five compounds exhibited remarkable potency, with docking scores greater than −9.0 kcal/mol. Among them, compounds 1, 2 and 4 showed higher stability within the active site of Omicron BA.1, with ΔGbinding values of −49.02, −48.07, and −67.47 KJ/mol, respectively. These findings imply that the discovered phytoconstituents are promising in the search for anti-Omicron BA.1 drugs and should be investigated in future in vitro and in vivo research.
Collapse
|
4
|
Mousavi S, Zare S, Mirzaei M, Feizi A. Novel Drug Design for Treatment of COVID-19: A Systematic Review of Preclinical Studies. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2022; 2022:2044282. [PMID: 36199815 PMCID: PMC9527439 DOI: 10.1155/2022/2044282] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/23/2022] [Accepted: 08/03/2022] [Indexed: 11/27/2022]
Abstract
Background Since the beginning of the novel coronavirus (SARS-CoV-2) disease outbreak, there has been an increasing interest in discovering potential therapeutic agents for this disease. In this regard, we conducted a systematic review through an overview of drug development (in silico, in vitro, and in vivo) for treating COVID-19. Methods A systematic search was carried out in major databases including PubMed, Web of Science, Scopus, EMBASE, and Google Scholar from December 2019 to March 2021. A combination of the following terms was used: coronavirus, COVID-19, SARS-CoV-2, drug design, drug development, In silico, In vitro, and In vivo. A narrative synthesis was performed as a qualitative method for the data synthesis of each outcome measure. Results A total of 2168 articles were identified through searching databases. Finally, 315 studies (266 in silico, 34 in vitro, and 15 in vivo) were included. In studies with in silico approach, 98 article study repurposed drug and 91 studies evaluated herbal medicine on COVID-19. Among 260 drugs repurposed by the computational method, the best results were observed with saquinavir (n = 9), ritonavir (n = 8), and lopinavir (n = 6). Main protease (n = 154) following spike glycoprotein (n = 62) and other nonstructural protein of virus (n = 45) was among the most studied targets. Doxycycline, chlorpromazine, azithromycin, heparin, bepridil, and glycyrrhizic acid showed both in silico and in vitro inhibitory effects against SARS-CoV-2. Conclusion The preclinical studies of novel drug design for COVID-19 focused on main protease and spike glycoprotein as targets for antiviral development. From evaluated structures, saquinavir, ritonavir, eucalyptus, Tinospora cordifolia, aloe, green tea, curcumin, pyrazole, and triazole derivatives in in silico studies and doxycycline, chlorpromazine, and heparin from in vitro and human monoclonal antibodies from in vivo studies showed promised results regarding efficacy. It seems that due to the nature of COVID-19 disease, finding some drugs with multitarget antiviral actions and anti-inflammatory potential is valuable and some herbal medicines have this potential.
Collapse
Affiliation(s)
- Sarah Mousavi
- Department of Clinical Pharmacy and Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shima Zare
- School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahmoud Mirzaei
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Awat Feizi
- Department of Epidemiology and Biostatistics, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
5
|
Elsayed RW, Sabry MA, El-Subbagh HI, Bayoumi SM, El-Sayed SM. Thiazole-based SARS-CoV-2 protease (COV M pro ) inhibitors: Design, synthesis, enzyme inhibition, and molecular modeling simulations. Arch Pharm (Weinheim) 2022; 355:e2200121. [PMID: 35607750 PMCID: PMC9348455 DOI: 10.1002/ardp.202200121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/16/2022] [Accepted: 04/21/2022] [Indexed: 01/08/2023]
Abstract
As an attempt to contribute to the efforts of combating the pandemic virus severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) responsible for COVID‐19, new analogs of the repurposed drug nitazoxanide which showed promising inhibitory efficacy on a viral protease enzyme were designed, synthesized and evaluated for their inhibitory activity on the main protease of the SARS‐CoV‐2 virus, using the COV2‐3CL protease inhibition assay. The obtained results showed that the N‐(substituted‐thiazol‐2‐yl)cinnamamide analogs 19, 20, and 21 were the most active compounds with IC50 values of 22.61, 14.7, 21.99 µM, respectively, against the viral protease compared to the reference drugs, nitazoxanide, and lopinavir. Molecular modeling studies showed binding interactions of 19, 20, and 21 with hydrogen bonds to Gln189 and Glu166, arene–arene interaction between the thiazole moiety and His41, and other hydrophobic interactions between the ethene spacer moiety and Asn142. Moreover, an extra arene–arene interaction between substituted benzo[d]thiazole and His41 was observed regarding compounds 19 and 21. Surface mapping and flexible alignment proved the structural similarity between the new drug candidates and nitazoxanide. Compliance of the new compounds to Lipinski's rule of five was investigated and absorption, distribution, metabolism, excretion, and toxicology data were predicted. The newly synthesized compounds are promising template ligands for further development and optimization.
Collapse
Affiliation(s)
- Reham W Elsayed
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mohamed A Sabry
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Hussein I El-Subbagh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Said M Bayoumi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Selwan M El-Sayed
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
6
|
Prasetyo WE, Purnomo H, Sadrini M, Wibowo FR, Firdaus M, Kusumaningsih T. Identification of potential bioactive natural compounds from Indonesian medicinal plants against 3-chymotrypsin-like protease (3CL pro) of SARS-CoV-2: molecular docking, ADME/T, molecular dynamic simulations, and DFT analysis. J Biomol Struct Dyn 2022:1-18. [DOI: 10.1080/07391102.2022.2068071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Wahyu Eko Prasetyo
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Surakarta, Indonesia
| | - Heri Purnomo
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Surakarta, Indonesia
| | - Miracle Sadrini
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Surakarta, Indonesia
| | - Fajar Rakhman Wibowo
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Surakarta, Indonesia
| | - Maulidan Firdaus
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Surakarta, Indonesia
| | - Triana Kusumaningsih
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Surakarta, Indonesia
| |
Collapse
|
7
|
Hamed ANE, Abouelela ME, El Zowalaty AE, Badr MM, Abdelkader MSA. Chemical constituents from Carica papaya Linn. leaves as potential cytotoxic, EGFR wt and aromatase (CYP19A) inhibitors; a study supported by molecular docking. RSC Adv 2022; 12:9154-9162. [PMID: 35424860 PMCID: PMC8985094 DOI: 10.1039/d1ra07000b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 03/14/2022] [Indexed: 12/26/2022] Open
Abstract
The phytochemical investigation of the hydromethanolic extract of Carica papaya Linn. leaves (Caricaceae) resulted in the isolation and characterization of ten compounds, namely; carpaine (1), methyl gallate (2), loliolide (3), rutin (4), clitorin (5), kaempferol-3-O-neohesperidoside (6), isoquercetin (7), nicotiflorin (8) and isorhamnetin-3-O-β-d-glucopyranoside (9). The compounds 2, 3, 5-7 and 9 were isolated for the first time from the genus Carica. An in vitro breast cancer cytotoxicity study was evaluated with an MCF-7 cell line using the MTT assay. Methyl gallate and clitorin demonstrated the most potent cytotoxic activities with an IC50 of 1.11 ± 0.06 and 2.47 ± 0.14 μM, respectively. Moreover, methyl gallate and nicotiflorin exhibited potential EGFRwt kinase inhibition activities with an IC50 of 37.3 ± 1.9 and 41.08 ± 2.1 nM, respectively, compared with the positive control erlotinib (IC50 = 35.94 ± 1.8 nM). On the other hand, clitorin and nicotiflorin displayed the strongest aromatase kinase inhibition activities with an IC50 of 77.41 ± 4.53 and 92.84 ± 5.44 nM, respectively. Clitorin was comparable to the efficacy of the standard drug letrozole (IC50 = 77.72 ± 4.55). Additionally, molecular docking simulations of the isolated compounds to EGFR and human placental aromatase cytochrome P450 (CYP19A1) were evaluated. Methyl gallate linked with the EGFR receptor through hydrogen bonding with a pose score of -4.5287 kcal mol-1 and RMSD value of 1.69 Å. Clitorin showed the strongest interaction with aromatase (CYP19A1) for the breast cancer receptor with a posing score of -14.2074 and RMSD value of 1.56 Å. Compounds (1-3) possessed a good bioavailability score with a 0.55 value.
Collapse
Affiliation(s)
- Ashraf N E Hamed
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University Minia 61519 Egypt
| | - Mohamed E Abouelela
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University Assiut-Branch Assiut 71524 Egypt
| | - Ahmed E El Zowalaty
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical Sciences, University of Gothenburg 40530 Gothenburg Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg 40530 Gothenburg Sweden
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University 44519 Egypt
| | - Mohamed M Badr
- Department of Biochemistry, Faculty of Pharmacy, Menoufia University Menoufia 32511 Egypt
| | | |
Collapse
|
8
|
Allam AE, Abouelela ME, Assaf HK, Sayed AM, Nafady AM, El-Shanawany MA, Takano F, Ohta T. Phytochemical and in silico studies for potential constituents from Centaurium spicatum as candidates against the SARS-CoV-2 main protease and RNA-dependent RNA polymerase. Nat Prod Res 2021; 36:5724-5731. [PMID: 34961393 DOI: 10.1080/14786419.2021.2019732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the present study, a new secoiridoid glycoside lisianthoside II 1, along with seven known compounds 2-8, were isolated from Centaurium spicatum L. In-silico molecular docking and molecular dynamic simulation against SARS-CoV-2 Main protease (Mpro) and RNA-dependent RNA polymerase (RdRp) were conducted. The affinity docking scores revealed that 8 is the best bound ligand to Mpro active site with binding energy of -14.9877 kcal/mol (RSMD = 1.16 Å), while 6 was the highest against RdRp (-16.9572 kcal/mol, RMSD = 1.01 Å). Moreover, the molecular dynamic simulation revealed that 8 with a (ΔG) of -7.9 kcal/mol (RMSD value of 2.6 Å) and 6 (RMSD value of 1.6 Å) and binding free energy (ΔG) of -7.1 kcal/mol achieved the highest stability over 50 ns of MDS inside the Mpro and RdRp enzyme's active site, respectively. Hence, the isolated compounds could be a good lead for development of new leads targeting COVID-19.
Collapse
Affiliation(s)
- Ahmed E Allam
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Mohamed E Abouelela
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Hamdy K Assaf
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Ahmed M Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Alaa M Nafady
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Mohamed A El-Shanawany
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Cairo, Cairo, Egypt
| | - Fumihide Takano
- Department of Pharmaceutical Sciences, Nihon Pharmaceutical University, Saitama, Japan
| | - Tomihisa Ohta
- Pharmacognosy and Chemistry of Natural Products, School of Pharmaceutical Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
9
|
Agrawal PK, Agrawal C, Blunden G. Naringenin as a Possible Candidate Against SARS-CoV-2 Infection and in the Pathogenesis of COVID-19. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211066723] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Naringenin, widely distributed in fruits and vegetables, is endowed with antiviral and other health beneficial activities, such as immune-stimulating and anti-inflammatory actions that could play a role in contributing, to some extent, to either preventing or alleviating coronavirus infection. Several computational studies have identified naringenin as one of the prominent flavonoids that can possibly inhibit internalization of the virus, virus-host interactions that trigger the cytokine storm, and replication of the virus. This review highlights the antiviral potential of naringenin in COVID-19 associated risk factors and its predicted therapeutic targets against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Pawan K. Agrawal
- Natural Product Inc., 7963 Anderson Park Lane, Westerville, OH 43081, USA
| | - Chandan Agrawal
- Natural Product Inc., 7963 Anderson Park Lane, Westerville, OH 43081, USA
| | | |
Collapse
|
10
|
Hassan AR, Sanad IM, Allam AE, Abouelela ME, Sayed AM, Emam SS, El-Kousy SM, Shimizu K. Chemical constituents from Limonium tubiflorum and their in silico evaluation as potential antiviral agents against SARS-CoV-2. RSC Adv 2021; 11:32346-32357. [PMID: 35495487 PMCID: PMC9042241 DOI: 10.1039/d1ra05927k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/25/2021] [Indexed: 11/21/2022] Open
Abstract
Wild plants growing in the Egyptian deserts are facing abiotic stress, which can lead to interesting & safe natural products possessing potential chemical profiles. Consequently, our study was designed to assess the phytochemical composition of the aerial parts of Limonium tubiflorum (family Plumbaginaceae) growing wild in Egypt for the first time. In addition, in silico screening and molecular dynamic simulation of all isolated phytoconstituents were run against the main protease (Mpro) and spike glycoprotein SARS-CoV-2 targets which displayed a crucial role in the replication of this virus. Our findings showed that the phytochemical investigation of 70% ethanol extract of L. tubiflorum aerial parts afforded six known flavonoids; myricetin 3-O-(2''-galloyl)-β-d-galactopyranoside (1), myricetin 3-O-(2''-galloyl)-α-l-rhamnopyranoside (2), myricetin 3-O-(3''-galloyl)-α-l-rhamnopyranoside (3), myricetin 3-O-β-d-galactopyranoside (5), apigenin (6), myricetin (7), along with two known phenolic acid derivatives; gallic acid (4) and ethyl gallate (8). Docking studies revealed that compounds (1) & (2) were the most effective compounds with binding energies of -17.9664 & -18.6652 kcal mol-1 against main protease and -18.9244 & -18.9272 kcal mol-1 towards spike glycoprotein receptors, respectively. The molecular dynamics simulation experiment agreed with the docking study and reported stability of compounds (1) and (2) against the selected targets which was proved by low RMSD for the tested components. Moreover, the structure-activity relationship revealed that the presence of the galloyl moiety is necessary for enhancement of the activity. Overall, the galloyl substructure of myricetin 3-O-glycoside derivatives (1 and 2) isolated from L. tubiflorum may be a possible lead for developing COVID-19 drugs. Further, in vitro and in vivo assays are recommended to support our in silico studies.
Collapse
Affiliation(s)
- Ahmed R Hassan
- Medicinal and Aromatic Plants Department, Desert Research Center El-Matariya 11753 Cairo Egypt
| | - Ibrahim M Sanad
- Medicinal and Aromatic Plants Department, Desert Research Center El-Matariya 11753 Cairo Egypt
| | - Ahmed E Allam
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University Assiut 71524 Egypt
| | - Mohamed E Abouelela
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University Assiut 71524 Egypt
| | - Ahmed M Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University Beni-Suef 62513 Egypt
| | - Shalabia S Emam
- Medicinal and Aromatic Plants Department, Desert Research Center El-Matariya 11753 Cairo Egypt
| | - Salah M El-Kousy
- Chemistry Department, Menoufia University Shebin El-Kom 32861 El-Menoufia Egypt
| | - Kuniyoshi Shimizu
- Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| |
Collapse
|
11
|
Abdel-Bar HM, Abdallah IA, Fayed MAA, Moatasim Y, Mostafa A, El-Behairy MF, Elimam H, Elshaier YAMM, Abouzid KAM. Lipid polymer hybrid nanocarriers as a combinatory platform for different anti-SARS-CoV-2 drugs supported by computational studies. RSC Adv 2021; 11:28876-28891. [PMID: 35478590 PMCID: PMC9038182 DOI: 10.1039/d1ra04576h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/04/2021] [Indexed: 01/07/2023] Open
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 has demonstrated the potential of emergent pathogens to severely damage public health and global economies. As a consequence of the pandemic, millions of people have been forced into self-isolation, which has negatively affected the global economy. More efforts are needed to find new innovative approaches that could fundamentally change our understanding and management of this disaster. Herein, lipid polymer hybrid nanoparticles (LPH NPs) were utilized as a platform for the delivery of azithromycin or niclosamide in combination with piroxicam. The obtained systems were successfully loaded with both azithromycin and piroxicam (LPHAzi–Pir) with entrapment efficiencies (EE%) of 74.23 ± 8.14% and 51.52 ± 5.45%, respectively, or niclosamide and piroxicam (LPHNic–Pir) with respective EE% of 85.14 ± 3.47% and 48.75 ± 4.77%. The prepared LPH NPs had a core–shell nanostructure with particle size ≈ 125 nm and zeta potential ≈ −16.5 irrespective of drug payload. A dose-dependent cellular uptake of both LPH NPs was observed in human lung fibroblast cells. An enhanced in vitro antiviral efficacy of both LPHAzi–Pir and LPHNic–Pir was obtained over the mixed solution of the drugs. The LPH NPs of azithromycin or niclosamide with piroxicam displyed a promising capability to hinder the replication of SARS-CoV-2, with IC50 of 3.16 and 1.86 μM, respectively. These results provide a rationale for further in vivo pharmacological as well as toxicological studies to evaluate the potential activity of these drugs to combat the COVID-19 outbreak, especially the concept of combination therapy. Additionally, the molecular docking of macrolide bioactive compounds against papain-like protease (PDB ID:6wuu) was achieved. A ligand-based study, especially rapid overlay chemical structure (ROCS), was also examined to identify the general pharmacophoric features of these compounds and their similarity to reported anti-SARS-CoV-2 drugs. Molecular dynamic simulation was also implemented. Drug repurposing approach to combat SARS-CoV-2: lipid polymer hybrid nanoparticles (LPH) for the delivery of azithromycin or niclosamide in combination with piroxicam.![]()
Collapse
Affiliation(s)
- Hend Mohamed Abdel-Bar
- Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City Menoufia 32897 Egypt
| | - Inas A Abdallah
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Sadat City Menoufia 32897 Egypt
| | - Marwa A A Fayed
- Department of Pharmacognosy, Faculty of Pharmacy, University of Sadat City Menoufia 32897 Egypt
| | - Yassmin Moatasim
- Center of Scientific Excellence for Influenza Viruses, National Research Centre Giza 12622 Egypt
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre Giza 12622 Egypt
| | - Mohammed Farrag El-Behairy
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City Menoufia 32897 Egypt
| | - Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City Menoufia 32897 Egypt
| | - Yaseen A M M Elshaier
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City Menoufia 32897 Egypt
| | - Khaled A M Abouzid
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City Menoufia 32897 Egypt
| |
Collapse
|
12
|
Soliman KA, Aal SA. Theoretical investigation of favipiravir antiviral drug based on fullerene and boron nitride nanocages. DIAMOND AND RELATED MATERIALS 2021; 117:108458. [PMID: 34025036 PMCID: PMC8123382 DOI: 10.1016/j.diamond.2021.108458] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/22/2021] [Accepted: 05/09/2021] [Indexed: 05/16/2023]
Abstract
Smart implementation of novel advanced nanocarriers such as functionalized C24 and B12N12 nanocages is used supplement for antiviral activity 5-Fluoro-2-hydroxypyrazine-3-carboxamide (Favipiravir; Avigan; T-705), as treatment of COVID-19. The interaction energies of Favipiravir with perfect (B12N12 and C24) and doped (BC23 and CB11N12) nanocages were studied at temperatures equal to 310.15 K and 298.15 K using DFT. Our results have shown that the interaction of the Favipiravir (C[bond, double bond]O group) with BC23 and CB11N12 is more favorable than with the C24 and B12N12 nanocages in the gas and aqueous environments. Additionally, the natural bond orbital, the highest occupied molecular orbital (HOMO), the lowest unoccupied molecular orbital (LUMO), energy gap, chemical reactivity, molecular electrostatic potential, and thermodynamic parameters of the optimized structure have been examined. Furthermore, the UV-Vis and infrared spectroscopy have been evaluated for the investigation of the molecular orbitals Participated in the absorption spectrum of the Favipiravir before and after the interaction with the C24, BC23, B12N12, and CB11N12, sites at maximum wavelength utilizing the time-dependent density functional theory (TD-B3LYP and TD-CAM-B3LYP). The intermolecular interactions have been analyzed by non-covalent interactions (NCI) and also, the electron localization function (ELF) is discussed.
Collapse
Affiliation(s)
- Kamal A Soliman
- Department of Chemistry, Faculty of Science, Benha University, P.O. Box 13518, Benha, Egypt
| | - S Abdel Aal
- Department of Chemistry, Faculty of Science, Benha University, P.O. Box 13518, Benha, Egypt
- Department of Chemistry, College of Science, Qassim University, Saudi Arabia
| |
Collapse
|
13
|
Jiménez-Avalos G, Vargas-Ruiz AP, Delgado-Pease NE, Olivos-Ramirez GE, Sheen P, Fernández-Díaz M, Quiliano M, Zimic M. Comprehensive virtual screening of 4.8 k flavonoids reveals novel insights into allosteric inhibition of SARS-CoV-2 M PRO. Sci Rep 2021; 11:15452. [PMID: 34326429 PMCID: PMC8322093 DOI: 10.1038/s41598-021-94951-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 06/29/2021] [Indexed: 02/07/2023] Open
Abstract
SARS-CoV-2 main protease is a common target for inhibition assays due to its high conservation among coronaviruses. Since flavonoids show antiviral activity, several in silico works have proposed them as potential SARS-CoV-2 main protease inhibitors. Nonetheless, there is reason to doubt certain results given the lack of consideration for flavonoid promiscuity or main protease plasticity, usage of short library sizes, absence of control molecules and/or the limitation of the methodology to a single target site. Here, we report a virtual screening study where dorsilurin E, euchrenone a11, sanggenol O and CHEMBL2171598 are proposed to inhibit main protease through different pathways. Remarkably, novel structural mechanisms were observed after sanggenol O and CHEMBL2171598 bound to experimentally proven allosteric sites. The former drastically affected the active site, while the latter triggered a hinge movement which has been previously reported for an inactive SARS-CoV main protease mutant. The use of a curated database of 4.8 k flavonoids, combining two well-known docking software (AutoDock Vina and AutoDock4.2), molecular dynamics and MMPBSA, guaranteed an adequate analysis and robust interpretation. These criteria can be considered for future screening campaigns against SARS-CoV-2 main protease.
Collapse
Affiliation(s)
- Gabriel Jiménez-Avalos
- Laboratorio de Bioinformática, Biología Molecular y Desarrollos Tecnológicos, Facultad de Ciencias y Filosofía, Departamento de Ciencias Celulares y Moleculares, Universidad Peruana Cayetano Heredia (UPCH), 15102, Lima, Peru.
| | - A Paula Vargas-Ruiz
- Laboratorio de Bioinformática, Biología Molecular y Desarrollos Tecnológicos, Facultad de Ciencias y Filosofía, Departamento de Ciencias Celulares y Moleculares, Universidad Peruana Cayetano Heredia (UPCH), 15102, Lima, Peru
| | - Nicolás E Delgado-Pease
- Laboratorio de Bioinformática, Biología Molecular y Desarrollos Tecnológicos, Facultad de Ciencias y Filosofía, Departamento de Ciencias Celulares y Moleculares, Universidad Peruana Cayetano Heredia (UPCH), 15102, Lima, Peru
| | - Gustavo E Olivos-Ramirez
- Laboratorio de Bioinformática, Biología Molecular y Desarrollos Tecnológicos, Facultad de Ciencias y Filosofía, Departamento de Ciencias Celulares y Moleculares, Universidad Peruana Cayetano Heredia (UPCH), 15102, Lima, Peru
| | - Patricia Sheen
- Laboratorio de Bioinformática, Biología Molecular y Desarrollos Tecnológicos, Facultad de Ciencias y Filosofía, Departamento de Ciencias Celulares y Moleculares, Universidad Peruana Cayetano Heredia (UPCH), 15102, Lima, Peru
| | | | - Miguel Quiliano
- Faculty of Health Sciences, Centre for Research and Innovation, Universidad Peruana de Ciencias Aplicadas (UPC), 15023, Lima, Peru
| | - Mirko Zimic
- Laboratorio de Bioinformática, Biología Molecular y Desarrollos Tecnológicos, Facultad de Ciencias y Filosofía, Departamento de Ciencias Celulares y Moleculares, Universidad Peruana Cayetano Heredia (UPCH), 15102, Lima, Peru.
- Farmacológicos Veterinarios - FARVET S.A.C. Chincha, Lima, Peru.
| |
Collapse
|
14
|
Allam AE, Amen Y, Ashour A, Assaf HK, Hassan HA, Abdel-Rahman IM, Sayed AM, Shimizu K. In silico study of natural compounds from sesame against COVID-19 by targeting M pro, PL pro and RdRp. RSC Adv 2021; 11:22398-22408. [PMID: 35480825 PMCID: PMC9034212 DOI: 10.1039/d1ra03937g] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 05/31/2021] [Indexed: 01/18/2023] Open
Abstract
Natural products and traditional medicine products with known safety profiles are a promising source for the discovery of new drug leads. Natural products as sesame were reported to exhibit potential to protect from COVID-19 disease. In our study, the total methanolic extract of Sesamum indicum L. seeds (sesame) were led to isolation of seven known compounds, five lignan; sesamin 1, sesamolin 2, pinoresinol 3, hydroxymatairesinol 6, spicatolignan 7, together with two simple phenolic compounds; ferulic acid 4 and vanillic acid 5. All isolated compounds were evaluated in silico against three important SARS-CoV-2 protein targets; main protease (Mpro), papain-like protease (PLpro) and RNA-dependent RNA polymerase (RdRp) which possessed crucial role in replication and proliferation of the virus inside the human cell. The results revealed that compound 6 has the high affinity against the three main proteins, specially towards the SARS-CoV-2 Mpro that exceeded the currently used SARS-CoV-2 Mpro inhibitor darunavir as well as, exhibiting a similar binding energy at SARS CoV-2 PLpro when compared with the co-crystallized ligand. This activity continued to include the RdRp as it displayed a comparable docking score with remdesivir. Inferiorly, compounds 1 and 2 showed also similar triple inhibitory effect against the three main proteins while compound 7 exhibited a dual inhibitory effect against SARS CoV-2 PLPro and RdRp. Further molecular dynamic simulation experiments were performed to validate these docking experiments and to calculate their binding free energies (ΔGs). Compounds 1, 2, 3, 6, and 7 showed comparable binding stability inside the active site of each enzyme with ΔG values ranged from -4.9 to -8.8 kcal mol-1. All the compounds were investigated for their ADME and drug likeness properties, which showed acceptable ADME properties and obeying Lipinski's rule of five parameters. It can be concluded that the isolated compounds from sesame lignans could be an alternative source for the development of new natural leads against COVID-19.
Collapse
Affiliation(s)
- Ahmed E Allam
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University Assiut 71524 Egypt
| | - Yhiya Amen
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University Mansoura 35516 Egypt
| | - Ahmed Ashour
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University Mansoura 35516 Egypt
| | - Hamdy K Assaf
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University Assiut 71524 Egypt
| | - Heba Ali Hassan
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, Universities Zone New Minia City 61111 Egypt
| | - Islam M Abdel-Rahman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University New-Minia 61111 Egypt
| | - Ahmed M Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University Beni-Suef 62513 Egypt
| | - Kuniyoshi Shimizu
- Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University Fukuoka Japan 819-0395
| |
Collapse
|
15
|
Biagioli M, Marchianò S, Roselli R, Di Giorgio C, Bellini R, Bordoni M, Gidari A, Sabbatini S, Francisci D, Fiorillo B, Catalanotti B, Distrutti E, Carino A, Zampella A, Costantino G, Fiorucci S. Discovery of a AHR pelargonidin agonist that counter-regulates Ace2 expression and attenuates ACE2-SARS-CoV-2 interaction. Biochem Pharmacol 2021; 188:114564. [PMID: 33872570 PMCID: PMC8052506 DOI: 10.1016/j.bcp.2021.114564] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
The severe acute respiratory syndrome (SARS)-CoV-2 is the pathogenetic agent of Corona Virus Induced Disease (COVID)19. The virus enters the human cells after binding to the angiotensin converting enzyme (ACE)2 receptor in target tissues. ACE2 expression is induced in response to inflammation. The colon expression of ACE2 is upregulated in patients with inflammatory bowel disease (IBD), highlighting a potential risk of intestinal inflammation in promoting viral entry in the human body. Because mechanisms that regulate ACE2 expression in the intestine are poorly understood and there is a need of anti-SARS-CoV-2 therapies, we have settled to investigate whether natural flavonoids might regulate the expression of Ace2 in intestinal models of inflammation. The results of these studies demonstrated that pelargonidin activates the Aryl hydrocarbon Receptor (AHR) in vitro and reverses intestinal inflammation caused by chronic exposure to high fat diet or to the intestinal braking-barrier agent TNBS in a AhR-dependent manner. In these two models, development of colon inflammation associated with upregulation of Ace2 mRNA expression. Colon levels of Ace2 mRNA were directly correlated with Tnf-α mRNA levels. Molecular docking studies suggested that pelargonidin binds a fatty acid binding pocket on the receptor binding domain of SARS-CoV-2 Spike protein. In vitro studies demonstrated that pelargonidin significantly reduces the binding of SARS-CoV-2 Spike protein to ACE2 and reduces the SARS-CoV-2 replication in a concentration-dependent manner. In summary, we have provided evidence that a natural flavonoid might hold potential in reducing intestinal inflammation and ACE2 induction in the inflamed colon in a AhR-dependent manner.
Collapse
Affiliation(s)
- Michele Biagioli
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| | - Silvia Marchianò
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| | - Rosalinda Roselli
- University of Naples Federico II, Department of Pharmacy, Naples, Italy
| | | | - Rachele Bellini
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| | - Martina Bordoni
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| | - Anna Gidari
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| | - Samuele Sabbatini
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| | - Daniela Francisci
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| | - Bianca Fiorillo
- University of Naples Federico II, Department of Pharmacy, Naples, Italy
| | - Bruno Catalanotti
- University of Naples Federico II, Department of Pharmacy, Naples, Italy
| | - Eleonora Distrutti
- SC di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Adriana Carino
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| | - Angela Zampella
- University of Naples Federico II, Department of Pharmacy, Naples, Italy
| | | | - Stefano Fiorucci
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy,Corresponding author
| |
Collapse
|
16
|
Ghosh R, Chakraborty A, Biswas A, Chowdhuri S. Identification of alkaloids from Justicia adhatoda as potent SARS CoV-2 main protease inhibitors: An in silico perspective. J Mol Struct 2021; 1229:129489. [PMID: 33100380 PMCID: PMC7571971 DOI: 10.1016/j.molstruc.2020.129489] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/17/2020] [Accepted: 10/18/2020] [Indexed: 01/08/2023]
Abstract
The COVID-19 pandemic, caused by SARS CoV-2, is responsible for millions of death worldwide. No approved/proper therapeutics is currently available which can effectively combat this outbreak. Several attempts have been undertaken in the search of effective drugs to control the spread of SARS CoV-2 infection. The main protease (Mpro), key component for the cleavage of the viral polyprotein, is considered to be one of the important drug targets for treating COVID-19. Various phytochemicals, including polyphenols and alkaloids, have been proposed as potent inhibitors of Mpro. The alkaloids from leaf extracts of Justicia adhatoda have also been reported to possess anti-viral activity. But whether these alkaloids exhibit any inhibitory effect on SARS CoV-2 Mpro is far from clear. To explore this in detail, we have adopted computational approaches. Justicia adhatoda alkaloids possessing proper drug-likeness properties and two anti-HIV drugs (lopinavir and darunavir; having binding affinity -7.3 to -7.4 kcal/mol) were docked against SARS CoV-2 Mpro to study their binding properties. Only one alkaloid (anisotine) had interaction with both the catalytic residues (His41 and Cys145) of Mpro and exhibited good binding affinity (-7.9 kcal/mol). Molecular dynamic simulations (100 ns) revealed that Mpro-anisotine complex is more stable, conformationally less fluctuated; slightly less compact and marginally expanded than Mpro-darunavir/lopinavir complex. Even the number of intermolecular H-bonds and MM-GBSA analysis suggested that anisotine is a more potent Mpro inhibitor than the two previously recommended antiviral drugs (lopinavir and darunavir) and may evolve as a promising anti-COVID-19 drug if proven in animal experiments and on patients.
Collapse
Affiliation(s)
- Rajesh Ghosh
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | - Ayon Chakraborty
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | - Ashis Biswas
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| | - Snehasis Chowdhuri
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar, India
| |
Collapse
|
17
|
Fayed MAA, El-Behairy MF, Abdallah IA, Abdel-Bar HM, Elimam H, Mostafa A, Moatasim Y, Abouzid KAM, Elshaier YAMM. Structure- and Ligand-Based in silico Studies towards the Repurposing of Marine Bioactive Compounds to Target SARS-CoV-2. ARAB J CHEM 2021; 14:103092. [PMID: 34909063 PMCID: PMC7904452 DOI: 10.1016/j.arabjc.2021.103092] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/17/2021] [Indexed: 12/23/2022] Open
Abstract
This work was a structured virtual screening for marine bioactive compounds with reported antiviral activities which were subjected to structure-based studies against SARS-CoV-2 co-crystallized proteins. The molecular docking of marine bioactive compounds against the main protease (Mpro, PDB ID: 6lu7 and 6y2f), the spike glycoprotein (PDB ID: 6vsb), and the RNA polymerase (PDB ID: 6m71) of SARS-CoV-2 was performed. Ligand-based approach with the inclusion of rapid overlay chemical structures (ROCS) was also addressed in order to examine the probability of these marine compounds sharing relevance and druggability with the reported drugs. Among the examined marine library, the highest scores in different virtual screening aspects were displayed by compounds with flavonoids core, acyl indole, and pyrrole carboxamide alkaloids. Moreover, a complete overlay with the co-crystallized ligands of Mpro was revealed by sceptrin and debromo-sceptrin. Thalassoilin (A-B) which was found in the Red Sea exhibited the highest binding and similarity outcomes among all target proteins. These data highlight the importance of marine natural metabolites in regard to further studies for discovering new drugs to combat the COVID-19 pandemic.
Collapse
Affiliation(s)
- Marwa A A Fayed
- Department of Pharmacognosy, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Mohammed Farrag El-Behairy
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Inas A Abdallah
- Department of Analytical Chemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Hend Mohamed Abdel-Bar
- Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
| | - Yassmin Moatasim
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt
| | - Khaled A M Abouzid
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Yaseen A M M Elshaier
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| |
Collapse
|
18
|
Abouelela ME, Assaf HK, Abdelhamid RA, Elkhyat ES, Sayed AM, Oszako T, Belbahri L, El Zowalaty AE, Abdelkader MSA. Identification of Potential SARS-CoV-2 Main Protease and Spike Protein Inhibitors from the Genus Aloe: An In Silico Study for Drug Development. Molecules 2021; 26:1767. [PMID: 33801151 PMCID: PMC8004122 DOI: 10.3390/molecules26061767] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/22/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV-2) disease is a global rapidly spreading virus showing very high rates of complications and mortality. Till now, there is no effective specific treatment for the disease. Aloe is a rich source of isolated phytoconstituents that have an enormous range of biological activities. Since there are no available experimental techniques to examine these compounds for antiviral activity against SARS-CoV-2, we employed an in silico approach involving molecular docking, dynamics simulation, and binding free energy calculation using SARS-CoV-2 essential proteins as main protease and spike protein to identify lead compounds from Aloe that may help in novel drug discovery. Results retrieved from docking and molecular dynamics simulation suggested a number of promising inhibitors from Aloe. Root mean square deviation (RMSD) and root mean square fluctuation (RMSF) calculations indicated that compounds 132, 134, and 159 were the best scoring compounds against main protease, while compounds 115, 120, and 131 were the best scoring ones against spike glycoprotein. Compounds 120 and 131 were able to achieve significant stability and binding free energies during molecular dynamics simulation. In addition, the highest scoring compounds were investigated for their pharmacokinetic properties and drug-likeness. The Aloe compounds are promising active phytoconstituents for drug development for SARS-CoV-2.
Collapse
Affiliation(s)
- Mohamed E. Abouelela
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut-Branch, Assiut 71524, Egypt; (M.E.A.); (H.K.A.); (R.A.A.); (E.S.E.)
| | - Hamdy K. Assaf
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut-Branch, Assiut 71524, Egypt; (M.E.A.); (H.K.A.); (R.A.A.); (E.S.E.)
| | - Reda A. Abdelhamid
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut-Branch, Assiut 71524, Egypt; (M.E.A.); (H.K.A.); (R.A.A.); (E.S.E.)
| | - Ehab S. Elkhyat
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut-Branch, Assiut 71524, Egypt; (M.E.A.); (H.K.A.); (R.A.A.); (E.S.E.)
| | - Ahmed M. Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt;
| | - Tomasz Oszako
- Department of Forest Protection, Forest Research Institute, 05-090 Sekocin Stary, Poland;
| | - Lassaad Belbahri
- Laboratory of Soil Biology, University of Neuchatel, 2000 Neuchatel, Switzerland
| | - Ahmed E. El Zowalaty
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| | | |
Collapse
|
19
|
Kusumaningsih T, Prasetyo WE, Wibowo FR, Firdaus M. Toward an efficient and eco-friendly route for the synthesis of dimeric 2,4-diacetyl phloroglucinol and its potential as a SARS-CoV-2 main protease antagonist: insight from in silico studies. NEW J CHEM 2021. [DOI: 10.1039/d0nj06114j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dimeric 2,4-diacetyl phloroglucinol derivatives were synthesized under green chemistry protocols and found to be the potential inhibitor of 3CLpro of SARS-CoV-2.
Collapse
Affiliation(s)
- Triana Kusumaningsih
- Department of Chemistry
- Faculty of Mathematics and Natural Sciences
- Sebelas Maret University
- Surakarta
- Indonesia
| | - Wahyu E. Prasetyo
- Department of Chemistry
- Faculty of Mathematics and Natural Sciences
- Sebelas Maret University
- Surakarta
- Indonesia
| | - Fajar R. Wibowo
- Department of Chemistry
- Faculty of Mathematics and Natural Sciences
- Sebelas Maret University
- Surakarta
- Indonesia
| | - Maulidan Firdaus
- Department of Chemistry
- Faculty of Mathematics and Natural Sciences
- Sebelas Maret University
- Surakarta
- Indonesia
| |
Collapse
|
20
|
Mostafa A, Kandeil A, A. M. M. Elshaier Y, Kutkat O, Moatasim Y, Rashad AA, Shehata M, Gomaa MR, Mahrous N, Mahmoud SH, GabAllah M, Abbas H, Taweel AE, Kayed AE, Kamel MN, Sayes ME, Mahmoud DB, El-Shesheny R, Kayali G, Ali MA. FDA-Approved Drugs with Potent In Vitro Antiviral Activity against Severe Acute Respiratory Syndrome Coronavirus 2. Pharmaceuticals (Basel) 2020; 13:E443. [PMID: 33291642 PMCID: PMC7761982 DOI: 10.3390/ph13120443] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/16/2022] Open
Abstract
(1) Background: Drug repositioning is an unconventional drug discovery approach to explore new therapeutic benefits of existing drugs. Currently, it emerges as a rapid avenue to alleviate the COVID-19 pandemic disease. (2) Methods: Herein, we tested the antiviral activity of anti-microbial and anti-inflammatory Food and Drug Administration (FDA)-approved drugs, commonly prescribed to relieve respiratory symptoms, against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the viral causative agent of the COVID-19 pandemic. (3) Results: Of these FDA-approved antimicrobial drugs, Azithromycin, Niclosamide, and Nitazoxanide showed a promising ability to hinder the replication of a SARS-CoV-2 isolate, with IC50 of 0.32, 0.16, and 1.29 µM, respectively. We provided evidence that several antihistamine and anti-inflammatory drugs could partially reduce SARS-CoV-2 replication in vitro. Furthermore, this study showed that Azithromycin can selectively impair SARS-CoV-2 replication, but not the Middle East Respiratory Syndrome Coronavirus (MERS-CoV). A virtual screening study illustrated that Azithromycin, Niclosamide, and Nitazoxanide bind to the main protease of SARS-CoV-2 (Protein data bank (PDB) ID: 6lu7) in binding mode similar to the reported co-crystalized ligand. Also, Niclosamide displayed hydrogen bond (HB) interaction with the key peptide moiety GLN: 493A of the spike glycoprotein active site. (4) Conclusions: The results suggest that Piroxicam should be prescribed in combination with Azithromycin for COVID-19 patients.
Collapse
Affiliation(s)
- Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; (A.K.); (O.K.); (Y.M.); (M.S.); (M.R.G.); (N.M.); (S.H.M.); (M.G.); (A.E.T.); (A.E.K.); (M.N.K.); (M.E.S.); (R.E.-S.)
| | - Ahmed Kandeil
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; (A.K.); (O.K.); (Y.M.); (M.S.); (M.R.G.); (N.M.); (S.H.M.); (M.G.); (A.E.T.); (A.E.K.); (M.N.K.); (M.E.S.); (R.E.-S.)
| | - Yaseen A. M. M. Elshaier
- Organic & Medicinal Chemistry Department, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt;
| | - Omnia Kutkat
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; (A.K.); (O.K.); (Y.M.); (M.S.); (M.R.G.); (N.M.); (S.H.M.); (M.G.); (A.E.T.); (A.E.K.); (M.N.K.); (M.E.S.); (R.E.-S.)
| | - Yassmin Moatasim
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; (A.K.); (O.K.); (Y.M.); (M.S.); (M.R.G.); (N.M.); (S.H.M.); (M.G.); (A.E.T.); (A.E.K.); (M.N.K.); (M.E.S.); (R.E.-S.)
| | - Adel A. Rashad
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA;
| | - Mahmoud Shehata
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; (A.K.); (O.K.); (Y.M.); (M.S.); (M.R.G.); (N.M.); (S.H.M.); (M.G.); (A.E.T.); (A.E.K.); (M.N.K.); (M.E.S.); (R.E.-S.)
| | - Mokhtar R. Gomaa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; (A.K.); (O.K.); (Y.M.); (M.S.); (M.R.G.); (N.M.); (S.H.M.); (M.G.); (A.E.T.); (A.E.K.); (M.N.K.); (M.E.S.); (R.E.-S.)
| | - Noura Mahrous
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; (A.K.); (O.K.); (Y.M.); (M.S.); (M.R.G.); (N.M.); (S.H.M.); (M.G.); (A.E.T.); (A.E.K.); (M.N.K.); (M.E.S.); (R.E.-S.)
| | - Sara H. Mahmoud
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; (A.K.); (O.K.); (Y.M.); (M.S.); (M.R.G.); (N.M.); (S.H.M.); (M.G.); (A.E.T.); (A.E.K.); (M.N.K.); (M.E.S.); (R.E.-S.)
| | - Mohamed GabAllah
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; (A.K.); (O.K.); (Y.M.); (M.S.); (M.R.G.); (N.M.); (S.H.M.); (M.G.); (A.E.T.); (A.E.K.); (M.N.K.); (M.E.S.); (R.E.-S.)
| | - Hisham Abbas
- Department of Microbiology and Immunology, Zagazig University, Zagazig 44519, Egypt;
| | - Ahmed El Taweel
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; (A.K.); (O.K.); (Y.M.); (M.S.); (M.R.G.); (N.M.); (S.H.M.); (M.G.); (A.E.T.); (A.E.K.); (M.N.K.); (M.E.S.); (R.E.-S.)
| | - Ahmed E. Kayed
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; (A.K.); (O.K.); (Y.M.); (M.S.); (M.R.G.); (N.M.); (S.H.M.); (M.G.); (A.E.T.); (A.E.K.); (M.N.K.); (M.E.S.); (R.E.-S.)
| | - Mina Nabil Kamel
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; (A.K.); (O.K.); (Y.M.); (M.S.); (M.R.G.); (N.M.); (S.H.M.); (M.G.); (A.E.T.); (A.E.K.); (M.N.K.); (M.E.S.); (R.E.-S.)
| | - Mohamed El Sayes
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; (A.K.); (O.K.); (Y.M.); (M.S.); (M.R.G.); (N.M.); (S.H.M.); (M.G.); (A.E.T.); (A.E.K.); (M.N.K.); (M.E.S.); (R.E.-S.)
| | - Dina B. Mahmoud
- Pharmaceutics Department, National Organization for Drug Control and Research, Giza 12654, Egypt;
| | - Rabeh El-Shesheny
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; (A.K.); (O.K.); (Y.M.); (M.S.); (M.R.G.); (N.M.); (S.H.M.); (M.G.); (A.E.T.); (A.E.K.); (M.N.K.); (M.E.S.); (R.E.-S.)
| | - Ghazi Kayali
- Department of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas, Houston, TX 77030, USA
- Human Link, Baabda 1109, Lebanon
| | - Mohamed A. Ali
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza 12622, Egypt; (A.K.); (O.K.); (Y.M.); (M.S.); (M.R.G.); (N.M.); (S.H.M.); (M.G.); (A.E.T.); (A.E.K.); (M.N.K.); (M.E.S.); (R.E.-S.)
| |
Collapse
|