1
|
Peng CY, Xie QY, Xie X, Tang LY, Ma TX, Ke DW, Tu ZC, Zhang L. Extraction, phytochemicals characterization, in vivo and in vitro anti-diabetic ability of non-extractable polyphenols from Undaria pinnatifida. Food Res Int 2024; 196:115021. [PMID: 39614473 DOI: 10.1016/j.foodres.2024.115021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/11/2024] [Accepted: 09/01/2024] [Indexed: 12/01/2024]
Abstract
Undaria pinnatifida (Up) is an edible seaweed known for its abundant nutrients and active compounds. In this research, six different methods, including acid hydrolysis extraction (AHE), alkaline hydrolysis extraction (LHE), enzymatic hydrolysis extraction (EHE), as well as their combinations with ultrasonic assisted extraction (AHE-U, LHE-U, EHE-U), were applied to extract non-extractable polyphenols from Up (UNEPPs). Results revealed that LHE-U was the most effective way to extract UNEPPs, it gave the highest yield (1.26 %) and total phenolics content (29.88 μg GAE/mg E), as well as considerable antioxidant and in vitro hypoglycemic effects. HPLC-Q-TOF-MS/MS analysis revealed the identification of 36 compounds from ULNEPPs, ferulic acid, p-coumaric acid and ferulic acid 4-O-glucuronide were the major compounds. In vivo study found that ULNEPPs could reduce fasting blood glucose (FBG) level, ameliorate abnormal glucose metabolism and dyslipidemia, repair insulin resistance and pancreas islet damage in type 2 diabetes (T2D) mice. Additionally, RT-qPCR analysis revealed that ULNEPPs improved glucose metabolism through the up-regulation of gene expression levels of Pi3k, Glut4, Akt, Ampk and the down-regulation of gene expression levels of Foxo1, Pgc-1α, Gsk-3β, Glut4, and G6pc. These results evidence that has the potential as dietary ingredients for preventing and treating T2D.
Collapse
Affiliation(s)
- Chun-Yan Peng
- National R&D Center of Freshwater Fish Processing, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Quan-Yuan Xie
- College of Life Science, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Xing Xie
- National R&D Center of Freshwater Fish Processing, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
| | - Lin-Yi Tang
- College of Health, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Tian-Xin Ma
- National R&D Center of Freshwater Fish Processing, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Dai-Wei Ke
- National R&D Center of Freshwater Fish Processing, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Zong-Cai Tu
- College of Health, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; National R&D Center of Freshwater Fish Processing, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Lu Zhang
- College of Health, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; National R&D Center of Freshwater Fish Processing, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
| |
Collapse
|
2
|
Vidaković V, Vujić B, Jadranin M, Novaković I, Trifunović S, Tešević V, Mandić B. Qualitative Profiling, Antioxidant and Antimicrobial Activities of Polar and Nonpolar Basil Extracts. Foods 2024; 13:2993. [PMID: 39335921 PMCID: PMC11431458 DOI: 10.3390/foods13182993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Basil (Ocimum basilicum L.) is a widely used culinary herb. In this study, ethanol, dichloromethane, and sunflower oil were used separately as solvents with distinct polarities for the extraction of basil aerial parts to simulate the different polarity conditions in domestic food processing. The oil extract (OE) was re-extracted with acetonitrile, and the chemical composition, antioxidant potential, and antimicrobial activities of the ethanol (EE), dichloromethane (DCME), and acetonitrile (ACNE) extracts were determined. A total of 109 compounds were tentatively identified in EE, DCME, and ACNE by HPLC-DAD/ESI-ToF-MS. Fatty acids were present in all extracts. Phenolic acids and flavonoids dominated in EE. DCME was characterised by triterpenoid acids, while diterpenoids were mainly found in ACNE. The extracts were analysed for their antioxidant capacity using the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) assay. EE and DCME showed significant radical scavenging potential. Antimicrobial activity was explored in eight bacterial, two yeast, and one fungal species. All extracts exhibited high antifungal activity, comparable to or better than that of the commercial drug nistatin. Antibacterial activities were notable for EE and ACNE, while DCME showed no activity against bacteria in the applied concentration ranges. The different polarities of the solvents led to distinctive phytochemical compositions and bioactivities in the extracts.
Collapse
Affiliation(s)
- Vera Vidaković
- Department of Ecology, University of Belgrade—Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, Bulevar despota Stefana 142, 11108 Belgrade, Serbia;
| | - Bojan Vujić
- University of Belgrade—Faculty of Chemistry, Studentski trg 12–16, 11000 Belgrade, Serbia; (B.V.); (S.T.); (V.T.)
| | - Milka Jadranin
- University of Belgrade—Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, Njegoševa 12, 11000 Belgrade, Serbia; (M.J.); (I.N.)
| | - Irena Novaković
- University of Belgrade—Institute of Chemistry, Technology and Metallurgy, Department of Chemistry, Njegoševa 12, 11000 Belgrade, Serbia; (M.J.); (I.N.)
| | - Snežana Trifunović
- University of Belgrade—Faculty of Chemistry, Studentski trg 12–16, 11000 Belgrade, Serbia; (B.V.); (S.T.); (V.T.)
| | - Vele Tešević
- University of Belgrade—Faculty of Chemistry, Studentski trg 12–16, 11000 Belgrade, Serbia; (B.V.); (S.T.); (V.T.)
| | - Boris Mandić
- University of Belgrade—Faculty of Chemistry, Studentski trg 12–16, 11000 Belgrade, Serbia; (B.V.); (S.T.); (V.T.)
| |
Collapse
|
3
|
Kharazian N, Dehkordi FJ, Xiang CL. Metabolomics-based profiling of five Salvia L. (Lamiaceae) species using untargeted data analysis workflow. PHYTOCHEMICAL ANALYSIS : PCA 2024. [PMID: 39003613 DOI: 10.1002/pca.3423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/15/2024]
Abstract
INTRODUCTION The genus Salvia L., a member of the family Lamiaceae, is a keystone genus with a wide range of medicinal properties. It possesses a rich metabolite source that has long been used to treat different disorders. OBJECTIVES Due to a deficiency of untargeted metabolomic profiling in the genus Salvia, this work attempts to investigate a comprehensive mass spectral library matching, computational data annotations, exclusive biomarkers, specific chemotypes, intraspecific metabolite profile variation, and metabolite enrichment by a case study of five medicinal species of Salvia. MATERIAL AND METHODS Aerial parts of each species were subjected to QTRAP liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis workflow based on untargeted metabolites. A comprehensive and multivariate analysis was acquired on the metabolite dataset utilizing MetaboAnalyst 6.0 and the Global Natural Products Social Molecular Networking (GNPS) Web Platform. RESULTS The untargeted approach empowered the identification of 117 metabolites by library matching and 92 nodes annotated by automated matching. A machine learning algorithm as substructural topic modeling, MS2LDA, was further implemented to explore the metabolite substructures, resulting in four Mass2Motifs. The automated library newly discovered a total of 23 metabolites. In addition, 87 verified biomarkers of library matching, 58 biomarkers of GNPS annotations, and 11 specific chemotypes were screened. CONCLUSION Integrative spectral library matching and automated annotation by the GNPS platform provide comprehensive metabolite profiling through a workflow. In addition, QTRAP LC-MS/MS with multivariate analysis unveiled reliable information about inter and intraspecific levels of differentiation. The rigorous investigation of metabolite profiling presents a large-scale overview and new insights for chemotaxonomy and pharmaceutical studies.
Collapse
Affiliation(s)
- Navaz Kharazian
- Department of Botany, Central Laboratory, Faculty of Sciences, Shahrekord University, Shahrekord, Iran
| | - Farzaneh Jafari Dehkordi
- Department of Botany, Central Laboratory, Faculty of Sciences, Shahrekord University, Shahrekord, Iran
- Department of Biotechnology, Faculty of New Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Chun-Lei Xiang
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
4
|
Bauer I, Rimbach G, Cordeiro S, Bosy-Westphal A, Weghuber J, Ipharraguerre IR, Lüersen K. A comprehensive in-vitro/ in-vivo screening toolbox for the elucidation of glucose homeostasis modulating properties of plant extracts (from roots) and its bioactives. Front Pharmacol 2024; 15:1396292. [PMID: 38989154 PMCID: PMC11233739 DOI: 10.3389/fphar.2024.1396292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/10/2024] [Indexed: 07/12/2024] Open
Abstract
Plant extracts are increasingly recognized for their potential in modulating (postprandial) blood glucose levels. In this context, root extracts are of particular interest due to their high concentrations and often unique spectrum of plant bioactives. To identify new plant species with potential glucose-lowering activity, simple and robust methodologies are often required. For this narrative review, literature was sourced from scientific databases (primarily PubMed) in the period from June 2022 to January 2024. The regulatory targets of glucose homeostasis that could be modulated by bioactive plant compounds were used as search terms, either alone or in combination with the keyword "root extract". As a result, we present a comprehensive methodological toolbox for studying the glucose homeostasis modulating properties of plant extracts and its constituents. The described assays encompass in-vitro investigations involving enzyme inhibition (α-amylase, α-glucosidase, dipeptidyl peptidase 4), assessment of sodium-dependent glucose transporter 1 activity, and evaluation of glucose transporter 4 translocation. Furthermore, we describe a patch-clamp technique to assess the impact of extracts on KATP channels. While validating in-vitro findings in living organisms is imperative, we introduce two screenable in-vivo models (the hen's egg test and Drosophila melanogaster). Given that evaluation of the bioactivity of plant extracts in rodents and humans represents the current gold standard, we include approaches addressing this aspect. In summary, this review offers a systematic guide for screening plant extracts regarding their influence on key regulatory elements of glucose homeostasis, culminating in the assessment of their potential efficacy in-vivo. Moreover, application of the presented toolbox might contribute to further close the knowledge gap on the precise mechanisms of action of plant-derived compounds.
Collapse
Affiliation(s)
- Ilka Bauer
- Division of Food Sciences, Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Gerald Rimbach
- Division of Food Sciences, Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Sönke Cordeiro
- Institute of Physiology, University of Kiel, Kiel, Germany
| | - Anja Bosy-Westphal
- Division of Human Nutrition, Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Julian Weghuber
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Wels, Austria
- FFoQSI—Austrian Competence Centre for Feed and Food Quality, Safety & Innovation, Tulln, Austria
| | - Ignacio R. Ipharraguerre
- Division of Food Sciences, Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Kai Lüersen
- Division of Food Sciences, Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| |
Collapse
|
5
|
Wang Y, Liang Z, Cao Y, Hung CH, Du R, Leung ASL, So PK, Chan PH, Wong WL, Leung YC, Wong KY. Discovery of a novel class of rosmarinic acid derivatives as antibacterial agents: Synthesis, structure-activity relationship and mechanism of action. Bioorg Chem 2024; 146:107318. [PMID: 38579613 DOI: 10.1016/j.bioorg.2024.107318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/11/2024] [Accepted: 03/27/2024] [Indexed: 04/07/2024]
Abstract
Twenty-seven rosmarinic acid derivatives were synthesized, among which compound RA-N8 exhibited the most potent antibacterial ability. The minimum inhibition concentration of RA-N8 against both S. aureus (ATCC 29213) and MRSA (ATCC BAA41 and ATCC 43300) was found to be 6 μg/mL, and RA-N8 killed E. coli (ATCC 25922) at 3 μg/mL in the presence of polymyxin B nonapeptide (PMBN) which increased the permeability of E. coli. RA-N8 exhibited a weak hemolytic effect at the minimum inhibitory concentration. SYTOX Green assay, SEM, and LIVE/DEAD fluorescence staining assay proved that the mode of action of RA-N8 is targeting bacterial cell membranes. Furthermore, no resistance in wildtype S. aureus developed after incubation with RA-N8 for 20 passages. Cytotoxicity studies further demonstrated that RA-N8 is non-toxic to the human normal cell line (HFF1). RA-N8 also exerted potent inhibitory ability against biofilm formation of S. aureus and even collapsed the shaped biofilm.
Collapse
Affiliation(s)
- Yong Wang
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Zhiguang Liang
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Yihui Cao
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Cheung-Hin Hung
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Ruolan Du
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Alan Siu-Lun Leung
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Pui-Kin So
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Pak-Ho Chan
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Wing-Leung Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Yun-Chung Leung
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Kwok-Yin Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
6
|
Nilofar N, Zengin G, Acar M, Bouyayha A, Youssra A, Eldahshan O, Fayez S, Fahmy N. Assessing the Chemical Composition, Antioxidant and enzyme Inhibitory Effects of Pentapleura subulifera and Cyclotrichium glabrescens Extracts. Chem Biodivers 2024; 21:e202301651. [PMID: 38016080 DOI: 10.1002/cbdv.202301651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 11/30/2023]
Abstract
The Lamiaceae family, encompassing diverse plant species, holds significant value in food, medicine, and cosmetics. Within this family, Pentapleura subulifera and Cyclotrichium glabrescens, relatively unexplored species, were investigated for their chemical composition, antioxidant capacity, and enzyme-inhibiting effects. The chemical composition of hexane, methanolic, and aqueous extracts from P. subulifera and C. glabrescens were analyzed using LC-ESI-MS/MS and the non-polar hexane fraction was investigated via GC-MS. The antioxidant potential of the extracts was determined through radical scavenging, reducing power and metal chelating assays. Additionally, inhibitory activity against six enzymes - acetylcholinesterase (AChE), butyrylcholinesterase (BChE), tyrosinase, amylase, and glucosidase - was examined. The aqueous extract of P. subulifera and the methanolic extract of C. glabrescens exhibited elevated phenolic content at 129.47 mg gallic acid equivalent (GAE)/g and 55.97 mg GAE/g, respectively. Chemical profiling of the constituents of the two plant species resulted in the identification of a total of twenty compounds. The majority of which belonged to flavonoids and quinic acid derivatives, primarily concentrated in the methanol and aqueous extracts. Among all antioxidant assays, the aqueous extracts of P. subulifera demonstrated superior antioxidant activity, with the highest recorded activity of 404.93 mg trolox equivalent (TE)/g in the cupric reducing antioxidant capacity (CUPRAC) test. Meanwhile, the hexane extract of C. glabrescens exhibited the highest AChE inhibitory activity at 2.71 mg galanthamine equivalent (GALAE)/g, followed by the methanol extract of P. subulifera at 2.41 mg GALAE/g. These findings unequivocally establish the notable antioxidant and enzyme inhibitory activity of P. subulifera and C. glabrescens extracts, underscoring their potential as a source of valuable natural antioxidants.
Collapse
Affiliation(s)
- Nilofar Nilofar
- Physiology and Biochemistry Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
- Department of Pharmacy, Botanic Garden "Giardino dei Semplici", Università degli Studi "Gabriele d'Annunzio", via dei Vestini 31, 66100, Chieti, Italy
| | - Gokhan Zengin
- Physiology and Biochemistry Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| | - Mikail Acar
- Munzur University, Department of Plant and Animal Production, Tunceli Vocational School of Higher Education, Tunceli, 62000, Turkey
| | - Abdelhakim Bouyayha
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, 10106, Morocco
| | - Aalilou Youssra
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, 10106, Morocco
| | - Omayma Eldahshan
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt
- Center of Drug Discovery Research and Development, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | - Shaimaa Fayez
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Nouran Fahmy
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| |
Collapse
|
7
|
Piątczak E, Kolniak-Ostek J, Gonciarz W, Lisiecki P, Kalinowska-Lis U, Szemraj M, Chmiela M, Zielińska S. The Effect of Salvia tomentosa Miller Extracts, Rich in Rosmarinic, Salvianolic and Lithospermic Acids, on Bacteria Causing Opportunistic Infections. Molecules 2024; 29:590. [PMID: 38338335 PMCID: PMC10856039 DOI: 10.3390/molecules29030590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Methanolic-aqueous extracts of Salvia tomentosa Miller roots, aerial parts, and inflorescences were examined for their content of polyphenolic derivatives and the antimicrobial and cytotoxic effect. In the polyphenolic-rich profile, rosmarinic, salvianolic, and lithospermic acids along with various derivatives were predominant. A total of twenty phenolic compounds were identified using the UPLC/DAD/qTOF-MS technique. These were caffeic acid, rosmarinic acid derivatives, lithospermic acid derivatives, salvianolic acids B, F, and K derivatives, as well as sagerinic acid, although rosmarinic acid (426-525 mg/100 g of dry weight-D.W.) and salvianolic acid B (83-346.5 mg/100 g D.W.) were significantly predominant in the metabolic profile. Strong antibacterial activity of S. tomentosa extracts was observed against Staphylococcus epidermidis (MIC/MBC = 0.625 mg/mL) and Bacillus cereus (MIC = 0.312-1.25 mg/mL). The extracts showed low cytotoxicity towards the reference murine fibroblasts L929 and strong cytotoxicity to human AGS gastric adenocarcinoma epithelial cells in the MTT reduction assay. The observed cytotoxic effect in cancer cells was strongest for the roots of 2-year-old plant extracts.
Collapse
Affiliation(s)
- Ewelina Piątczak
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland
| | - Joanna Kolniak-Ostek
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630 Wroclaw, Poland;
| | - Weronika Gonciarz
- Department of Immunology and Infectious Biology, Faculty of Biology and Environment Protections, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (W.G.); (M.C.)
| | - Paweł Lisiecki
- Department of Pharmaceutical Microbiology and Microbiological Diagnostics, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland; (P.L.); (M.S.)
| | - Urszula Kalinowska-Lis
- Department of Cosmetic Raw Materials Chemistry, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland;
| | - Magdalena Szemraj
- Department of Pharmaceutical Microbiology and Microbiological Diagnostics, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland; (P.L.); (M.S.)
| | - Magdalena Chmiela
- Department of Immunology and Infectious Biology, Faculty of Biology and Environment Protections, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (W.G.); (M.C.)
| | - Sylwia Zielińska
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
| |
Collapse
|
8
|
Demerdash MS, Attia RT, El-Sherei MM, Aziz WM, Fahmy SA, Issa MY. Unveiling the functional components and anti-Alzheimer's activity of Koelreuteria elegans (Seem.) A.C. Sm. using UHPLC-MS/MS and molecular networking. MATERIALS ADVANCES 2024; 5:3432-3449. [DOI: 10.1039/d4ma00007b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
The metabolomic profiles of Koelreuteria elegans leaf and fruit methanol extracts using UHPLC-MS/MS analysis aided by molecular networking were explored. Both extracts reduced all the examined markers of inflammation and neurodegeneration in the injured streptozotocin (STZ)-induced AD mice.
Collapse
Affiliation(s)
- Mohamed S. Demerdash
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Reem T. Attia
- Department of Pharmacology, Toxicology, and Biochemistry, Faculty of Pharmacy, Future University in Egypt, Cairo 11865, Egypt
| | - Moshera M. El-Sherei
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Wafaa M. Aziz
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Sherif Ashraf Fahmy
- Department of Chemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, R5 New Garden City, New Administrative Capital, AL109AB, Cairo 11835, Egypt
| | - Marwa Y. Issa
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
9
|
Abdallah RH, Al-Saleem MSM, Abdel-Mageed WM, Al-Attar ASR, Shehata YM, Abdel-Fattah DM, Atta RM. LCMS/MS Phytochemical Profiling, Molecular, Pathological, and Immune-Histochemical Studies on the Anticancer Properties of Annona muricata. Molecules 2023; 28:5744. [PMID: 37570713 PMCID: PMC10421100 DOI: 10.3390/molecules28155744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/09/2023] [Accepted: 07/14/2023] [Indexed: 08/13/2023] Open
Abstract
Annona muricate is a tropical plant that is well-known for its edible fruit of therapeutic interest. LCMS/MS analyses were applied to identify phytoconstituents of the ethanolic extract of the whole fruits and the aqueous extract of the edible fruit part, in addition to the investigation of their anticancer properties against Ehrlich ascites carcinoma (EAC) in male albino mice. LCMS/MS analyses resulted in the identification of 388 components, representing a wide array of classes of compounds, including acetogenins as the major constituents, alkaloids, flavonoids, and phenolics. Among them, four compounds were tentatively characterized as new compounds (1-4), including an acid derivative, protocatechuic-coumaroyl-quinic acid (1), and three flavonoid derivatives, dihydromyricetin galloyl hexoside (2), apigenin gallate (3), and dihydromyricetin hexouronic acid hexoside (4). Induction with EAC cells resulted in abnormalities in the gene expression of pro-apoptotic genes (Bax and caspase-3) and anti-apoptotic gene (Bcl-2) in the tumor mass. Moreover, microscopic, histopathological, and immune-histochemical examinations of the tumor mass and liver tissues exhibited extensive growth of malignant Ehrlich carcinoma cells and marked hydropic degeneration of hepatocytes and infiltration by tumor cells to liver tissue with marked inflammatory reaction. These abnormalities were markedly ameliorated aftertreatment of EAC mice with A. muricata extracts.
Collapse
Affiliation(s)
- Rehab H. Abdallah
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt;
| | - Muneera S. M. Al-Saleem
- Department of Chemistry, Science College, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Wael M. Abdel-Mageed
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Al-Sayed R. Al-Attar
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt; (A.-S.R.A.-A.); (D.M.A.-F.)
| | - Youssef M. Shehata
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt; (Y.M.S.); (R.M.A.)
| | - Doaa M. Abdel-Fattah
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt; (A.-S.R.A.-A.); (D.M.A.-F.)
| | - Rahnaa M. Atta
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt; (Y.M.S.); (R.M.A.)
| |
Collapse
|
10
|
Luca SV, Skalicka-Woźniak K, Mihai CT, Gradinaru AC, Mandici A, Ciocarlan N, Miron A, Aprotosoaie AC. Chemical Profile and Bioactivity Evaluation of Salvia Species from Eastern Europe. Antioxidants (Basel) 2023; 12:1514. [PMID: 37627509 PMCID: PMC10451821 DOI: 10.3390/antiox12081514] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/14/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
The Salvia genus comprises about 1000 species endowed with medicinal, aromatic, cosmetic, and ornamental applications. Even though the genus is one of the most-studied taxa of the Lamiaceae family, data on the chemical composition and biological properties of certain locally used Salvia species are still scarce. The present work aimed to evaluate the phytochemical profile and antimicrobial, antioxidant, and cytotoxic potential of ten Salvia species that grow in Eastern Europe (e.g., the Republic of Moldova). LC-HRMS/MS metabolite profiling allowed for the annotation of 15 phenolic and organic acids, 18 flavonoids, 19 diterpenes, 5 sesterpenes, and 2 triterpenes. Multivariate analysis (e.g., principal component analysis, hierarchical cluster analysis) revealed that S. austriaca, S. nutans, and S. officinalis formed individual clusters, whereas the remaining species had a similar composition. S. officinalis showed the highest activity against Staphylococcus aureus and Streptococcus pneumoniae (MIC = 0.625 mg/mL). As evaluated in DPPH, ABTS, and FRAP assays, S. officinalis was one of the most potent radical scavenging and metal-reducing agents (CE50 values of 25.33, 8.13, and 21.01 μg/mL, respectively), followed by S. verticillata, S. sclarea, S. kopetdaghensis, S. aethiopis, and S. tesquicola. Pearson correlation analysis revealed strong correlations with rosmarinic acid, luteolin-O-glucuronide, and hydroxybenzoic acid. When the cytotoxic activity was evaluated in human breast carcinoma MCF-7 and MDA-MB-231 cells, no significant reduction in cell viability was observed over the concentrations ranging from 25 and 100 μg/mL. The results confirm the potential use of understudied Salvia species as promising sources of antioxidant compounds for developing novel pharmaceutical, nutraceutical, or cosmeceutical products.
Collapse
Affiliation(s)
- Simon Vlad Luca
- Biothermodynamics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania
| | | | - Cosmin-Teodor Mihai
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy of Iasi, 700454 Iasi, Romania
| | - Adina Catinca Gradinaru
- Biothermodynamics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Alexandru Mandici
- Biothermodynamics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Nina Ciocarlan
- Botanical Garden, Academy of Sciences of Moldova, 2002 Chisinau, Moldova
| | - Anca Miron
- Biothermodynamics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Ana Clara Aprotosoaie
- Biothermodynamics, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
11
|
Qin S, Liu M, Tang S, Shuai E, Wang Z, Yu K, Cai W. Rapid Characterization and Action Mechanism of the Antidiabetic Effect of Diospyros lotus L Using UHPLC-Q-Exactive Orbitrap MS and Network Pharmacology. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2022; 2022:8000126. [PMID: 36624749 PMCID: PMC9825215 DOI: 10.1155/2022/8000126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/27/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Diospyros lotus L, F. Ebenaceae, is an edible fruit that is widely distributed in China and other Asian countries. Presently, Diospyros lotus L can be used to treat patients with diabetes; however, its chemical composition and pharmacological profiles remain to be elucidated. This study investigated the potential bioactive compounds of Diospyros lotus L and their mechanisms of action using LC-MS and network pharmacology analysis. First, the components of Diospyros lotus L were identify using a reliable strategy for UHPLC-Q-Exactive Orbitrap mass spectrometry combined with parallel reaction monitoring (PRM) in the negative ion mode. Second, a network pharmacology study, including target gene prediction and functional enrichment, was applied to screen the main quality markers of Diospyros lotus L and explore its potential mechanism for the treatment of diabetes. The results showed that a total of 159 compounds were identified from Diospyros lotus L, among which, 140 were reported for the first time. Furthermore, 40 active components, such as quercetin, luteolin, and kaempferol, were proposed as active components of Diospyros lotus L for the treatment of diabetes based on network pharmacology analysis. In addition, 92 relevant antidiabetic targets were mainly related to positive regulation of transcription from the RNA polymerase II promoter, extracellular space, and protein binding, suggesting the involvement of TNF, PI3K-Akt, and HIF-1 signaling pathways in the antidiabetic effect of Diospyros lotus L. Our results may provide a useful approach to identify potential active components and molecular mechanisms of Diospyros lotus L for the treatment of diabetes.
Collapse
Affiliation(s)
- Shihan Qin
- School of Pharmaceutical Sciences, Sino-Pakistan Center on Traditional Chinese Medicine, Hunan University of Medicine, Huaihua 418000, China
- School of Pharmacy, Weifang Medical University, Weifang 261000, China
| | - Mingjuan Liu
- School of Pharmaceutical Sciences, Sino-Pakistan Center on Traditional Chinese Medicine, Hunan University of Medicine, Huaihua 418000, China
| | - Sunv Tang
- School of Pharmaceutical Sciences, Sino-Pakistan Center on Traditional Chinese Medicine, Hunan University of Medicine, Huaihua 418000, China
| | - E. Shuai
- School of Pharmaceutical Sciences, Sino-Pakistan Center on Traditional Chinese Medicine, Hunan University of Medicine, Huaihua 418000, China
- School of Pharmacy, Weifang Medical University, Weifang 261000, China
| | - Ziming Wang
- School of Pharmaceutical Sciences, Sino-Pakistan Center on Traditional Chinese Medicine, Hunan University of Medicine, Huaihua 418000, China
| | - Kaiquan Yu
- School of Pharmaceutical Sciences, Sino-Pakistan Center on Traditional Chinese Medicine, Hunan University of Medicine, Huaihua 418000, China
| | - Wei Cai
- School of Pharmaceutical Sciences, Sino-Pakistan Center on Traditional Chinese Medicine, Hunan University of Medicine, Huaihua 418000, China
| |
Collapse
|
12
|
Qin S, Yan F, E S, Xiong P, Tang S, Yu K, Zhang M, Cheng Y, Cai W. Comprehensive characterization of multiple components of Ziziphus jujuba Mill using UHPLC-Q-Exactive Orbitrap Mass Spectrometers. Food Sci Nutr 2022; 10:4270-4295. [PMID: 36514751 PMCID: PMC9731542 DOI: 10.1002/fsn3.3020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/19/2022] [Accepted: 07/24/2022] [Indexed: 12/16/2022] Open
Abstract
Ziziphus jujuba Mill is the dried ripe fruit of the Rhamnaceae family; it is widely distributed in Shandong, Henan, Liaoning, and other places in China. In folk medicine, it was used to restore vital energy, as a blood tonic, and for the treatment of spleen deficiency. To date, a complete investigation of the compounds of Z. jujuba has rarely been performed. Therefore, a reliable strategy based on UHPLC-Q-Exactive Orbitrap MS, combined with trace data acquisition mode (parallel reaction monitoring scanning, PRM) and multiple data processing methods, is necessary for the characterization of compounds in the Z. jujuba. Ultimately, 295 compounds, including 69 flavonoids, 60 alkaloids, 82 phenylpropanoids, 52 organic acids, and 32 other components, were identified in the Z. jujuba; of these, 270 have been reported in Z. jujuba for the first time. This study provides deep insights into the chemistry of Z. jujuba and could be useful for further studies aimed at identifying the factors contributing to the health benefits attributed to this fruit.
Collapse
Affiliation(s)
- Shi‐han Qin
- School of PharmacyWeifang Medical UniversityWeifangChina
- School of Pharmaceutical SciencesHunan University of MedicineHuaihuaChina
| | - Fang Yan
- School of PharmacyWeifang Medical UniversityWeifangChina
| | - Shuai E
- School of PharmacyWeifang Medical UniversityWeifangChina
- School of Pharmaceutical SciencesHunan University of MedicineHuaihuaChina
| | - Pei Xiong
- School of Pharmaceutical SciencesHunan University of MedicineHuaihuaChina
| | - Su‐nv Tang
- School of Pharmaceutical SciencesHunan University of MedicineHuaihuaChina
| | - Kai‐quan Yu
- School of Pharmaceutical SciencesHunan University of MedicineHuaihuaChina
| | - Min Zhang
- School of Pharmaceutical SciencesHunan University of MedicineHuaihuaChina
| | - Yung‐chi Cheng
- Department of PharmacologyYale University School of MedicineNew HavenConnecticutUSA
| | - Wei Cai
- School of Pharmaceutical SciencesHunan University of MedicineHuaihuaChina
| |
Collapse
|
13
|
Beyond Traditional Use of Alchemilla vulgaris: Genoprotective and Antitumor Activity In Vitro. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238113. [PMID: 36500205 PMCID: PMC9740270 DOI: 10.3390/molecules27238113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022]
Abstract
Alchemilla vulgaris L. (lady's mantle) was used for centuries in Europe and Balkan countries for treatments of numerous conditions and diseases of the reproductive system, yet some of the biological activities of lady's mantle have been poorly studied and neglected. The present study aimed to estimate the potential of A. vulgaris ethanolic extract from Southeast Serbia to prevent and suppress tumor development in vitro, validated by antioxidant, genoprotective, and cytotoxic properties. A total of 45 compounds were detected by UHPLC-HRMS analysis in A. vulgaris ethanolic extract. Measurement of antioxidant activity revealed the significant potential of the tested extract to scavenge free radicals. In addition, the analysis of micronuclei showed an in vitro protective effect on chromosome aberrations in peripheral human lymphocytes. A. vulgaris extract strongly suppressed the growth of human cell lines derived from different types of tumors (MCF-7, A375, A549, and HCT116). The observed antitumor effect is realized through the blockade of cell division, caspase-dependent apoptosis, and autophagic cell death. Our study has shown that Alchemilla vulgaris L. is a valuable source of bioactive compounds able to protect the subcellular structure from damage, thus preventing tumorigenesis as well as suppressing tumor cell growth.
Collapse
|
14
|
The Potential Neuroprotective Effect of Cyperus esculentus L. Extract in Scopolamine-Induced Cognitive Impairment in Rats: Extensive Biological and Metabolomics Approaches. Molecules 2022; 27:molecules27207118. [PMID: 36296710 PMCID: PMC9606906 DOI: 10.3390/molecules27207118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study is to investigate the phytochemical composition of tiger nut (TN) (Cyperus esculentus L.) and its neuroprotective potential in scopolamine (Scop)-induced cognitive impairment in rats. The UHPLC-ESI-QTOF-MS analysis enabled the putative annotation of 88 metabolites, such as saccharides, amino acids, organic acids, fatty acids, phenolic compounds and flavonoids. Treatment with TN extract restored Scop-induced learning and memory impairments. In parallel, TN extract succeeded in lowering amyloid beta, β-secretase protein expression and acetylcholine esterase (AChE) activity in the hippocampus of rats. TN extract decreased malondialdehyde levels, restored antioxidant levels and reduced proinflammatory cytokines as well as the Bax/Bcl2 ratio. Histopathological analysis demonstrated marked neuroprotection in TN-treated groups. In conclusion, the present study reveals that TN extract attenuates Scop-induced memory impairments by diminishing amyloid beta aggregates, as well as its anti-inflammatory, antioxidant, anti-apoptotic and anti-AChE activities.
Collapse
|
15
|
Krzemińska M, Owczarek A, Gonciarz W, Chmiela M, Olszewska MA, Grzegorczyk-Karolak I. The Antioxidant, Cytotoxic and Antimicrobial Potential of Phenolic Acids-Enriched Extract of Elicited Hairy Roots of Salvia bulleyana. Molecules 2022; 27:992. [PMID: 35164257 PMCID: PMC8839693 DOI: 10.3390/molecules27030992] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/29/2022] [Accepted: 01/30/2022] [Indexed: 12/17/2022] Open
Abstract
Hairy root cultures are valuable sources of a range of phytochemicals. Among them, Salvia bulleyana root culture is a promising source of polyphenols, especially rosmarinic acid (RA), a phenolic acid depside with pleiotropic activity and a wide application in medicine and cosmetology. The aim of the study was to enhance the culture productivity by finding suitable elicitation protocol and to determine its biological potential in terms of antioxidant, anticancer and antimicrobial properties. The total content of phenols and the levels of particular constituents in root extracts were analyzed using HPLC-PDA. Among four elicitors tested (yeast extract; methyl jasmonate, MJA; trans-anethol; and cadmium chloride), MJA was found to be the most effective. The greatest boost in phenolic production (up to 124.4 mg/g dry weight) was observed after three-day treatment with MJA at 100 µM, with an almost 100% improvement compared to the controls (non-treated root culture). The hydromethanolic extract from the elicited culture exhibited strong antioxidant activity with IC50 values of 11.1 µg/mL, 6.5 µg/mL and 69.5 µg/mL for DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS (2,2-azinobis-(3-ethylbenzthiazoline-6-sulfonic acid)) and superoxide anion radical, respectively. Moreover, in concentrations of 0.5-5 mg/mL the extract inhibited the growth of LoVo, AGS and HeLa cell lines, but was safe for the L929 cells up to the concentration of 5 mg/mL. The extract also exhibited moderate antimicrobial activity. Thus, the results confirmed that elicitation can be a beneficial strategy for increase the phenolic acid biosynthesis in hairy roots of S. bulleyana, and that such a highly productive culture can show significant biological potential.
Collapse
Affiliation(s)
- Marta Krzemińska
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland;
| | - Aleksandra Owczarek
- Department of Pharmacognosy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland; (A.O.); (M.A.O.)
| | - Weronika Gonciarz
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (W.G.); (M.C.)
| | - Magdalena Chmiela
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (W.G.); (M.C.)
| | - Monika A. Olszewska
- Department of Pharmacognosy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland; (A.O.); (M.A.O.)
| | - Izabela Grzegorczyk-Karolak
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland;
| |
Collapse
|
16
|
Ben-Khalifa R, Gaspar FB, Pereira C, Chekir-Ghedira L, Rodríguez-Rojo S. Essential Oil and Hydrophilic Antibiotic Co-Encapsulation in Multiple Lipid Nanoparticles: Proof of Concept and In Vitro Activity against Pseudomonas aeruginosa. Antibiotics (Basel) 2021; 10:1300. [PMID: 34827238 PMCID: PMC8614727 DOI: 10.3390/antibiotics10111300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 12/22/2022] Open
Abstract
In the worldwide context of an impending emergence of multidrug-resistant bacteria, this research combined the advantages of multiple lipid nanoparticles (MLNs) and the promising therapeutic use of essential oils (EOs) as a strategy to fight the antibiotic resistance of three Pseudomonas aeruginosa strains with different cefepime (FEP) resistance profiles. MLNs were prepared by ultrasonication using glyceryl trioleate (GTO) and glyceryl tristearate (GTS) as a liquid and a solid lipid, respectively. Rosemary EO (REO) was selected as the model EO. REO/FEP-loaded MLNs were characterized by their small size (~110 nm), important encapsulation efficiency, and high physical stability over time (60 days). An assessment of the antimicrobial activity was performed using antimicrobial susceptibility testing assays against selected P. aeruginosa strains. The assays showed a considerable increase in the antibacterial property of REO-loaded MLNs compared with the effect of crude EO, especially against P. aeruginosa ATCC 9027, in which the minimum inhibitory concentration (MIC) value decreased from 80 to 0.6 mg/mL upon encapsulation. Furthermore, the incorporation of FEP in MLNs stabilized the drug without affecting its antipseudomonal activity. Thus, the ability to co-encapsulate an essential oil and a hydrophilic antibiotic into MLN has been successfully proved, opening new possibilities for the treatment of serious antimicrobial infections.
Collapse
Affiliation(s)
- Rayhane Ben-Khalifa
- Unit of Natural Bioactive Substances and Biotechnology UR17ES49, Faculty of Dental Medicine, University of Monastir, Monastir 5000, Tunisia; (R.B.-K.); (L.C.-G.)
- Research Institute on Bioeconomy (BioEcoUVa), High Pressure Processes Group, School of Industrial Engineering, University of Valladolid, 47011 Valladolid, Spain
| | - Frédéric Bustos Gaspar
- iBET—Instituto de Biologia Experimental e Tecnológica, 2781-901 Oeiras, Portugal;
- ITQB NOVA—Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Cristina Pereira
- iBET—Instituto de Biologia Experimental e Tecnológica, 2781-901 Oeiras, Portugal;
- ITQB NOVA—Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Leila Chekir-Ghedira
- Unit of Natural Bioactive Substances and Biotechnology UR17ES49, Faculty of Dental Medicine, University of Monastir, Monastir 5000, Tunisia; (R.B.-K.); (L.C.-G.)
| | - Soraya Rodríguez-Rojo
- Research Institute on Bioeconomy (BioEcoUVa), High Pressure Processes Group, School of Industrial Engineering, University of Valladolid, 47011 Valladolid, Spain
| |
Collapse
|
17
|
Determination of the Chemical Composition, Antioxidant, and Enzyme Inhibitory Activity of Onosma mollis DC. J CHEM-NY 2021. [DOI: 10.1155/2021/5405365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Onosma species have long been used traditionally for respiratory tract infections, abdominal pain, wound treatment, burns, and constipation. This study aims to investigate the chemical composition and in vitro antioxidant and enzyme inhibitory activities of ethyl acetate (EtOAc), methanol (MeOH), and water extracts of Onosma mollis DC. MeOH extract was richer in both phenolics and flavonoids than other extracts (44.06 mg GAEs/g and 41.57 mg QEs/g, respectively). The findings obtained from the results of the chromatographic analysis also supported the results of the spectrophotometric analysis. The MeOH extract was the richest in terms of most of the phytochemicals screened. Apigenin 7-glucoside, luteolin 7-glucoside, rosmarinic acid, vanillic acid, and pinoresinol were over 1000.0 μg/g in MeOH extract. The extract in question showed the highest activity in phosphomolybdenum, DPPH, and ABTS radical scavenging and CUPRAC and FRAP reducing power activity assays (2.01, 3.33, 2.30, 1.48, and 0.79 mg/ml, respectively). The water extract presented the highest activity in the ferrous ion chelating assay (1.01 mg/ml). While EtOAc extract showed high activity in acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and α-glucosidase inhibitory activity tests (1.11, 1.49, and 1.07 mg/ml, respectively), MeOH extract showed significant efficacy in tyrosinase and α-amylase inhibitory activity assays (2.94 and 2.08 mg/ml, respectively). There was a high correlation between the total phenolics/flavonoids of the extracts and their antioxidant activities (correlation coefficients were over 0.9). In addition, the phytochemicals mentioned above were found to contribute significantly to the antioxidant activity. It was concluded that a more detailed analysis should be done to determine the compounds responsible for the enzyme inhibitory activities of the extracts.
Collapse
|