1
|
Oli P, Joshi K, Punetha S. Traditional uses, phytochemistry, pharmacology, and nutraceutical potential of horse gram (Macrotyloma uniflorum): A systematic review. J Food Sci 2024. [PMID: 39656760 DOI: 10.1111/1750-3841.17594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 11/05/2024] [Accepted: 11/20/2024] [Indexed: 12/17/2024]
Abstract
Macrotyloma uniflorum is known for being a rich source of protein, fat, fiber, carbohydrates, vitamins, and micronutrients. Since ancient times, it has been used as a pulse and traditional remedy in the Himalayan Mountains for curing kidney and bladder stones, bronchitis, asthma, piles, leukoderma, and heart diseases. Horse gram contains bioactive compounds such as phenolic acids, flavonoids, and tannins, which contribute to its health advantages. These bioactive compounds demonstrated antioxidant, antidiabetic, anti-inflammatory, anticarcinogenic, antimicrobial, antidiarrheal, and neuroprotective effects. These horse gram products are now considered superfoods and are widely utilized in worldwide cuisines. Horse gram and its crude extracts or fractions have been shown to exhibit a wide range of in vivo and in vitro pharmacological and nutraceutical properties. However, there is currently a scarcity of structure-activity investigations of isolated compounds and mechanistic research on this species. This review demonstrates that horse gram, despite its traditional usage by diverse cultures, has a profusion of bioactive chemicals with a wide range of biological effects that might be employed as biopharmaceuticals and adopted by nutraceutical industries. This study focuses on the thorough phytochemistry, folk medicinal applications, and pharmacological properties of this versatile legume plant. Furthermore, we discussed the value of plants as a source of functional foods and nutraceuticals.
Collapse
Affiliation(s)
- Pooja Oli
- G. B. Pant National Institute of Himalayan Environment, Almora, Uttarakhand, India
| | - Kuldeep Joshi
- G. B. Pant National Institute of Himalayan Environment, Almora, Uttarakhand, India
- Centre for GMP Extraction Facility, National Institute of Pharmaceutical Education and Research, Guwahati, Assam, India
| | - Shailaja Punetha
- G. B. Pant National Institute of Himalayan Environment, Almora, Uttarakhand, India
| |
Collapse
|
2
|
Wang NH, Liu JM, Tan B, Wu ZF. A Series of Rare-Earth Metal-Based Coordination Polymers: Fluorescence and Sensing Studies. SENSORS (BASEL, SWITZERLAND) 2024; 24:6867. [PMID: 39517764 PMCID: PMC11548555 DOI: 10.3390/s24216867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Ratiometric fluorescent sensing based on dual-emitting fluorescent coordination polymers (FL-CPs) has attracted intense attention due to their sensing accuracy and easy visualization when compared with sensing relying solely on monochromatic FL-CPs. In this work, a series of rare-earth metal-based CPs, formuled as [(CH3)2NH2][Ln(bpdc)2] (Ln3+ = Y3+, Eu3+ and Tb3+, H2bpdc = biphenyl-4,4'-dicarboxylic acid), are presented, which show dual emission aroused from the Ln3+ ions and the inefficient intermolecular energy transfer from ligands to Ln3+ metals. For clarity, the as-made Ln-CPs are named Eu-bpdc, Tb-bpdc, and Y-bpdc based on the corresponding Ln3+. Notably, Eu-bpdc, presented as an example, could be used as FL sensing material ratiometric to Fe3+ ions. The ratio of FL intensity of Eu3+ ions to bpdc2- ligands (I415/I615) showed a good linear relationship with the concentrations of Fe3+ ions. Moreover, the detection process could be visibly monitored through a change from purple to blue when Eu-bpdc was used as an FL proble. This work provides a good example for exploring visibly ratiometric sensors based on FL-CPs.
Collapse
Affiliation(s)
- Nian-Hao Wang
- College of Chemistry, Fuzhou University, Fuzhou 350116, China; (N.-H.W.); (J.-M.L.)
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou 350002, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou 350002, China
| | - Jin-Mei Liu
- College of Chemistry, Fuzhou University, Fuzhou 350116, China; (N.-H.W.); (J.-M.L.)
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou 350002, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou 350002, China
| | - Bin Tan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou 350002, China
| | - Zhao-Feng Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou 350002, China
| |
Collapse
|
3
|
Jiménez-Pérez A, Martínez-Alonso M, García-Tojal J. Hybrid Hydroxyapatite-Metal Complex Materials Derived from Amino Acids and Nucleobases. Molecules 2024; 29:4479. [PMID: 39339474 PMCID: PMC11434463 DOI: 10.3390/molecules29184479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/12/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
Calcium phosphates (CaPs) and their substituted derivatives encompass a large number of compounds with a vast presence in nature that have aroused a great interest for decades. In particular, hydroxyapatite (HAp, Ca10(OH)2(PO4)6) is the most abundant CaP mineral and is significant in the biological world, at least in part due to being a major compound in bones and teeth. HAp exhibits excellent properties, such as safety, stability, hardness, biocompatibility, and osteoconductivity, among others. Even some of its drawbacks, such as its fragility, can be redirected thanks to another essential feature: its great versatility. This is based on the compound's tendency to undergo substitutions of its constituent ions and to incorporate or anchor new molecules on its surface and pores. Thus, its affinity for biomolecules makes it an optimal compound for multiple applications, mainly, but not only, in biological and biomedical fields. The present review provides a chemical and structural context to explain the affinity of HAp for biomolecules such as proteins and nucleic acids to generate hybrid materials. A size-dependent criterium of increasing complexity is applied, ranging from amino acids/nucleobases to the corresponding macromolecules. The incorporation of metal ions or metal complexes into these functionalized compounds is also discussed.
Collapse
Affiliation(s)
| | | | - Javier García-Tojal
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain; (A.J.-P.); (M.M.-A.)
| |
Collapse
|
4
|
Han S, Jin Z, Deji D, Han T, Zhang Y, Feng M, Hasi W. Study on the classification and identification of various carbonate and sulfate mineral medicines based on Raman spectroscopy combined with PCA-SVM algorithm. ANAL SCI 2023; 39:241-248. [PMID: 36525136 DOI: 10.1007/s44211-022-00224-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/17/2022] [Indexed: 12/23/2022]
Abstract
The efficacy of mineral medicines varies greatly between different origins. Therefore, investigating a method to quickly identify similar mineral medicines is meaningful. In this paper, a visual classification and identification model of Raman spectroscopy combined with principal component analysis (PCA) and support vector machine (SVM) algorithms was developed to rapidly classify and identify carbonate and sulfate mineral medicines. The results reveal that although the Raman spectra are too similar to distinguish by naked eye, the PCA-SVM algorithm can perform accurate classification and identification, and its accuracy, precision, recall and F1-score parameters all reach 100%. The proposed method is rapid, accurate, nondestructive, convenient, portable, and low cost, and has important application value for the classification, identification and quality supervision of various carbonate and sulfate mineral medicines.
Collapse
Affiliation(s)
- Siqingaowa Han
- Department of Combination of Mongolian Medicine and Western Medicine Stomatology, Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao, 028043, China
| | - Zhu Jin
- Department of Combination of Mongolian Medicine and Western Medicine Stomatology, Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao, 028043, China
| | - Dema Deji
- Department of Combination of Mongolian Medicine and Western Medicine Stomatology, Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao, 028043, China
| | - Tana Han
- Department of Combination of Mongolian Medicine and Western Medicine Stomatology, Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao, 028043, China
| | - Yulan Zhang
- Department of Combination of Mongolian Medicine and Western Medicine Stomatology, Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao, 028043, China.
| | - Meiling Feng
- Department of Combination of Mongolian Medicine and Western Medicine Stomatology, Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao, 028043, China.
| | - Wuliji Hasi
- National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin, 150080, China.
| |
Collapse
|
5
|
Schoeler GP, Afonso TF, Demarco CF, Dos Santos Barboza V, Sant'anna Cadaval TR, Igansi AV, Gelesky MA, Giongo JL, de Almeida Vaucher R, de Avila Delucis R, Andreazza R. SARS-CoV-2 removal with a polyurethane foam composite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:22024-22032. [PMID: 36282387 PMCID: PMC9593988 DOI: 10.1007/s11356-022-23758-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
The pandemic of COVID-19 (SARS-CoV-2 disease) has been causing unprecedented health and economic impacts, alerting the world to the importance of basic sanitation and existing social inequalities. The risk of the spread and appearance of new diseases highlights the need for the removal of these pathogens through efficient techniques and materials. This study aimed to develop a polyurethane (PU) biofoam filled with dregs waste (leftover from the pulp and paper industry) for removal SARS-CoV-2 from the water. The biofoam was prepared by the free expansion method with the incorporation of 5wt% of dregs as a filler. For the removal assays, the all materials and its isolated phases were incubated for 24 h with an inactivated SARS-CoV-2 viral suspension. Then, the RNA was extracted and the viral load was quantified using the quantitative reverse transcription (RT-qPCR) technique. The biofoam (polyurethane/dregs) reached a great removal percentage of 91.55%, whereas the isolated dregs waste was 99.03%, commercial activated carbon was 99.64%, commercial activated carbon/polyurethane was 99.30%, and neat PU foam reached was 99.96% for this same property and without statistical difference. Those new materials endowed with low cost and high removal efficiency of SARS-CoV-2 as alternatives to conventional adsorbents.
Collapse
Affiliation(s)
- Guilherme Pereira Schoeler
- Postgraduate Program in Environmental Sciences, Center for Engineering, Federal University of Pelotas, R. Benjamin Constant 989, Pelotas, RS, CEP 96010-020, Brazil
| | - Thays França Afonso
- Postgraduate Program in Materials Science and Engineering, Federal University of Pelotas, R. Gomes Carneiro 01, Pelotas, RS, CEP 96010-610, Brazil
| | - Carolina Faccio Demarco
- Postgraduate Program in Materials Science and Engineering, Federal University of Pelotas, R. Gomes Carneiro 01, Pelotas, RS, CEP 96010-610, Brazil
| | - Victor Dos Santos Barboza
- Graduate Program in Biochemistry and Bioprospecting, Research Laboratory in Biochemical and Molecular Biology of Microorganisms (LaPeBBiOM), Federal University of Pelotas, RS, Av. Eliseu Maciel, Campus Universitário, s/n, Capão Do Leão, CEP 96160-000, Brazil
| | - Tito Roberto Sant'anna Cadaval
- School of Chemistry and Food, Federal University of Rio Grande, Av. Itália, Km 8, s/n, Rio Grande, RS, CEP 96203-000, Brazil
| | - Andrei Valerão Igansi
- School of Chemistry and Food, Federal University of Rio Grande, Av. Itália, Km 8, s/n, Rio Grande, RS, CEP 96203-000, Brazil
| | - Marcos Alexandre Gelesky
- School of Chemistry and Food, Federal University of Rio Grande, Av. Itália, Km 8, s/n, Rio Grande, RS, CEP 96203-000, Brazil
| | - Janice Luehring Giongo
- Graduate Program in Biochemistry and Bioprospecting, Research Laboratory in Biochemical and Molecular Biology of Microorganisms (LaPeBBiOM), Federal University of Pelotas, RS, Av. Eliseu Maciel, Campus Universitário, s/n, Capão Do Leão, CEP 96160-000, Brazil
| | - Rodrigo de Almeida Vaucher
- Graduate Program in Biochemistry and Bioprospecting, Research Laboratory in Biochemical and Molecular Biology of Microorganisms (LaPeBBiOM), Federal University of Pelotas, RS, Av. Eliseu Maciel, Campus Universitário, s/n, Capão Do Leão, CEP 96160-000, Brazil
| | - Rafael de Avila Delucis
- Postgraduate Program in Environmental Sciences, Center for Engineering, Federal University of Pelotas, R. Benjamin Constant 989, Pelotas, RS, CEP 96010-020, Brazil
- Postgraduate Program in Materials Science and Engineering, Federal University of Pelotas, R. Gomes Carneiro 01, Pelotas, RS, CEP 96010-610, Brazil
| | - Robson Andreazza
- Postgraduate Program in Environmental Sciences, Center for Engineering, Federal University of Pelotas, R. Benjamin Constant 989, Pelotas, RS, CEP 96010-020, Brazil.
- Postgraduate Program in Materials Science and Engineering, Federal University of Pelotas, R. Gomes Carneiro 01, Pelotas, RS, CEP 96010-610, Brazil.
| |
Collapse
|
6
|
Coverdale JPC, Harrington CF, Solovyev N. Review: Advances in the Accuracy and Traceability of Metalloprotein Measurements Using Isotope Dilution Inductively Coupled Plasma Mass Spectrometry. Crit Rev Anal Chem 2023; 54:2259-2276. [PMID: 36637361 DOI: 10.1080/10408347.2022.2162811] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Advances in inductively coupled plasma mass spectrometry and the methods used to prepare isotopically enriched standards, allow for the high accuracy measurement of metalloproteins by isotope dilution mass spectrometry. This technique has now reached a level of maturity whereby a step change in the accuracy, precision, and traceability of, in particular, clinical, and biomedical measurements is achievable. Current clinical measurements, which require low limits of detection in the presence of complex sample matrices, use indirect methods based on immunochemistry for the study of human disease. However, this approach suffers from poor traceability, requiring comparisons based on provision of matrix-based reference materials, used as analytical standards. This leads to difficulty when changes in the reference material are required, often resulting in a lack of interlaboratory and temporal comparability in clinical results and reference ranges. In this review, we focus on the most important metalloproteins for clinical studies, to illustrate how the attributes of chromatography coupled to inorganic mass spectrometry can be used for the direct measurement of metalloproteins such as hemoglobin, transferrin, and ceruloplasmin. By using this approach, we hope to demonstrate how isotope dilution analysis can be used as a reference method to improve traceability and underpin clinical, biomedical, and other biological measurements.
Collapse
Affiliation(s)
- James P C Coverdale
- Supra-Regional Assay Service, Trace Element Laboratory, Surrey Research Park, Guildford, United Kingdom
- School of Pharmacy, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, United Kingdom
| | - Chris F Harrington
- Supra-Regional Assay Service, Trace Element Laboratory, Surrey Research Park, Guildford, United Kingdom
- Royal Surrey NHS Foundation Trust, Guildford, United Kingdom
| | | |
Collapse
|
7
|
Iqbal MJ, Riaz MS, Talha K, Shoukat R, Mahmood S, Ammar M, Li H. Synthesis and transformation of calcium carbonate polymorphs with chiral purine nucleotides. NEW J CHEM 2022; 46:22612-22620. [DOI: 10.1039/d2nj03813g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Crystallization of CaCO3 polymorphs is controlled using the chiral purine nucleotides adenosine triphosphate (ATP) and guanosine triphosphate (GTP). The effects of ATP and GTP on the transformation of calcite into vaterite are investigated.
Collapse
Affiliation(s)
- Muhammad Javed Iqbal
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Muhammad Sohail Riaz
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Khalid Talha
- Beijing Key Laboratory for Green Catalysis and Separation, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Rizwan Shoukat
- The University of Cagliari, Department of Mechanical, Chemical and Materials Engineering, via Marengo 2, 09123, Cagliari, CA, Italy
| | - Sajid Mahmood
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Muhammad Ammar
- Department of Chemical Engineering Technology, Government College University, Faisalabad, 38000, Pakistan
| | - Hui Li
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
8
|
Gil‐Moles M, Türck S, Basu U, Pettenuzzo A, Bhattacharya S, Rajan A, Ma X, Büssing R, Wölker J, Burmeister H, Hoffmeister H, Schneeberg P, Prause A, Lippmann P, Kusi‐Nimarko J, Hassell‐Hart S, McGown A, Guest D, Lin Y, Notaro A, Vinck R, Karges J, Cariou K, Peng K, Qin X, Wang X, Skiba J, Szczupak Ł, Kowalski K, Schatzschneider U, Hemmert C, Gornitzka H, Milaeva ER, Nazarov AA, Gasser G, Spencer J, Ronconi L, Kortz U, Cinatl J, Bojkova D, Ott I. Metallodrug Profiling against SARS-CoV-2 Target Proteins Identifies Highly Potent Inhibitors of the S/ACE2 interaction and the Papain-like Protease PL pro. Chemistry 2021; 27:17928-17940. [PMID: 34714566 PMCID: PMC8653295 DOI: 10.1002/chem.202103258] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Indexed: 12/11/2022]
Abstract
The global spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has called for an urgent need for dedicated antiviral therapeutics. Metal complexes are commonly underrepresented in compound libraries that are used for screening in drug discovery campaigns, however, there is growing evidence for their role in medicinal chemistry. Based on previous results, we have selected more than 100 structurally diverse metal complexes for profiling as inhibitors of two relevant SARS-CoV-2 replication mechanisms, namely the interaction of the spike (S) protein with the ACE2 receptor and the papain-like protease PLpro . In addition to many well-established types of mononuclear experimental metallodrugs, the pool of compounds tested was extended to approved metal-based therapeutics such as silver sulfadiazine and thiomersal, as well as polyoxometalates (POMs). Among the mononuclear metal complexes, only a small number of active inhibitors of the S/ACE2 interaction was identified, with titanocene dichloride as the only strong inhibitor. However, among the gold and silver containing complexes many turned out to be very potent inhibitors of PLpro activity. Highly promising activity against both targets was noted for many POMs. Selected complexes were evaluated in antiviral SARS-CoV-2 assays confirming activity for gold complexes with N-heterocyclic carbene (NHC) or dithiocarbamato ligands, a silver NHC complex, titanocene dichloride as well as a POM compound. These studies might provide starting points for the design of metal-based SARS-CoV-2 antiviral agents.
Collapse
|
9
|
Volkov VV, Heinz H, Perry CC. Anchoring of a hydrophobic heptapeptide (AFILPTG) on silica facilitates peptide unfolding at the abiotic-biotic interface. Phys Chem Chem Phys 2021; 23:18001-18011. [PMID: 34382985 DOI: 10.1039/d1cp02072b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A hydrophobic heptapeptide, with sequence AFILPTG, as part of a phage capsid protein binds effectively to silica particles carrying negative charge. Here, we explore the silica binding activity of the sequence as a short polypeptide with polar N and C terminals. To describe the structural changes that occur on binding, we fit experimental infrared, Raman and circular dichroism data for a number of structures simulated in the full configuration space of the hepta-peptide using replica exchange molecular dynamics. Quantum chemistry was used to compute normal modes of infrared and Raman spectra and establish a relationship to structures from MD data. To interpret the circular dichroism data, instead of empirical factoring of optical activity into helical/sheet/random components, we exploit natural transition orbital theory and specify the contributions of backbone amide units, side chain functional groups, water, sodium ions and silica to the observed transitions. Computed optical responses suggest a less folded backbone and importance of the N-terminal when close to silica. We further discuss the thermodynamics of the interplay of charged and hydrophobic moieties of the polypeptide on association with the silica surface. The outcomes of this study may assist in the engineering of novel artificial bio-silica heterostructures.
Collapse
Affiliation(s)
- Victor V Volkov
- Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK.
| | | | | |
Collapse
|
10
|
Abstract
Bacterial infection remains a worldwide problem that requires urgent addressing. Overuse and poor disposal of antibacterial agents abet the emergence of bacterial resistance mechanisms. There is a clear need for new approaches for the development of antibacterial therapeutics. Herein, the antibacterial potential of molecules based on dithiocarbamate anions, of general formula R(R’)NCS2(−), and metal salts of transition metals and main group elements, is summarized. Preclinical studies show a broad range of antibacterial potential, and these investigations are supported by appraisals of possible biological targets and mechanisms of action to guide chemical syntheses. This bibliographic review of the literature points to the exciting potential of dithiocarbamate-based therapeutics in the crucial battle against bacteria. Additionally, included in this overview, for the sake of completeness, is mention of the far fewer studies on the antifungal potential of dithiocarbamates and even less work conducted on antiparasitic behavior.
Collapse
|