1
|
Cook A, Newman SG. Alcohols as Substrates in Transition-Metal-Catalyzed Arylation, Alkylation, and Related Reactions. Chem Rev 2024; 124:6078-6144. [PMID: 38630862 DOI: 10.1021/acs.chemrev.4c00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Alcohols are abundant and attractive feedstock molecules for organic synthesis. Many methods for their functionalization require them to first be converted into a more activated derivative, while recent years have seen a vast increase in the number of complexity-building transformations that directly harness unprotected alcohols. This Review discusses how transition metal catalysis can be used toward this goal. These transformations are broadly classified into three categories. Deoxygenative functionalizations, representing derivatization of the C-O bond, enable the alcohol to act as a leaving group toward the formation of new C-C bonds. Etherifications, characterized by derivatization of the O-H bond, represent classical reactivity that has been modernized to include mild reaction conditions, diverse reaction partners, and high selectivities. Lastly, chain functionalization reactions are described, wherein the alcohol group acts as a mediator in formal C-H functionalization reactions of the alkyl backbone. Each of these three classes of transformation will be discussed in context of intermolecular arylation, alkylation, and related reactions, illustrating how catalysis can enable alcohols to be directly harnessed for organic synthesis.
Collapse
Affiliation(s)
- Adam Cook
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Stephen G Newman
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
2
|
Maity S, Roy A, Duari S, Biswas S, Elsharif AM, Biswas S. Methyltrifluoromethanesulfonate Catalyst in Direct Nucleophilic Substitution of Alcohols; One-Pot Synthesis of 4 H-Chromene Derivatives. ACS OMEGA 2023; 8:46614-46627. [PMID: 38107960 PMCID: PMC10720287 DOI: 10.1021/acsomega.3c05619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 12/19/2023]
Abstract
The catalytic activity of methyltrifluoromethanesulfonate (MeOTf) has been explored toward direct nucleophilic substitution of the hydroxyl group of nonmanipulated alcohols such as benzylic, allylic, propargylic, and tertiary alcohols with a wide range of uncharged nucleophiles such as 1,3-dicarbonyl compounds, amides, alkynes, and indoles to generate functionalized 1,3-dicarbonyl compounds, amides, alkynes, and indoles, respectively. Thus, the present protocol defines an alternate pathway to construct new C-C, C-N, and C-O bonds with the formation of water as the byproduct under mild conditions without any acids or metals. A completely different mechanism was established through several control experiments to explain the reaction methodology. As an application of the reported protocol, 1H-indene derivatives have been synthesized in one pot when benzylic alcohols were subjected to react with internal alkynes. The scope of the reaction has been further extended toward a tandem benzylation-cyclization-dehydration of 1,3-dicarbonyl compounds with 2-hydroxybenzyl alcohols, which furnish biologically important 4H-chromene derivatives.
Collapse
Affiliation(s)
- Srabani Maity
- Department
of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata 700 009, West Bengal, India
| | - Arnab Roy
- Department
of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata 700 009, West Bengal, India
| | - Surajit Duari
- Department
of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata 700 009, West Bengal, India
| | - Subrata Biswas
- Department
of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata 700 009, West Bengal, India
| | - Asma M. Elsharif
- Department
of Chemistry, Imam Abdulrahman Bin Faisal
University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Srijit Biswas
- Department
of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata 700 009, West Bengal, India
| |
Collapse
|
3
|
Joseph E, Hernandez RD, Tunge JA. Cobalt-Catalyzed Decarboxylative Allylations: Development and Mechanistic Studies. Chemistry 2023; 29:e202302174. [PMID: 37467152 PMCID: PMC10592299 DOI: 10.1002/chem.202302174] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/21/2023]
Abstract
In recent years, there has been a concerted drive to develop methods that are greener and more sustainable. Being an earth-abundant transition metal, cobalt offers an attractive substitute for commonly employed precious metal catalysts, though reactions engaging cobalt are still less developed. Herein, we report a method to achieve the decarboxylative allylation of nitrophenyl alkanes, nitroalkanes, and ketones employing cobalt. The reaction allows for the formation of various substituted allylated products in moderate-excellent yields with a broad scope. Additionally, the synthetic potential of the methodology is demonstrated by the transformation of products into versatile heterocyclic motifs. Mechanistic studies revealed an in situ activation of the Co(II)/dppBz precatalyst by the carboxylate salt to generate a Co(I)-species, which is presumed to be the active catalyst.
Collapse
Affiliation(s)
- Ebbin Joseph
- Department of Chemistry, The University of Kansas, 1567 Irving Rd., Lawrence, KS 66045, USA
| | - Rafael D. Hernandez
- Department of Chemistry, The University of Kansas, 1567 Irving Rd., Lawrence, KS 66045, USA
| | - Jon A. Tunge
- Department of Chemistry, The University of Kansas, 1567 Irving Rd., Lawrence, KS 66045, USA
| |
Collapse
|
4
|
Xu X, Shi Y, Wang D, Ding Y, Chen S, Zhang X. Cobalt(III)-Catalyzed and DMSO-Involved Allylation of 1,3-Dicarbonyl Compounds with Alkenes. J Org Chem 2022; 87:14352-14363. [PMID: 36263891 DOI: 10.1021/acs.joc.2c01796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cobalt(III)-catalyzed allylation of 1,3-dicarbonyl compounds has been reported with in situ generated allyl reagents from alkenes and dimethyl sulfoxide (DMSO). This novel protocol enables a high regio- and stereoselective access for a broad range of allyl 1,3-dicarbonyl compounds. In the transformation, DMSO plays the role of a C1 source, and it incorporates with alkenes to form the allyl reagent allylic methyl thioether. Moreover, a multiple-step pathway has been proposed to rationalize the mechanism study, which involves silver-mediated coupling, Co(III)-catalyzed π-allylation, and intermolecular nucleophilic substitution.
Collapse
Affiliation(s)
- Xuefeng Xu
- Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Yue Shi
- Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Di Wang
- Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Yanhua Ding
- Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Shuyang Chen
- Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Xu Zhang
- Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| |
Collapse
|
5
|
[HDBU][HSO4]-catalyzed facile synthesis of new 1,2,3-triazole-tethered 2,3-dihydroquinazolin-4[1H]-one derivatives and their DPPH radical scavenging activity. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-021-04639-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
6
|
Zhou C, Lv J, Xu W, Lu H, Kato T, Liu Y, Maruoka K. Highly Selective Monoalkylation of Active Methylene and Related Derivatives using Alkylsilyl Peroxides by a Catalytic CuI‐DMAP System. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100440] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Canhua Zhou
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Jiamin Lv
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Weiping Xu
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Hanbin Lu
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Terumasa Kato
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery Guangdong University of Technology Guangzhou 510006 P. R. China
- Graduate School of Pharmaceutical Sciences Kyoto University Sakyo Kyoto 606-8501 Japan
| | - Yan Liu
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Keiji Maruoka
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery Guangdong University of Technology Guangzhou 510006 P. R. China
- Graduate School of Pharmaceutical Sciences Kyoto University Sakyo Kyoto 606-8501 Japan
| |
Collapse
|