1
|
Alli YA, Matebese F, Chkirida S, Magida NE, Ogunlaja AS, Hanson E, Nwakile C, Bayazit MK. Unveiling the potential of step-scheme and Type II photocatalysts in dinitrogen reduction to ammonia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177903. [PMID: 39637537 DOI: 10.1016/j.scitotenv.2024.177903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/27/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
Innovative photocatalytic systems designed to enhance efficiency of nitrogen fixation processes, specifically focusing on sustainable ammonia (NH3) production strategies via dinitrogen (N2) reduction into ammonia (NH3). This process is critical for sustainable agriculture and energy production. To improve photocatalyst activity, catalyst stability and reusability, reduction efficiency due to electron/hole recombination, and light-absorption efficiency has drawn extensive attention. Herein, a broad range of research progress and comprehensive overview of step-scheme/type-II heterojunctions focusing on dinitrogen (N2) reduction are reviewed with focus on general synthesis, characterization by their unique charge separation mechanisms that improve light absorption and electron-hole pair utilization. The review highlights recent advancements in material design, which have shown promising results in enhancing photocatalytic activity under visible light irradiation. A significant portion of the review delves into the underlying mechanisms which these heterojunctions operate. Despite the promising literature results, several challenges facing this field, such as scalability, stability of photocatalysts, and environmental impact under operational conditions were also discussed. In summary, this review provides valuable insights into the potential of step-scheme/type-II photocatalysts for dinitrogen reduction to ammonia. The need for interdisciplinary approaches to overcome existing challenges such as incorporation of piezoelectric biomaterials and unlocking the full potential of these materials in addressing global nitrogen demands sustainably are highlighted, outlining future directions for further research and innovations.
Collapse
Affiliation(s)
- Yakubu Adekunle Alli
- Department of Chemistry, Nelson Mandela University, Port Elizabeth, South Africa.
| | - Funeka Matebese
- Department of Chemistry, Nelson Mandela University, Port Elizabeth, South Africa; Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, 1709 Johannesburg, South Africa
| | - Soulaima Chkirida
- Laboratory of Heterocyclic Organic Chemistry, Faculty of Sciences, University Mohammed V, Rabat, Morocco
| | - Nokuthula E Magida
- Department of Chemistry, Nelson Mandela University, Port Elizabeth, South Africa
| | - Adeniyi S Ogunlaja
- Department of Chemistry, Nelson Mandela University, Port Elizabeth, South Africa.
| | - Enobong Hanson
- Jones Graduate School of Business, Rice University, 6100 Main St, Houston, TX 77005, USA
| | - Chukwuebuka Nwakile
- Jones Graduate School of Business, Rice University, 6100 Main St, Houston, TX 77005, USA
| | - Mustafa Kemal Bayazit
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956 Istanbul, Turkey
| |
Collapse
|
2
|
Kwon NH, Kim S, Gu T, Lee JM, Kim MH, Paik D, Jin X, Kim H, Hwang S. Surface Optimization of Noble-Metal-Free Conductive [Mn 1/4Co 1/2Ni 1/4]O 2 Nanosheets for Boosting Their Efficacy as Hybridization Matrices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2408948. [PMID: 39364759 PMCID: PMC11600246 DOI: 10.1002/advs.202408948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/23/2024] [Indexed: 10/05/2024]
Abstract
Conductive 2D nanosheets have evoked tremendous scientific efforts because of their high efficiency as hybridization matrices for improving diverse functionalities of nanostructured materials. To address the problems posed by previously reported conductive nanosheets like poorly-interacting graphene and cost-ineffective RuO2 nanosheets, economically feasible noble-metal-free conductive [MnxCo1-2xNix]O2 oxide nanosheets are synthesized with outstanding interfacial interaction capability. The surface-optimized [Mn1/4Co1/2Ni1/4]O2 nanosheets outperformed RuO2/graphene nanosheets as hybridization matrices in exploring high-performance visible-light-active (λ >420 nm) photocatalysts. The most efficient g-C3N4-[Mn1/4Co1/2Ni1/4]O2 nanohybrid exhibited unusually high photocatalytic activity (NH4 + formation rate: 1.2 mmol g-1 h-1), i.e., one of the highest N2 reduction efficiencies. The outstanding hybridization effect of the defective [Mn1/4Co1/2Ni1/4]O2 nanosheets is attributed to the optimization of surface bonding character and electronic structure, allowing for improved interfacial coordination bonding with g-C3N4 at the defect sites. Results from spectroscopic measurements and theoretical calculations reveal that hybridization helps optimize the bandgap energy, and improves charge separation, N2 adsorptivity, and surface reactivity. The universality of the [Mn1/4Co1/2Ni1/4]O2 nanosheet as versatile hybridization matrices is corroborated by the improvement in the electrocatalytic activity of hybridized Co-Fe-LDH as well as the photocatalytic hydrogen production ability of hybridized CdS.
Collapse
Affiliation(s)
- Nam Hee Kwon
- Department of Materials Science and EngineeringCollege of EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Se‐Jun Kim
- Department of ChemistryKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Tae‐Ha Gu
- Department of Chemistry and NanoscienceCollege of Natural ScienceEwha Womans UniversitySeoul03760Republic of Korea
| | - Jang Mee Lee
- Centre for Advanced Materials and Industrial Chemistry (CAMIC)School of ScienceRoyal Melbourne Institute of Technology (RMIT) UniversityMelbourneVIC3001Australia
| | - Myung Hwa Kim
- Department of Chemistry and NanoscienceCollege of Natural ScienceEwha Womans UniversitySeoul03760Republic of Korea
| | - Dooam Paik
- Department of ChemistryKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Xiaoyan Jin
- Department of Applied ChemistryCollege of Natural ScienceUniversity of SeoulSeoul02504Republic of Korea
| | - Hyungjun Kim
- Department of ChemistryKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Seong‐Ju Hwang
- Department of Materials Science and EngineeringCollege of EngineeringYonsei UniversitySeoul03722Republic of Korea
- Department of Battery EngineeringYonsei UniversitySeoul03722Republic of Korea
| |
Collapse
|
3
|
Sun C, Zhu S, Qu J, Zhu Z, Chen Y, Tu X, Cai W, Yu Z, Liu Y, Zhang S, Zheng H. Efficient photocatalytic nitrogen fixation via oxygen vacancies in Zr-MOFs at ambient conditions. J Colloid Interface Sci 2024; 669:75-82. [PMID: 38705114 DOI: 10.1016/j.jcis.2024.04.219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/07/2024]
Abstract
Photocatalytic nitrogen fixation is seen to be a potential technology for nitrogen reduction due to its eco-friendliness, low energy consumption, and environmental protection. In this study, photocatalysts with abundant oxygen vacancies (Zr-naphthalene dicarboxylic acid (Zr-NDC) and Zr-phthalic acid (Zr-BDC)) were designed using 1,4-naphthalene dicarboxylic acid (H2NDC) and 1,4-phthalic acid (H2BDC) as ligands. Since the structure of H2NDC includes one extra benzene ring than H2BDC, the charge density differential of the organic ligand is probably altered. The hypothesis is proved by density function theory (DFT) calculation. The abundant oxygen vacancies of the catalyst offer numerous active sites for nitrogen fixation. Concurrently, the process of ligand-metal charge transfer facilitates photo-electron transfer, creating an active center for nitrogen reduction. Additionally, the functionalization of ligand amplifies another pathway for charge transfer, broadening the light absorption range of Metal-organic framework (MOF) and increasing its capacity for nitrogen reduction. In contrast to H2BDC, the benzene ring added in H2NDC structure acts as an electron energy storage tank with a stronger electron density difference favorable for photogenerated electron-hole separation resulting in higher photocatalytic activity in Zr-NDC. The experimental results show that the nitrogen fixation efficiency of Zr-NDC is 163.7 µmol g-1h-1, which is significantly better than that of Zr-BDC (29.3 µmol g-1h-1). This work utilizes cost-effective and non-toxic ingredients to design highly efficient photocatalysts, thereby significantly contributing to the practical implementation of green chemistry principles.
Collapse
Affiliation(s)
- Can Sun
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Shouxin Zhu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Jingyi Qu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Zhexiao Zhu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Yutong Chen
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Xuewei Tu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Wenya Cai
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Zhiqin Yu
- Hangzhou Synbest Biotech Co., Ltd, Hangzhou 311121, PR China
| | - Yibin Liu
- Hangzhou Synbest Biotech Co., Ltd, Hangzhou 311121, PR China
| | - Shijie Zhang
- Hangzhou Synbest Biotech Co., Ltd, Hangzhou 311121, PR China.
| | - Hui Zheng
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, PR China.
| |
Collapse
|
4
|
Sharma M, Sajwan D, Gouda A, Sharma A, Krishnan V. Recent progress in defect-engineered metal oxides for photocatalytic environmental remediation. Photochem Photobiol 2024; 100:830-896. [PMID: 38757336 DOI: 10.1111/php.13959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 05/18/2024]
Abstract
Rapid industrial advancement over the last few decades has led to an alarming increase in pollution levels in the ecosystem. Among the primary pollutants, harmful organic dyes and pharmaceutical drugs are directly released by industries into the water bodies which serves as a major cause of environmental deterioration. This warns of a severe need to find some sustainable strategies to overcome these increasing levels of water pollution and eliminate the pollutants before being exposed to the environment. Photocatalysis is a well-established strategy in the field of pollutant degradation and various metal oxides have been proven to exhibit excellent physicochemical properties which makes them a potential candidate for environmental remediation. Further, with the aim of rapid industrialization of photocatalytic pollutant degradation technology, constant efforts have been made to increase the photocatalytic activity of various metal oxides. One such strategy is the introduction of defects into the lattice of the parent catalyst through doping or vacancy which plays a major role in enhancing the catalytic activity and achieving excellent degradation rates. This review provides a comprehensive analysis of defects and their role in altering the photocatalytic activity of the material. Various defect-rich metal oxides like binary oxides, perovskite oxides, and spinel oxides have been summarized for their application in pollutant degradation. Finally, a summary of existing research, followed by the existing challenges along with the potential countermeasures has been provided to pave a path for the future studies and industrialization of this promising field.
Collapse
Affiliation(s)
- Manisha Sharma
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, India
| | - Devanshu Sajwan
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, India
| | - Ashrumochan Gouda
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, India
| | - Anitya Sharma
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, India
| | - Venkata Krishnan
- School of Chemical Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, India
| |
Collapse
|
5
|
Baaloudj O, Vu NN, Assadi AA, Le VQ, Nguyen-Tri P. Recent advances in designing and developing efficient sillenite-based materials for photocatalytic applications. Adv Colloid Interface Sci 2024; 327:103136. [PMID: 38598926 DOI: 10.1016/j.cis.2024.103136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/09/2024] [Accepted: 03/14/2024] [Indexed: 04/12/2024]
Abstract
Sillenite materials have been the subject of intense investigation for recent years due to their unique characteristics. They possess a distinct structure with space group I23, allowing them to exhibit distinctive features, such as an electronic structure ideal for certain applications such as photocatalysis. The present research delves into the structure, synthesis, and properties of sillenites, highlighting their suitability for photocatalysis. It explores also advanced engineering strategies for designing sillenite-based photocatalysts, including heterojunction formation, morphology modification, doping, and hybrid processes. Each strategy offers advantages and limitations that are critically discussed. The review then lists and discusses the photocatalytic performance of various sillenite-based systems recently developed for common applications, such as removing hazardous organic and inorganic contaminants, and even infrequent applications, such as microbial inactivation, H2 generation, CO2 reduction and N2 fixation. Finally, valuable insights and suggestions are put forward for future research directions in the field of sillenite-based photocatalysis. This comprehensive overview would provide a valuable resource for the development of efficient photocatalytic systems to address environmental and energy challenges.
Collapse
Affiliation(s)
- Oussama Baaloudj
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada; Laboratory of Advanced Materials for Energy and Environment, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada; Laboratory of Reaction Engineering, Faculty of Mechanical Engineering and Process Engineering, USTHB, BP 32, 16111 Algiers, Algeria
| | - Nhu-Nang Vu
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada; Laboratory of Advanced Materials for Energy and Environment, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada
| | - Aymen Amin Assadi
- College of Engineering, Imam Mohammad Ibn Saud Islamic University, IMSIU, Riyadh 11432, Saudi Arabia; Univ Rennes, ENSCR-équipe Chimie et Ingénierie des Procédés, URM 6226 CNRS, ENSCR-11, Allée de Beaulieu, CS, 508307-35708 Rennes, France
| | - Van Quyet Le
- Department of Materials Science and Engineering, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Phuong Nguyen-Tri
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada; Laboratory of Advanced Materials for Energy and Environment, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada.
| |
Collapse
|
6
|
Verma A, Dhanaraman E, Fu YP. Enabling N 2 to Ammonia Conversion in Bi 2 WO 6 -Based Materials: A New Avenue in Photocatalytic Applications. Chemistry 2023; 29:e202302559. [PMID: 37806958 DOI: 10.1002/chem.202302559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/26/2023] [Accepted: 10/08/2023] [Indexed: 10/10/2023]
Abstract
The field of photocatalysis has been evolving since 1972 since Honda and Fujishima's initial push for using light as an energy source to accomplish redox reactions. Since then, many photocatalysts have been studied, semiconductors or otherwise. A new photocatalytic application to convert N2 gas to ammonia (N2 fixation or nitrogen reduction reaction; NRR) has emerged. Many researchers have steered their research in this direction due to developments in the ease of ammonia detection through UV-Vis spectroscopy. This concept will specifically discuss Bi2 WO6 -based materials, techniques to enhance their photocatalytic activity (CO2 reduction, H2 production, pollutant removal, etc.), and their current application in photocatalytic NRR. Initially, a brief introduction of Bi2 WO6 along with its VB and CB potentials will be compared to various redox potentials. A final topic of interest would be a brief description of photocatalytic nitrogen fixation with additional consideration to Bi2 WO6 -based materials in N2 fixation. A major problem with photocatalytic NRR is the false ammonia quantification in Bi-based materials, which will be discussed in detail and also ways to minimize them.
Collapse
Affiliation(s)
- Atul Verma
- Department of Materials Science and Engineering, National Dong Hwa University, Hualien, 97401, Taiwan
| | - Esakkinaveen Dhanaraman
- Department of Materials Science and Engineering, National Dong Hwa University, Hualien, 97401, Taiwan
| | - Yen-Pei Fu
- Department of Materials Science and Engineering, National Dong Hwa University, Hualien, 97401, Taiwan
| |
Collapse
|
7
|
Lv S, Gou F, Gou Q, Mao Y, Wang H, Jiang Y, Shen W, He R, Li M. Strong electron coupling of FeP 4/Ni 2P to boost highly-efficient electrochemical nitrate reduction to ammonia. J Colloid Interface Sci 2023; 656:137-145. [PMID: 37988781 DOI: 10.1016/j.jcis.2023.11.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/03/2023] [Accepted: 11/13/2023] [Indexed: 11/23/2023]
Abstract
Electrochemical reduction of contaminated nitrate to ammonia (NRA) opens a new window for mass production of ammonia and the alleviation of energy crises and environmental pollution. However, fabricating effective catalysts for the NRA still faces significant challenges. Herein, a highly-efficient NRA catalyst, FeP4/Ni2P, was successfully constructed. The strong electron coupling at heterointerfaces of FeP4/Ni2P promoted the generation of abundant active hydrogen *H, inhibited the competition of the HER, accelerated the hydrogenation of the NRA. Benefiting from these, the catalyst displays good NRA catalytic activity in the neutral electrolyte, with the NH3 FE of 97.83 ± 0.091 %, NH3 selectivity of 98.67 ± 0.50 %, NH3 yield rate of 0.262 ± 0.01 mmol·h-1·cm-2, and NO3- conversion rate of 93.02 ± 0.14 %. The DFT theoretical calculations demonstrated that the FeP4/Ni2P heterointerfaces played a critical role in shearing the H-OH bonds of water, resulting in generating more active hydrogen as a key NRA hydrogenation source, and hindering the *H dimerization to form H2, enhancing the NH3 selectivity. This work has a certain reference value for designing excellent catalysts for the NRA.
Collapse
Affiliation(s)
- Shengmei Lv
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Fenglin Gou
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Qiao Gou
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yini Mao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Hua Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yimin Jiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Wei Shen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Rongxing He
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| | - Ming Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
8
|
Rostami S, Tayebee R, Mahdavi B. Photofixation of N 2 to ammonia utilizing Ni@TPP-HPA nanocomposite under visible-light illumination. RSC Adv 2023; 13:31303-31313. [PMID: 37901262 PMCID: PMC10600515 DOI: 10.1039/d3ra03921h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/18/2023] [Indexed: 10/31/2023] Open
Abstract
The production of ammonia as an important raw material in the chemical, agricultural, and food industries has been always a significant concern. However, conventional ammonia production methods require high energy consumption and costs. The photocatalytic rotes use green light sources and cost-effective photocatalysts to obtain ammonia from water under aerobic conditions and preventing production of greenhouse gases in the environment. To produce an effective heterogeneous catalyst, a new tetraphenylporphyrin-heteropolyacid (TPP-HPA) nanohybrid material is synthesized and loaded onto Ni nanoparticles in this work. Then, FE-SEM, EDS, XRD, and FT-IR analyses were applied to characterize the prepared nanohybrid material Ni@TPP-HPA. After that, the new inorganic-organic nanohybrid photocatalyst was introduced as an effective, environmental friendly, and recyclable mediator for N2 photofixation. The results showed that Ni@TPP-HPA is a good photocatalyst for the N2 fixation reaction and can be easily recycled without losing its activity for at least five runs. The Ni@TPP-HPA nanocomposite demonstrated the maximum ammonia generation by 2760 μmol L-1 g-1 under mild conditions when using methanol as a hole scavenger. Additionally, effects of solvent type, temperature, reaction time, irradiation source, solution pH, and other electron scavengers on the rate of NH4+ production were investigated and discussed.
Collapse
Affiliation(s)
- Shahrbanoo Rostami
- Department of Chemistry, School of Sciences, Hakim Sabzevari University Sabzevar Iran
| | - Reza Tayebee
- Department of Chemistry, School of Sciences, Hakim Sabzevari University Sabzevar Iran
| | - Behnam Mahdavi
- Department of Chemistry, School of Sciences, Hakim Sabzevari University Sabzevar Iran
| |
Collapse
|
9
|
Kusiak-Nejman E, Ćmielewska K, Pełech I, Ekiert E, Staciwa P, Sibera D, Wanag A, Kapica-Kozar J, Gano M, Narkiewicz U, Morawski AW. On the Selectivity of Simultaneous CO 2 and N 2 Reduction Using TiO 2/Carbon Sphere Photocatalysts Prepared by Microwave Treatment and Mounted on Silica Cloth. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5810. [PMID: 37687503 PMCID: PMC10488338 DOI: 10.3390/ma16175810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023]
Abstract
This paper presents new photocatalysts obtained by treating carbon spheres (CS) and TiO2 in a microwave reactor at a pressure of 20 atm and a temperature of up to 300 °C for 15 min and then depositing TiO2/CS composites on glass fibre cloths. Such highly CO2-adsorbing photocatalysts showed photoactivity in the simultaneous water-splitting process, generating H2, reducing CO2 to CO and CH4, and reducing N2 to NH3. In addition, calculations of the hydrogen balance involved in all reactions were performed. Adding 1 g of carbon spheres per 1 g of TiO2 maintained the high selectivity of nitrogen fixation at 95.87-99.5%, which was continuously removed from the gas phase into the water as NH4+ ions.
Collapse
Affiliation(s)
- Ewelina Kusiak-Nejman
- Department of Inorganic Chemical Technology and Environment Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Pułaskiego 10, 70-322 Szczecin, Poland; (I.P.); (E.E.); (P.S.); (A.W.); (J.K.-K.); (U.N.); (A.W.M.)
| | - Katarzyna Ćmielewska
- Department of Inorganic Chemical Technology and Environment Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Pułaskiego 10, 70-322 Szczecin, Poland; (I.P.); (E.E.); (P.S.); (A.W.); (J.K.-K.); (U.N.); (A.W.M.)
| | - Iwona Pełech
- Department of Inorganic Chemical Technology and Environment Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Pułaskiego 10, 70-322 Szczecin, Poland; (I.P.); (E.E.); (P.S.); (A.W.); (J.K.-K.); (U.N.); (A.W.M.)
| | - Ewa Ekiert
- Department of Inorganic Chemical Technology and Environment Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Pułaskiego 10, 70-322 Szczecin, Poland; (I.P.); (E.E.); (P.S.); (A.W.); (J.K.-K.); (U.N.); (A.W.M.)
| | - Piotr Staciwa
- Department of Inorganic Chemical Technology and Environment Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Pułaskiego 10, 70-322 Szczecin, Poland; (I.P.); (E.E.); (P.S.); (A.W.); (J.K.-K.); (U.N.); (A.W.M.)
| | - Daniel Sibera
- Department of General Civil Engineering, Faculty of Civil and Environmental Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 50a, 70-311 Szczecin, Poland;
| | - Agnieszka Wanag
- Department of Inorganic Chemical Technology and Environment Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Pułaskiego 10, 70-322 Szczecin, Poland; (I.P.); (E.E.); (P.S.); (A.W.); (J.K.-K.); (U.N.); (A.W.M.)
| | - Joanna Kapica-Kozar
- Department of Inorganic Chemical Technology and Environment Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Pułaskiego 10, 70-322 Szczecin, Poland; (I.P.); (E.E.); (P.S.); (A.W.); (J.K.-K.); (U.N.); (A.W.M.)
| | - Marcin Gano
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Pułaskiego 10, 70-322 Szczecin, Poland;
| | - Urszula Narkiewicz
- Department of Inorganic Chemical Technology and Environment Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Pułaskiego 10, 70-322 Szczecin, Poland; (I.P.); (E.E.); (P.S.); (A.W.); (J.K.-K.); (U.N.); (A.W.M.)
| | - Antoni W. Morawski
- Department of Inorganic Chemical Technology and Environment Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Pułaskiego 10, 70-322 Szczecin, Poland; (I.P.); (E.E.); (P.S.); (A.W.); (J.K.-K.); (U.N.); (A.W.M.)
| |
Collapse
|
10
|
Prabagar JS, Sneha Y, Tenzin T, Shahmoradi B, Rtimi S, Wantala K, Jenkins D, Shivaraju HP. Photocatalytic transfer of aqueous nitrogen into ammonia using nickel-titanium-layered double hydroxide. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:90341-90351. [PMID: 36520285 DOI: 10.1007/s11356-022-24726-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
The development of solar-driven transfer of atmospheric nitrogen into ammonia is one of the green and sustainable strategies in industrial ammonia production. Nickel-titanium-layered double hydroxide (NiTi-LDH) was synthesised using the soft-chemical process for atmospheric nitrogen fixation application under photocatalysis in an aqueous system. NiTi-LDH was investigated using advanced characterisation techniques and confirmed the potential oxygen vacancies and/or surface defects owing to better photocatalytic activity under the solar spectrum. It also exhibited a bandgap of 2.8 eV that revealed its promising visible-light catalytic activities. A maximum of 33.52 µmol L-1 aqueous NH3 was obtained by continuous nitrogen (99.9% purity) supply into the photoreactor under an LED light source. Atmospheric nitrogen supply (≈78%) yielded 14.67 µmol L-1 aqueous NH3 within 60 min but gradually reduced to 3.6 µmol L-1 at 330 min. Interestingly, in weak acidic pH, 20.90 µmol L-1 NH3 was produced compared to 11.51 µmol L-1 NH3 in basic pH. The application of NiTi-LDH for visible-light harvesting capability and photoreduction of atmospheric N2 into NH3 thereby opens a new horizon of eco-friendly NH3 production using natural sunlight as alternative driving energy.
Collapse
Affiliation(s)
- Jijoe Samuel Prabagar
- Department of Environmental Sciences, JSS Academy of Higher Education and Research, Mysuru, 570015, India
| | - Yadav Sneha
- Department of Environmental Sciences, JSS Academy of Higher Education and Research, Mysuru, 570015, India
- Center for Water, Food and Energy, GREENS Trust, Harikaranahalli Village-572215, Dombaranahalli Post, Tumkur District, Turuvekere Taluka, Karnataka, India
| | - Thinley Tenzin
- Department of Environmental Sciences, JSS Academy of Higher Education and Research, Mysuru, 570015, India
| | - Behzad Shahmoradi
- Department of Environmental Health Engineering, Faculty of Health, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Sami Rtimi
- Environment and Health, Global Institute for Water, Rue de Chantepoulet 10, Geneve, Switzerland
| | - Kitirote Wantala
- Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, Thailand
| | - David Jenkins
- Wolfson Nanomaterials & Devices Laboratory, School of Computing, Electronics and Mathematics, Faculty of Science & Engineering, University of Plymouth, Devon, PL4 8AA, UK
| | - Harikaranahalli Puttaiah Shivaraju
- Department of Environmental Sciences, JSS Academy of Higher Education and Research, Mysuru, 570015, India.
- Center for Water, Food and Energy, GREENS Trust, Harikaranahalli Village-572215, Dombaranahalli Post, Tumkur District, Turuvekere Taluka, Karnataka, India.
| |
Collapse
|
11
|
Sun X, Ming J, Ma Q, Zhang C, Zhu Y, An G, Chen G, Yang Y. Fabrication of optimal oxygen vacancy amount in P/Ag/Ag 2O/Ag 3PO 4/TiO 2 through a green photoreduction process for sustainable H 2 evolution under solar light. J Colloid Interface Sci 2023; 645:176-187. [PMID: 37148683 DOI: 10.1016/j.jcis.2023.04.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/08/2023]
Abstract
Defects engineering on photocatalysts such as oxygen vacancies (OVs) is an effective approach for improving photocatalytic hydrogen (H2) evolution efficiency. In this study, OVs modified P/Ag/Ag2O/Ag3PO4/TiO2 (PAgT) composite was successfully fabricated via a photoreduction process by controlling the ratio of PAgT to ethanol (16, 12, 8, 6 and 4 g·L-1) under simulated solar light irradiation for the first time. Characterization methods confirmed the presence of OVs in the modified catalysts. Meanwhile, the OVs amount and their effects on the light absorption ability, charge transfer rate, conduction band and H2 evolution efficiency of the catalysts were also investigated. The results indicated that the optimal OVs amount endowed OVs-PAgT-12 with the strongest light absorption, the fastest electron transfer rate and suitable band gap for H2 evolution, leading to the highest H2 yield (863 μmol·h-1·g-1) under solar light irradiation. Moreover, OVs-PAgT-12 exhibited a superior stability during cyclic experiment, indicating its great potential for practical application. Furthermore, a sustainable H2 evolution process was proposed based on a combination of sustainable bio-ethanol resource, stable OVs-PAgT, abundant solar energy and recyclable methanol. This study would provide new insights into the design of defects modified composite photocatalyst for enhanced solar-to-hydrogen conversion.
Collapse
Affiliation(s)
- Xiang Sun
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8577, Japan
| | - Jie Ming
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8577, Japan
| | - Qiansu Ma
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8577, Japan
| | - Cheng Zhang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8577, Japan
| | - Yunxin Zhu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8577, Japan
| | - Guangqi An
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8577, Japan
| | - Guoping Chen
- Research Center of Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Yingnan Yang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8577, Japan.
| |
Collapse
|
12
|
Photon driven nitrogen fixation via Ni-incorporated ZrO2/Bi2O3: p-n heterojunction. Catal Today 2023. [DOI: 10.1016/j.cattod.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
13
|
Ji Y, Liu P, Fan T. Unifying the Nitrogen Reduction Activity of Anatase and Rutile TiO 2 Surfaces. Chemphyschem 2023; 24:e202200653. [PMID: 36195557 DOI: 10.1002/cphc.202200653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/04/2022] [Indexed: 01/20/2023]
Abstract
TiO2 is a model transition metal oxide that has been applied frequently in both photocatalytic and electrocatalytic nitrogen reduction reactions (NRR). However, the phase which is more NRR active still remains a puzzle. This work presents a theoretical study on the NRR activity of the (001), (100), (101), and (110) surfaces of both anatase and rutile TiO2 . We found that perfect surfaces are not active for NRR, while the oxygen vacancy can promote the reaction by providing excess electrons and low-coordinated Ti atoms that enhance the binding of the key intermediate (HNN*). The NRR activity of the eight facets can be unified into a single scaling line. The anatase TiO2 (101) and rutile TiO2 (101) surfaces were found to be the most and the second most active surfaces with a limiting potential of -0.91 V and -0.95 V respectively, suggesting that the TiO2 NRR activity is not very phase-sensitive. For photocatalytic NRR, the results suggest that the anatase TiO2 (101) surface is still the most active facet. We further found that the binding strength of key intermediates scale well with the formation energy of oxygen vacancy, which is determined by the oxygen coordination number and the degree of relaxation of the surface after the creation of oxygen vacancy. This work provides a comprehensive understanding of the activity of TiO2 surfaces. The results should be helpful for the design of more efficient TiO2 -based NRR catalysts.
Collapse
Affiliation(s)
- Yongfei Ji
- School of Chemistry and Chemical Engineering, Guangzhou University, 230 Waihuanxi Road, Guangzhou, 510006, Guangdong, P. R. China
| | - Paiyong Liu
- School of Chemistry and Chemical Engineering, Guangzhou University, 230 Waihuanxi Road, Guangzhou, 510006, Guangdong, P. R. China
| | - Ting Fan
- School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510641, Guangdong, P. R. China
| |
Collapse
|
14
|
Praus P. Photocatalytic Nitrogen Fixation using Graphitic Carbon Nitride: A Review. ChemistrySelect 2023. [DOI: 10.1002/slct.202204511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Petr Praus
- Department of Chemistry and Physico-Chemical Processes VSB-Technical University of Ostrava 17. listopadu 15 708 00 Ostrava-Poruba Czech Republic
- Institute of Environmental Technology CEET VSB-Technical University of Ostrava 17. listopadu 15 708 00 Ostrava-Poruba Czech Republic
| |
Collapse
|
15
|
Ullah S, Ferreira-Neto EP, Khan AA, Medeiros IPM, Wender H. Supported nanostructured photocatalysts: the role of support-photocatalyst interactions. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES : OFFICIAL JOURNAL OF THE EUROPEAN PHOTOCHEMISTRY ASSOCIATION AND THE EUROPEAN SOCIETY FOR PHOTOBIOLOGY 2023; 22:219-240. [PMID: 36178668 DOI: 10.1007/s43630-022-00299-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 09/05/2022] [Indexed: 01/12/2023]
Abstract
Heterogeneous photocatalysis employing semiconductor oxide photocatalysts is a sustainable and promising method for environmental remediation and clean energy generation. In this context, nanostructured photocatalysts, with at least one dimension in the 1‒100 nm size regime, have attracted ever-growing attention due to their unique and often enhanced size-dependent physicochemical properties. While their reduced size ensures enhanced photocatalytic performance, the same makes it difficult and time/energy-demanding to remove/recover such nanostructured photocatalysts from aqueous media. This fundamental limitation has paved the way towards developing supported nanophotocatalysts where the active photocatalytic nanostructures are coated on the surface of polymeric or inorganic support materials, often in a core@shell conformation. This arrangement solves the problem of photocatalysts' recovery for effective reuse or recycling and leads to improved and desired target properties due to specific photocatalyst-support interactions. While the enhanced physicochemical properties of supported photocatalysts have been widely studied in many target applications, the role of support-photocatalysts interactions in improving these properties remains unexplored. This review article provides an updated viewpoint on the photocatalyst-support interactions and the resulting unique physiochemical properties important for diverse photochemical applications and the design of practical devices. While exploring the properties of supported nanostructured metal oxide/sulfides photocatalysts such as TiO2 and MoS2, we also briefly discuss the common strategies employed to coat the active nanomaterials on the surface of different supports (organic/polymeric, inorganic, active, inert, and magnetic).
Collapse
Affiliation(s)
- Sajjad Ullah
- Institute of Chemical Sciences, University of Peshawar, PO Box 25120, Peshawar, Pakistan.
| | - Elias P Ferreira-Neto
- Department of Chemistry, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Abrar A Khan
- Institute of Chemical Sciences, University of Peshawar, PO Box 25120, Peshawar, Pakistan
| | - Isaac P M Medeiros
- Nano & Photon Research Group, Laboratory of Nanomaterials and Applied Nanotechnology (LNNA), Institute of Physics, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, 79070-900, Brazil
| | - Heberton Wender
- Nano & Photon Research Group, Laboratory of Nanomaterials and Applied Nanotechnology (LNNA), Institute of Physics, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, 79070-900, Brazil.
| |
Collapse
|
16
|
Enhanced photocatalytic nitrogen fixation on oxygen doped high specific surface area g-C3N4 under simulated sunlight. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Murali G, Reddy Modigunta JK, Park YH, Lee JH, Rawal J, Lee SY, In I, Park SJ. A Review on MXene Synthesis, Stability, and Photocatalytic Applications. ACS NANO 2022; 16:13370-13429. [PMID: 36094932 DOI: 10.1021/acsnano.2c04750] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Photocatalytic water splitting, CO2 reduction, and pollutant degradation have emerged as promising strategies to remedy the existing environmental and energy crises. However, grafting of expensive and less abundant noble-metal cocatalysts on photocatalyst materials is a mandatory practice to achieve enhanced photocatalytic performance owing to the ability of the cocatalysts to extract electrons efficiently from the photocatalyst and enable rapid/enhanced catalytic reaction. Hence, developing highly efficient, inexpensive, and noble-metal-free cocatalysts composed of earth-abundant elements is considered as a noteworthy step toward considering photocatalysis as a more economical strategy. Recently, MXenes (two-dimensional (2D) transition-metal carbides, nitrides, and carbonitrides) have shown huge potential as alternatives for noble-metal cocatalysts. MXenes have several excellent properties, including atomically thin 2D morphology, metallic electrical conductivity, hydrophilic surface, and high specific surface area. In addition, they exhibit Gibbs free energy of intermediate H atom adsorption as close to zero and less than that of a commercial Pt-based cocatalyst, a Fermi level position above the H2 generation potential, and an excellent ability to capture and activate CO2 molecules. Therefore, there is a growing interest in MXene-based photocatalyst materials for various photocatalytic events. In this review, we focus on the recent advances in the synthesis of MXenes with 2D and 0D morphologies, the stability of MXenes, and MXene-based photocatalysts for H2 evolution, CO2 reduction, and pollutant degradation. The existing challenges and the possible future directions to enhance the photocatalytic performance of MXene-based photocatalysts are also discussed.
Collapse
Affiliation(s)
- G Murali
- Department of Polymer Science and Engineering, Department of IT-Energy Convergence (BK21 FOUR), Chemical Industry Institute, Korea National University of Transportation, Chungju 27469, Republic of Korea
| | - Jeevan Kumar Reddy Modigunta
- Department of Polymer Science and Engineering, Department of IT-Energy Convergence (BK21 FOUR), Chemical Industry Institute, Korea National University of Transportation, Chungju 27469, Republic of Korea
| | - Young Ho Park
- Department of Polymer Science and Engineering, Department of IT-Energy Convergence (BK21 FOUR), Chemical Industry Institute, Korea National University of Transportation, Chungju 27469, Republic of Korea
| | - Jong-Hoon Lee
- Department of Chemistry, Inha University, Incheon 22212, Republic of Korea
| | - Jishu Rawal
- Department of Chemistry, Inha University, Incheon 22212, Republic of Korea
| | - Seul-Yi Lee
- Department of Chemistry, Inha University, Incheon 22212, Republic of Korea
| | - Insik In
- Department of Polymer Science and Engineering, Department of IT-Energy Convergence (BK21 FOUR), Chemical Industry Institute, Korea National University of Transportation, Chungju 27469, Republic of Korea
| | - Soo-Jin Park
- Department of Chemistry, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
18
|
Wang H, Tian YM, König B. Energy- and atom-efficient chemical synthesis with endergonic photocatalysis. Nat Rev Chem 2022; 6:745-755. [PMID: 37117495 DOI: 10.1038/s41570-022-00421-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2022] [Indexed: 11/09/2022]
Abstract
Endergonic photocatalysis is the use of light to perform catalytic reactions that are thermodynamically unfavourable. While photocatalysis has become a powerful tool in facilitating chemical transformations, the light-energy efficiency of these processes has not gathered much attention. Exergonic photocatalysis does not take full advantage of the light energy input, producing low-energy products and heat, whereas endergonic photocatalysis incorporates a portion of the photon energy into the reaction, yielding products that are higher in free energy than the reactants. Such processes can enable catalytic, atom-economic syntheses of reactive compounds from bench-stable materials. With respect to environmental friendliness and carbon neutrality, endergonic photocatalysis is also of interest to large-scale industrial manufacturing, where better energy efficiency, less waste and value addition are highly sought. We therefore assess here the thermochemistry of several classes of reported photocatalytic transformations to showcase current advances in endergonic photocatalysis and point to their industrial potential.
Collapse
|
19
|
Sreedhar A, Ta QTH, Noh JS. Advancements in the photocatalytic activity of various bismuth-based semiconductor/Ti3C2 MXene interfaces for sustainable environmental management: A review. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
20
|
Shiraishi Y, Kishimoto T, Tanaka S, Hirai T. Photocatalytic Dinitrogen Fixation with Water on High-Phosphorus-Doped Carbon Nitride with Surface Nitrogen Vacancies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:7137-7145. [PMID: 35522588 DOI: 10.1021/acs.langmuir.2c00336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Sunlight-driven photocatalytic dinitrogen (N2) fixation with water at ambient conditions is of vital importance for a sustainable energy society. The efficiency of this reaction, however, is still low because of the difficulty in promoting both water oxidation and N2 reduction reactions. Herein, we report that a high-phosphorus-doped carbon nitride with surface nitrogen vacancies (PCN(V)) synthesized by thermal condensation under a hydrogen (H2) atmosphere using phosphorus oxide (P2O5) as a phosphorus source efficiently promotes N2 fixation. The large numbers of the doped P atoms on the PCN(V)-P2O5 catalysts enhance the oxidation of water, while the N vacancies reduce N2, facilitating efficient ammonia (NH3) generation with an apparent quantum yield at 420 nm of 3.4%. Simulated sunlight illumination of the catalyst in water under N2 bubbling produces NH3 with a solar-to-chemical conversion efficiency of 0.16%, which is the highest efficiency among the previously reported powder photocatalysts.
Collapse
Affiliation(s)
- Yasuhiro Shiraishi
- Research Center for Solar Energy Chemistry and Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita 565-0871, Japan
| | - Takuya Kishimoto
- Research Center for Solar Energy Chemistry and Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan
| | - Shunsuke Tanaka
- Department of Chemical, Energy and Environmental Engineering, Kansai University, Suita 564-8680, Japan
| | - Takayuki Hirai
- Research Center for Solar Energy Chemistry and Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita 565-0871, Japan
| |
Collapse
|
21
|
Wang W, Yue J, Chu Y, Ma Z, He X, Zhao H, Duan J. Co-doped amorphous MoSx supported on CuO/CM (Cu mesh) with enhanced photocatalytic activity for ammonia synthesis. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Su S, Li X, Zhang X, Zhu J, Liu G, Tan M, Wang Y, Luo M. Keggin-type SiW 12 encapsulated in MIL-101(Cr) as efficient heterogeneous photocatalysts for nitrogen fixation reaction. J Colloid Interface Sci 2022; 621:406-415. [PMID: 35472667 DOI: 10.1016/j.jcis.2022.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 10/18/2022]
Abstract
The incorporation of polyoxometalates (POMs) in metal-organic frameworks (MOFs) with host-guest structure have proven to be effective strategy to rational design of heterogeneous catalysis. In this study, the Keggin-type POM@MIL-101(Cr) composite catalysts (PMo12, PW12 and SiW12) are synthesized for nitrogen fixation reaction without sacrificial agents at room temperature in the first time. The SiW12 molecules are encapsulated in smaller cavities of MIL-101(Cr) by solvothermal method and in larger cavities by impregnation method, respectively. Solvothermal synthesized catalyst has a performance of 75.56 μmol·h-1·g-1cat and TOF value of 1.95 h-1, which are about 10 and 88 times than that of Na4SiW12O40. The excellent performance is ascribed to the synergistic effect of SiW12 and MIL-101(Cr). The MIL-101(Cr) adsorbs a large amount of N2 and generates sufficiently photogenerated electrons under sunlight irradiation, and electrons quickly transfer to the SiW12 through hydrogen bonds. Moreover, the agglomeration effect of the homogeneous catalyst SiW12 is weakened due to encapsulation with more exposed active sites. This work provides a feasible route to design and synthesize nanocomposite materials with exceptional performance for photocatalytic nitrogen fixation.
Collapse
Affiliation(s)
- Senda Su
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, PR China
| | - Xiaoman Li
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, PR China.
| | - Xu Zhang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, PR China
| | - Jingting Zhu
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, PR China
| | - Guodong Liu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, PR China
| | - Mengyao Tan
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, PR China
| | - Yingying Wang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, PR China
| | - Min Luo
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, PR China.
| |
Collapse
|
23
|
Irshad M, Ain QT, Zaman M, Aslam MZ, Kousar N, Asim M, Rafique M, Siraj K, Tabish AN, Usman M, Hassan Farooq MU, Assiri MA, Imran M. Photocatalysis and perovskite oxide-based materials: a remedy for a clean and sustainable future. RSC Adv 2022; 12:7009-7039. [PMID: 35424711 PMCID: PMC8982362 DOI: 10.1039/d1ra08185c] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/21/2022] [Indexed: 01/08/2023] Open
Abstract
The massive use of non-renewable energy resources by humankind to fulfill their energy demands is causing severe environmental issues. Photocatalysis is considered one of the potential solutions for a clean and sustainable future because of its cleanliness, inexhaustibility, efficiency, and cost-effectiveness. Significant efforts have been made to design highly proficient photocatalyst materials for various applications such as water pollutant degradation, water splitting, CO2 reduction, and nitrogen fixation. Perovskite photocatalyst materials are gained special attention due to their exceptional properties because of their flexibility in chemical composition, structure, bandgap, oxidation states, and valence states. The current review is focused on perovskite materials and their applications in photocatalysis. Special attention has been given to the structural, stoichiometric, and compositional flexibility of perovskite photocatalyst materials. The photocatalytic activity of perovskite materials in different photocatalysis applications is also discussed. Various mechanisms involved in photocatalysis application from wastewater treatment to hydrogen production are also provided. The key objective of this review is to encapsulate the role of perovskite materials in photocatalysis along with their fundamental properties to provide valuable insight for addressing future environmental challenges.
Collapse
Affiliation(s)
- Muneeb Irshad
- Department of Physics, University of Engineering and Technology Lahore 54890 Pakistan
| | - Quar Tul Ain
- Department of Physics, University of Engineering and Technology Lahore 54890 Pakistan
| | - Muhammad Zaman
- Department of Physics, University of Engineering and Technology Lahore 54890 Pakistan
| | | | - Naila Kousar
- Department of Physics, University of Engineering and Technology Lahore 54890 Pakistan
| | - Muhammad Asim
- Department of Physics, University of Engineering and Technology Lahore 54890 Pakistan
| | | | - Khurram Siraj
- Department of Physics, University of Engineering and Technology Lahore 54890 Pakistan
| | - Asif Nadeem Tabish
- Department of Chemical Engineering, University of Engineering and Technology, New Campus Lahore Pakistan
| | - Muhammad Usman
- Department of Mechanical Engineering, University of Engineering and Technology Lahore 54890 Pakistan
| | - Masood Ul Hassan Farooq
- Department of Basic Sciences, University of Engineering and Technology, New Campus Lahore Pakistan
| | - Mohammed Ali Assiri
- Department of Chemistry, Faculty of Science, Research Center for Advanced Materials Science (RCAMS), King Khalid University P. O. Box 9004 Abha 61413 Saudia Arabia
| | - Muhammad Imran
- Department of Chemistry, Faculty of Science, Research Center for Advanced Materials Science (RCAMS), King Khalid University P. O. Box 9004 Abha 61413 Saudia Arabia
| |
Collapse
|