1
|
Kumar D, Sauer J, Airi A, Bordiga S, Galimberti DR. Assignment of IR spectra of ethanol at Brønsted sites of H-ZSM-5 to monomer adsorption using a Fermi resonance model. Phys Chem Chem Phys 2024; 27:550-563. [PMID: 39655396 DOI: 10.1039/d4cp03861d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Understanding how alcohol molecules interact with the Brønsted acid sites (BAS) of zeolites is a prerequisite to the design of zeolite catalysts and catalytic processes. Here, we report IR spectra for the adsorption of ethanol on a highly crystalline sample of H-ZSM-5 zeolites exposed to ethanol gas at increasing pressure. We use density functional theory in combination with a FERMI resonance model to assign the measured spectra to a single adsorbed ethanol molecule per BAS. Specifically, we assign the bands at 2450 cm-1 and 1670 cm-1 to a FERMI resonance between the fundamental (Z)O-H stretching band of a single-ethanol-loaded BAS and the first overtone of the (Z)O-H out-of-plane bending. We conclude that adsorbed dimers do not contribute in a noticeable way up to a concentration of almost one ethanol molecule per BAS site. We further show that hybrid functionals (B3LYP) are required to get a close match between the predicted and experimental spectra, whereas commonly used generalized gradient type functionals such as PBE incorrectly describe the potential energy surface. They overestimate the redshift of the OH stretching band on hydrogen bond formation which results in an erroneous assignment of the IR bands.
Collapse
Affiliation(s)
- Dipanshu Kumar
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Joachim Sauer
- Institut für Chemie, Humboldt-Universität, Unter den Linden 6, 10117 Berlin, Germany
| | - Alessia Airi
- INRiM Istituto Nazionale di Ricerca Metrologica, Strada delle cacce 91, I-10135 Turin, Italy.
- Chemistry Department, University of Turin, via Gioacchino Quarello 15/A, I-10135 Turin, Italy
| | - Silvia Bordiga
- Chemistry Department, University of Turin, via Gioacchino Quarello 15/A, I-10135 Turin, Italy
| | - Daria Ruth Galimberti
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| |
Collapse
|
2
|
Ye J, Tang X, Cheng L, Zhang S, Zhan W, Guo Y, Wang L, Cao XM, Wang KW, Dai S, Guo Y. Solvent-Free Synthesis Enables Encapsulation of Subnanometric FeO x Clusters in Pure Siliceous Zeolites for Efficient Catalytic Oxidation Reactions. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38693896 DOI: 10.1021/acsami.4c03083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Metal/metal oxide clusters possess a higher count of unsaturated coordination sites than nanoparticles, providing multiatomic sites that single atoms do not. Encapsulating metal/metal oxide clusters within zeolites is a promising approach for synthesizing and stabilizing these clusters. The unique feature endows the metal clusters with an exceptional catalytic performance in a broad range of catalytic reactions. However, the encapsulation of stable FeOx clusters in zeolite is still challenging, which limits the application of zeolite-encapsulated FeOx clusters in catalysis. Herein, we design a modified solvent-free method to encapsulate FeOx clusters in pure siliceous MFI zeolites (Fe@MFI). It is revealed that the 0.3-0.4 nm subnanometric FeOx clusters are stably encapsulated in the 5/6-membered rings intersectional voids of the pure siliceous MFI zeolites. The encapsulated Fe@MFI catalyst with a Fe loading of 1.4 wt % demonstrates remarkable catalytic activity and recycle stability in the direct oxidation of methane, while also promoting the direct oxidation of cyclohexane, surpassing the performance of conventional zeolite-supported Fe catalysts.
Collapse
Affiliation(s)
- Jiajie Ye
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xuan Tang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Lu Cheng
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Shoujie Zhang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Wangcheng Zhan
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yanglong Guo
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Li Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xiao-Ming Cao
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Kuan-Wen Wang
- Institute of Materials Science and Engineering, National Central University, Taoyuan 320, Taiwan
| | - Sheng Dai
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yun Guo
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
3
|
Chen Y, Ma X, Hack JH, Zhang S, Peng A, Dombrowski JP, Voth GA, Tokmakoff A, Kung MC, Kung HH. Molecular Tuning of Reactivity of Zeolite Protons in HZSM-5. J Am Chem Soc 2024; 146:10342-10356. [PMID: 38574341 DOI: 10.1021/jacs.3c12680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
In acidic HZSM-5 zeolite, the reactivity of a methanol molecule interacting with the zeolite proton is amenable to modification via coadsorbing a stochiometric amount of an electron density donor E to form the [(E)(CH3OH)(HZ)] complex. The rate of the methanol in this complex undergoing dehydration to dimethyl ether was determined for a series of E with proton affinity (PA) ranging from 659 kJ mol-1 for C6F6 to 825 kJ mol-1 for C4H8O and was found to follow the expression: Ln(Rate) - Ln(RateN2) = β(PA - PAN2)γ, where E = N2 is the reference and β and γ are constants. This trend is probably due to the increased stability of the solvated proton in the [(E)(CH3OH)(HZ)] complex with increasing PA. Importantly, this is also observed in steady-state flow reactions when stoichiometric quantities of E are preadsorbed on the zeolite. As demonstrated with E being D2O, the effect on methanol reactivity diminishes when E is present in excess of the [(E)(CH3OH)(HZ)] complex. It is proposed that the methanol dehydration reaction involves [(E)(CH3OH)(CH3OH)(HZ)] as the transition state, which is supported by the isotopologue distribution of the initial dimethyl ether formed when a flow of CH3OH was passed over ZSM-5 containing one CD3OH per zeolite proton. The implication of this on the mechanism of catalytic methanol dehydration on HZSM-5 is discussed.
Collapse
Affiliation(s)
- Yaxin Chen
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208-3120, United States
| | - Xinyou Ma
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
- Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - John H Hack
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Shuhao Zhang
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208-3120, United States
| | - Anyang Peng
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208-3120, United States
| | - James P Dombrowski
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208-3120, United States
| | - Gregory A Voth
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
- Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Andrei Tokmakoff
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States
| | - Mayfair C Kung
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208-3120, United States
| | - Harold H Kung
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208-3120, United States
| |
Collapse
|
4
|
Hoffman AJ, Temmerman W, Campbell E, Damin AA, Lezcano-Gonzalez I, Beale AM, Bordiga S, Hofkens J, Van Speybroeck V. A Critical Assessment on Calculating Vibrational Spectra in Nanostructured Materials. J Chem Theory Comput 2024; 20:513-531. [PMID: 38157404 PMCID: PMC10809426 DOI: 10.1021/acs.jctc.3c00942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024]
Abstract
Vibrational spectroscopy is an omnipresent spectroscopic technique to characterize functional nanostructured materials such as zeolites, metal-organic frameworks (MOFs), and metal-halide perovskites (MHPs). The resulting experimental spectra are usually complex, with both low-frequency framework modes and high-frequency functional group vibrations. Therefore, theoretically calculated spectra are often an essential element to elucidate the vibrational fingerprint. In principle, there are two possible approaches to calculate vibrational spectra: (i) a static approach that approximates the potential energy surface (PES) as a set of independent harmonic oscillators and (ii) a dynamic approach that explicitly samples the PES around equilibrium by integrating Newton's equations of motions. The dynamic approach considers anharmonic and temperature effects and provides a more genuine representation of materials at true operating conditions; however, such simulations come at a substantially increased computational cost. This is certainly true when forces and energy evaluations are performed at the quantum mechanical level. Molecular dynamics (MD) techniques have become more established within the field of computational chemistry. Yet, for the prediction of infrared (IR) and Raman spectra of nanostructured materials, their usage has been less explored and remain restricted to some isolated successes. Therefore, it is currently not a priori clear which methodology should be used to accurately predict vibrational spectra for a given system. A comprehensive comparative study between various theoretical methods and experimental spectra for a broad set of nanostructured materials is so far lacking. To fill this gap, we herein present a concise overview on which methodology is suited to accurately predict vibrational spectra for a broad range of nanostructured materials and formulate a series of theoretical guidelines to this purpose. To this end, four different case studies are considered, each treating a particular material aspect, namely breathing in flexible MOFs, characterization of defects in the rigid MOF UiO-66, anharmonic vibrations in the metal-halide perovskite CsPbBr3, and guest adsorption on the pores of the zeolite H-SSZ-13. For all four materials, in their guest- and defect-free state and at sufficiently low temperatures, both the static and dynamic approach yield qualitatively similar spectra in agreement with experimental results. When the temperature is increased, the harmonic approximation starts to fail for CsPbBr3 due to the presence of anharmonic phonon modes. Also, the spectroscopic fingerprints of defects and guest species are insufficiently well predicted by a simple harmonic model. Both phenomena flatten the potential energy surface (PES), which facilitates the transitions between metastable states, necessitating dynamic sampling. On the basis of the four case studies treated in this Review, we can propose the following theoretical guidelines to simulate accurate vibrational spectra of functional solid-state materials: (i) For nanostructured crystalline framework materials at low temperature, insights into the lattice dynamics can be obtained using a static approach relying on a few points on the PES and an independent set of harmonic oscillators. (ii) When the material is evaluated at higher temperatures or when additional complexity enters the system, e.g., strong anharmonicity, defects, or guest species, the harmonic regime breaks down and dynamic sampling is required for a correct prediction of the phonon spectrum. These guidelines and their illustrations for prototype material classes can help experimental and theoretical researchers to enhance the knowledge obtained from a lattice dynamics study.
Collapse
Affiliation(s)
| | - Wim Temmerman
- Center
for Molecular Modeling, Ghent University, 9000 Ghent, Belgium
| | - Emma Campbell
- Cardiff
Catalysis Institute, Cardiff University, Cardiff CF10 3AT, United Kingdom
- Research
Complex at Harwell, Didcot OX11 0FA, United
Kingdom
| | | | - Ines Lezcano-Gonzalez
- Research
Complex at Harwell, Didcot OX11 0FA, United
Kingdom
- Department
of Chemistry, University College London, London WC1E 6BT, United Kingdom
| | - Andrew M. Beale
- Research
Complex at Harwell, Didcot OX11 0FA, United
Kingdom
- Department
of Chemistry, University College London, London WC1E 6BT, United Kingdom
| | - Silvia Bordiga
- Department
of Chemistry, University of Turin, 10124 Turin, Italy
| | - Johan Hofkens
- Department
of Chemistry, KU Leuven, 3000 Leuven, Belgium
- Max Planck
Institute for Polymer Research, 55128 Mainz, Germany
| | | |
Collapse
|
5
|
Iaia EP, Soyemi A, Szilvási T, Harris JW. Zeolite encapsulated organometallic complexes as model catalysts. Dalton Trans 2023; 52:16103-16112. [PMID: 37812079 DOI: 10.1039/d3dt02126b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Heterogeneities in the structure of active centers in metal-containing porous materials are unavoidable and complicate the description of chemical events occurring along reaction coordinates at the atomic level. Metal containing zeolites include sites of varied local coordination and secondary confining environments, requiring careful titration protocols to quantify the predominant active sites. Hybrid organometallic-zeolite catalysts are useful well-defined platform materials for spectroscopic, kinetic, and computational studies of heterogeneous catalysis that avoid the complications of conventional metal-containing porous materials. Such materials have been synthesized and studied previously, but catalytic applications were mostly limited to liquid-phase oxidation and electrochemical reactions. The hydrothermal stability, time-on-stream stability, and utility of these materials in gas-phase oxidation reactions are under-studied. The potential applications for single-site heterogeneous catalysts in fundamental research are abundant and motivate future synthetic, spectroscopic, kinetic, and computational studies.
Collapse
Affiliation(s)
- Ethan P Iaia
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, 35487, USA.
| | - Ademola Soyemi
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, 35487, USA.
| | - Tibor Szilvási
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, 35487, USA.
| | - James W Harris
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, 35487, USA.
| |
Collapse
|
6
|
Matam SK, Silverwood IP, Boudjema L, O'Malley AJ, Catlow CRA. Methanol diffusion and dynamics in zeolite H-ZSM-5 probed by quasi-elastic neutron scattering and classical molecular dynamics simulations. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2023; 381:20220335. [PMID: 37691467 PMCID: PMC10493552 DOI: 10.1098/rsta.2022.0335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/31/2023] [Indexed: 09/12/2023]
Abstract
Zeolite ZSM-5 is a key catalyst in commercially relevant processes including the widely studied methanol to hydrocarbon reaction, and molecular diffusion in zeolite pores is known to be a crucial factor in controlling catalytic reactions. Here, we present critical analyses of recent quasi-elastic neutron scattering (QENS) data and complementary molecular dynamics (MD) simulations. The QENS experiments show that the nature of methanol diffusion dynamics in ZSM-5 pores is dependent both on the Si/Al ratio (11, 25, 36, 40 and 140), which determines the Brønsted acid site density of the zeolite, and that the nature of the type of motion observed may vary qualitatively over a relatively small temperature range. At 373 K, on increasing the ratio from 11 to 140, the observed mobile methanol fraction increases and the nature of methanol dynamics changes from rotational (in ZSM-5 with Si/Al of 11) to translational diffusion. The latter is either confined localized diffusion within a pore in zeolites with ratios up to 40 or non-localized, longer-range diffusion in zeolite samples with the ratio of 140. The complementary MD simulations conducted over long time scales (1 ns), which are longer than those measured in the present study by QENS (≈1-440 ps), at 373 K predict the occurrence of long-range translational diffusion of methanol in ZSM-5, independent of the Si/Al ratios (15, 47, 95, 191 and siliceous MFI). The rate of diffusion increases slightly by increasing the ratio from 15 to 95 and thereafter does not depend on zeolite composition. Discrepancies in the observed mobile methanol fraction between the MD simulations (100% methanol mobility in ZSM-5 pores across all Si/Al ratios) and QENS experiments (for example, ≈80% immobile methanol in ZSM-5 with Si/Al of 11) are attributed to the differences in time resolutions of the techniques. This perspective provides comprehensive information on the effect of acid site density on methanol dynamics in ZSM-5 pores and highlights the complementarity of QENS and MD, and their advantages and limitations. This article is part of the theme issue 'Exploring the length scales, timescales and chemistry of challenging materials (Part 2)'.
Collapse
Affiliation(s)
- Santhosh K. Matam
- UK Catalysis Hub, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot OX11 0FA, UK
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | - Ian P. Silverwood
- UK Catalysis Hub, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot OX11 0FA, UK
- ISIS Pulsed Neutron and Muon Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot OX11 0QX, UK
| | - Lotfi Boudjema
- UK Catalysis Hub, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot OX11 0FA, UK
- Department of Chemistry, University College London, 20 Gordon Street, London WC1E 6BT, UK
- ICGM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Alexander J. O'Malley
- UK Catalysis Hub, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot OX11 0FA, UK
- Institute for Sustainability, Department of Chemistry, University of Bath, Bath BA2 7AY, UK
| | - C. Richard A. Catlow
- UK Catalysis Hub, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot OX11 0FA, UK
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
- Department of Chemistry, University College London, 20 Gordon Street, London WC1E 6BT, UK
| |
Collapse
|
7
|
Lu Y, Sen K, Yong C, Gunn DSD, Purton JA, Guan J, Desmoutier A, Abdul Nasir J, Zhang X, Zhu L, Hou Q, Jackson-Masters J, Watts S, Hanson R, Thomas HN, Jayawardena O, Logsdail AJ, Woodley SM, Senn HM, Sherwood P, Catlow CRA, Sokol AA, Keal TW. Multiscale QM/MM modelling of catalytic systems with ChemShell. Phys Chem Chem Phys 2023; 25:21816-21835. [PMID: 37097706 DOI: 10.1039/d3cp00648d] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Hybrid quantum mechanical/molecular mechanical (QM/MM) methods are a powerful computational tool for the investigation of all forms of catalysis, as they allow for an accurate description of reactions occurring at catalytic sites in the context of a complicated electrostatic environment. The scriptable computational chemistry environment ChemShell is a leading software package for QM/MM calculations, providing a flexible, high performance framework for modelling both biomolecular and materials catalysis. We present an overview of recent applications of ChemShell to problems in catalysis and review new functionality introduced into the redeveloped Python-based version of ChemShell to support catalytic modelling. These include a fully guided workflow for biomolecular QM/MM modelling, starting from an experimental structure, a periodic QM/MM embedding scheme to support modelling of metallic materials, and a comprehensive set of tutorials for biomolecular and materials modelling.
Collapse
Affiliation(s)
- You Lu
- STFC Scientific Computing, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington, WA4 4AD, UK.
| | - Kakali Sen
- STFC Scientific Computing, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington, WA4 4AD, UK.
| | - Chin Yong
- STFC Scientific Computing, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington, WA4 4AD, UK.
| | - David S D Gunn
- STFC Scientific Computing, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington, WA4 4AD, UK.
| | - John A Purton
- STFC Scientific Computing, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington, WA4 4AD, UK.
| | - Jingcheng Guan
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Alec Desmoutier
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Jamal Abdul Nasir
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Xingfan Zhang
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Lei Zhu
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Qing Hou
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Joe Jackson-Masters
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | - Sam Watts
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | - Rowan Hanson
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | - Harry N Thomas
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | - Omal Jayawardena
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | - Andrew J Logsdail
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | - Scott M Woodley
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Hans M Senn
- School of Chemistry, University of Glasgow, Joseph Black Building, Glasgow G12 8QQ, UK
| | - Paul Sherwood
- Department of Chemistry, Lancaster University, Lancaster, LA1 4YB, UK
| | - C Richard A Catlow
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | - Alexey A Sokol
- Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Thomas W Keal
- STFC Scientific Computing, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington, WA4 4AD, UK.
| |
Collapse
|
8
|
Hu M, Wang C, Chu Y, Wang Q, Li S, Xu J, Deng F. Unravelling the Reactivity of Framework Lewis Acid Sites towards Methanol Activation on H‐ZSM‐5 Zeolite with Solid‐State NMR Spectroscopy. Angew Chem Int Ed Engl 2022; 61:e202207400. [DOI: 10.1002/anie.202207400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Min Hu
- National Center for Magnetic Resonance in Wuhan State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Chao Wang
- National Center for Magnetic Resonance in Wuhan State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yueying Chu
- National Center for Magnetic Resonance in Wuhan State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Qiang Wang
- National Center for Magnetic Resonance in Wuhan State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Shenhui Li
- National Center for Magnetic Resonance in Wuhan State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jun Xu
- National Center for Magnetic Resonance in Wuhan State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Feng Deng
- National Center for Magnetic Resonance in Wuhan State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics Wuhan Institute of Physics and Mathematics Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
9
|
Hu M, Wang C, Chu Y, Wang Q, Li S, Xu J, Deng F. Unravelling the Reactivity of Framework Lewis Acid Sites towards Methanol Activation on H‐ZSM‐5 Zeolite with Solid‐State NMR Spectroscopy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Min Hu
- Innovation Academy for Precision Measurement Science and Technology CAS: Chinese Academy of Sciences Innovation Academy for Precision Measurement Science and Technology State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics CHINA
| | - Chao Wang
- Innovation Academy for Precision Measurement Science and Technology CAS: Chinese Academy of Sciences Innovation Academy for Precision Measurement Science and Technology State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics CHINA
| | - Yueying Chu
- Innovation Academy for Precision Measurement Science and Technology CAS: Chinese Academy of Sciences Innovation Academy for Precision Measurement Science and Technology State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics CHINA
| | - Qiang Wang
- Innovation Academy for Precision Measurement Science and Technology CAS: Chinese Academy of Sciences Innovation Academy for Precision Measurement Science and Technology State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics CHINA
| | - Shenhui Li
- Innovation Academy for Precision Measurement Science and Technology CAS: Chinese Academy of Sciences Innovation Academy for Precision Measurement Science and Technology State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics CHINA
| | - Jun Xu
- wuhan institute of physics and mathematics state key laboratory of magnetic resonance and atomic and molecular physics West No.30 Xiao Hong Shan 430071 Wuhan CHINA
| | - Feng Deng
- Innovation Academy for Precision Measurement Science and Technology CAS: Chinese Academy of Sciences Innovation Academy for Precision Measurement Science and Technology State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics CHINA
| |
Collapse
|
10
|
Aljama HA, Head-Gordon M, Bell AT. Assessing the stability of Pd-exchanged sites in zeolites with the aid of a high throughput quantum chemistry workflow. Nat Commun 2022; 13:2910. [PMID: 35614062 PMCID: PMC9133006 DOI: 10.1038/s41467-022-29505-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 02/22/2022] [Indexed: 01/03/2023] Open
Abstract
Cation exchanged-zeolites are functional materials with a wide range of applications from catalysis to sorbents. They present a challenge for computational studies using density functional theory due to the numerous possible active sites. From Al configuration, to placement of extra framework cation(s), to potentially different oxidation states of the cation, accounting for all these possibilities is not trivial. To make the number of calculations more tractable, most studies focus on a few active sites. We attempt to go beyond these limitations by implementing a workflow for a high throughput screening, designed to systematize the problem and exhaustively search for feasible active sites. We use Pd-exchanged CHA and BEA to illustrate the approach. After conducting thousands of explicit DFT calculations, we identify the sites most favorable for the Pd cation and discuss the results in detail. The high throughput screening identifies many energetically favorable sites that are non-trivial. Lastly, we employ these results to examine NO adsorption in Pd-exchanged CHA, which is a promising passive NOx adsorbent (PNA) during the cold start of automobiles. The results shed light on critical active sites for NOx capture that were not previously studied.
Collapse
Affiliation(s)
- Hassan A Aljama
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
| | - Martin Head-Gordon
- Department of Chemistry, University of California, Berkeley, CA, USA.
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Alexis T Bell
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA.
| |
Collapse
|
11
|
Omojola T, Logsdail AJ, van Veen AC, Nastase SAF. A quantitative multiscale perspective on primary olefin formation from methanol. Phys Chem Chem Phys 2021; 23:21437-21469. [PMID: 34569573 DOI: 10.1039/d1cp02551a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The formation of the first C-C bond and primary olefins from methanol over zeolite and zeotype catalysts has been studied for over 40 years. Over 20 mechanisms have been proposed for the formation of the first C-C bond. In this quantitative multiscale perspective, we decouple the adsorption, desorption, mobility, and surface reactions of early species through a combination of vacuum and sub-vacuum studies using temporal analysis of products (TAP) reactor systems, and through studies with atmospheric fixed bed reactors. These results are supplemented with density functional theory calculations and data-driven physical models, using partial differential equations, that describe the temporal and spatial evolution of species. We consider the effects of steam, early degradation species, and product masking due to the inherent autocatalytic nature of the process, which all complicate the observation of the primary olefin(s). Although quantitative spectroscopic determination of the lifetimes, surface mobility, and reactivity of adspecies is still lacking in the literature, we observe that reaction barriers are competitive with adsorption enthalpies and/or activation energies of desorption, while facile diffusion occurs in the porous structures of the zeolite/zeotype catalysts. Understanding the various processes allows for quantitative evaluation of their competing energetics, which leads to molecular insights as to what governs the catalytic activity during the conversion of methanol to primary olefins over zeolite/zeotype catalysts.
Collapse
Affiliation(s)
- Toyin Omojola
- Department of Chemical Engineering, Claverton Down, University of Bath, Bath BA2 7AY, UK. .,School of Engineering, Library Road, University of Warwick, Coventry CV4 7AL, UK
| | - Andrew J Logsdail
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK.
| | - André C van Veen
- School of Engineering, Library Road, University of Warwick, Coventry CV4 7AL, UK
| | - Stefan Adrian F Nastase
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK.
| |
Collapse
|
12
|
How Many Molecules Can Fit in a Zeolite Pore? Implications for the Hydrocarbon Pool Mechanism of the Methanol-to-Hydrocarbons Process. Catalysts 2021. [DOI: 10.3390/catal11101204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The methanol-to-hydrocarbons (MTH) process is a very advantageous way to upgrade methanol to more valuable commodity chemicals such as light alkenes and gasoline. There is general agreement that, at steady state, the process operates via a dual cycle “hydrocarbon pool” mechanism. This mechanism defines a minimum number of reactants, intermediates, and products that must be present for the reaction to occur. In this paper, we calculate (by three independent methods) the volume required for a range of compounds that must be present in a working catalyst. These are compared to the available volume in a range of zeolites that have been used, or tested, for MTH. We show that this straightforward comparison provides a means to rationalize the product slate and the deactivation pathways in zeotype materials used for the MTH reaction.
Collapse
|
13
|
Nastase SAF, Logsdail AJ, Catlow CRA. QM/MM study of the reactivity of zeolite bound methoxy and carbene groups. Phys Chem Chem Phys 2021; 23:17634-17644. [PMID: 34369957 DOI: 10.1039/d1cp02535j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The conversion of methanol-to-hydrocarbons (MTH) is known to occur via an autocatalytic process in zeolites, where framework-bound methoxy species play a pivotal role, especially during catalyst induction. Recent NMR and FT-IR experimental studies suggest that methoxylated zeolites are able to produce hydrocarbons by a mechanism involving carbene migration and association. In order to understand these observations, we have performed QM/MM computational investigations on a range of reaction mechanisms for the reaction of zeolite bound methoxy and carbene groups, which are proposed to initiate hydrocarbon formation in the MTH process. Our simulations demonstrate that it is kinetically unfavourable for methyl species to form on the framework away from the zeolite acid site, and both kinetically and thermodynamically unfavourable for methyl groups to migrate through the framework and aggregate around an acid site. Formation of carbene moieties was considered as an alternative pathway to the formation of C-C bonds; however, the reaction energy for conversion of a methyl to a carbene is unfavourable. Metadynamics simulations help confirm further that methyl species at the framework acid sites would be more reactive towards formed C2+ species, rather than inter-framework migration, and that the role of carbenes in the formation of the first C-C bond will be via a concerted type of mechanism rather than stepwise.
Collapse
Affiliation(s)
- Stefan A F Nastase
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, CF10 3AT, UK.
| | | | | |
Collapse
|
14
|
Abstract
AbstractThe adsorption of methanol in HZSM-5 at low temperatures has long been regarded as an associative process involving hydrogen bonding to the acidic zeolite hydroxyl groups. Recent studies employing inelastic neutron scattering spectroscopy (INS) have reported that complete dissociation to methoxylate the zeolite occurs at 298 K, and infrared evidence for a partial dissociation at 298 K has also been described. Here we investigate the apparent contradictions between different techniques, using a combination of INS, infrared spectroscopy and solid-state NMR spectroscopy, including isotopic substitution experiments. Different possible explanations are proposed and considered; we conclude that at room temperature methanol is very largely associatively adsorbed, although the presence of some small extent (>1%) of methoxylation cannot be ruled out.
Collapse
|
15
|
Matam SK, Catlow CRA, Silverwood IP, O’Malley AJ. Methanol dynamics in H-ZSM-5 with Si/Al ratio of 25: a quasi-elastic neutron scattering (QENS) study. Top Catal 2021. [DOI: 10.1007/s11244-021-01450-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractMethanol dynamics in zeolite H-ZSM-5 (Si/Al of 25) with a methanol loading of ~ 30 molecules per unit cell has been studied at 298, 323, 348 and 373 K by incoherent quasi-elastic neutron scattering (QENS). The elastic incoherent structure factor (EISF) reveals that the majority of methanol is immobile, in the range between 70 and 80%, depending on the measurement temperature. At 298 K, ≈ 20% methanol is mobile on the instrumental timescale, exhibiting isotropic rotational dynamics with a rotational diffusion coefficient (DR) of 4.75 × 1010 s−1. Upon increasing the measurement temperature from 298 to 323 K, the nature of the methanol dynamics changes from rotational to translational diffusion dynamics. Similar translational diffusion rates are measured at 348 and 373 K, though with a larger mobile fraction as temperature increases. The translational diffusion is characterised as jump diffusion confined to a sphere with a radius close to that of a ZSM-5 channel. The diffusion coefficients may be calculated using either the Volino–Dianoux (VD) model of diffusion confined to a sphere, or the Chudley–Elliot (CE) jump diffusion model. The VD model gives rise to a self-diffusion co-efficient (Ds) of methanol in the range of 7.8–8.4 × 10–10 m2 s−1. The CE model gives a Ds of around 1.2 (± 0.1) × 10–9 m2 s−1 with a jump distance of 2.8 (either + 0.15 or − 0.1) Å and a residence time (τ) of ~ 10.8 (either + 0.1 or − 0.2) ps. A correlation between the present and earlier studies that report methanol dynamics in H-ZSM-5 with Si/Al of 36 is made, suggesting that with increasing Si/Al ratio, the mobile fraction of methanol increases while DR decreases.
Collapse
|
16
|
Li G, Foo C, Yi X, Chen W, Zhao P, Gao P, Yoskamtorn T, Xiao Y, Day S, Tang CC, Hou G, Zheng A, Tsang SCE. Induced Active Sites by Adsorbate in Zeotype Materials. J Am Chem Soc 2021; 143:8761-8771. [PMID: 34076425 DOI: 10.1021/jacs.1c03166] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
There has been a long debate on how and where active sites are created for molecular adsorption and catalysis in zeolites, which underpin many important industrial applications. It is well accepted that Lewis acidic sites (LASs) and basic sites (LBSs) as active sites in pristine zeolites are generally believed to be the extra-framework Al species and residue anion (OH-) species formed at fixed crystallographic positions after their synthesis. However, the dynamic interactions of adsorbates/reactants with pristine zeotype materials to "create" sites during real conditions remain largely unexplored. Herein, direct experimental observation of the establishment of induced active sites in silicoaluminophosphate (SAPO) by an adsorbate is for the first time made, which contradicts the traditional view of the fixed active sites in zeotype materials. Evidence shows that an induced frustrated Lewis pair (FLP, three-coordinated framework Al as LAS and SiO (H) as LBS) can be transiently favored for heterolytic molecular binding/reactions of competitive polar adsorbates due to their ineffective orbital overlap in the rigid framework. High-resolution magic-angle-spinning solid-state NMR, synchrotron X-ray diffraction, neutron powder diffraction, in situ diffuse reflectance infrared Fourier transform spectroscopy, and ab initio molecular dynamics demonstrate the transformation of a typical Brønsted acid site (Al(OH)Si) in SAPO zeolites to new induced FLP structure for hetereolytic binding upon adsorption of a strong polar adsorbate. Our unprecedented finding opens up a new avenue to understanding the dynamic establishment of active sites for adsorption or chemical reactions under molecular bombardment of zeolitic structures.
Collapse
Affiliation(s)
- Guangchao Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China.,Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford OX1 3QR, U.K.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Christopher Foo
- Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford OX1 3QR, U.K.,Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K
| | - Xianfeng Yi
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | - Wei Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | - Pu Zhao
- Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford OX1 3QR, U.K
| | - Pan Gao
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Tatchamapan Yoskamtorn
- Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford OX1 3QR, U.K
| | - Yao Xiao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Sarah Day
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K
| | - Chiu C Tang
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K
| | - Guangjin Hou
- State Key Laboratory of Catalysis, National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Anmin Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | - Shik Chi Edman Tsang
- Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford OX1 3QR, U.K
| |
Collapse
|
17
|
Hutchings GJ. Spiers Memorial Lecture: Understanding reaction mechanisms in heterogeneously catalysed reactions. Faraday Discuss 2021; 229:9-34. [PMID: 34075992 DOI: 10.1039/d1fd00023c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Heterogeneous catalysis lies at the heart of the chemical and fuel manufacturing industries and hence is a cornerstone of many economies. Many of the commercially operated heterogeneous catalysts have remained basically unchanged for decades, undergoing small but important optimisation of their formulations. Yet we all acknowledge that there is a continuous drive towards improved catalysts or designing new ones. At the heart of these studies has been the need to gain an improved understanding of the reaction mechanism for these important reactions since this can unlock new ways to improve catalyst design and, of course, the ultimate aim is to design catalysts based on the detailed understanding of the reaction mechanism. These advanced studies have been aided in the last decade by two key factors, namely: (a) access to advanced characterisation techniques based on synchrotron methods and aberration-corrected microscopy that can probe the nature of the active site, and (b) the application of high-level computational methods to understand how the reactants and products interact at the active site. In this paper this theme will be explored using two examples to bring out the complexity in gaining an understanding of a reaction mechanism. Using the zeolite H-ZSM-5 as an example of a single site catalyst, the mechanism of the conversion of methanol to the first hydrocarbon carbon-carbon bond will be discussed. In this section the use of model reactants and reaction probes will be used to try to differentiate between different mechanistic proposals. The second example explores the use of gold catalysts for CO oxidation and acetylene hydrochlorination. In both these examples the importance of advanced characterisation and theory will be highlighted.
Collapse
Affiliation(s)
- Graham J Hutchings
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK.
| |
Collapse
|
18
|
Nastase SAF, Cnudde P, Vanduyfhuys L, De Wispelaere K, Van Speybroeck V, Catlow CRA, Logsdail AJ. Mechanistic Insight into the Framework Methylation of H-ZSM-5 for Varying Methanol Loadings and Si/Al Ratios Using First-Principles Molecular Dynamics Simulations. ACS Catal 2020; 10:8904-8915. [PMID: 32923027 PMCID: PMC7479850 DOI: 10.1021/acscatal.0c01454] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/08/2020] [Indexed: 11/29/2022]
Abstract
![]()
The
methanol-to-hydrocarbon process is known to proceed autocatalytically
in H-ZSM-5 after an induction period where framework methoxy species
are formed. In this work, we provide mechanistic insight into the
framework methylation within H-ZSM-5 at high methanol loadings and
varying acid site densities by means of first-principles molecular
dynamics simulations. The molecular dynamics simulations show that
stable methanol clusters form in the zeolite pores, and these clusters
commonly deprotonate the active site; however, the cluster size is
dependent on the temperature and acid site density. Enhanced sampling
molecular dynamics simulations give evidence that the barrier for
methanol conversion is significantly affected by the neighborhood
of an additional acid site, suggesting that cooperative effects influence
methanol clustering and reactivity. The insights obtained are important
steps in optimizing the catalyst and engineering the induction period
of the methanol-to-hydrocarbon process.
Collapse
Affiliation(s)
- Stefan A. F. Nastase
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, U.K
| | - Pieter Cnudde
- Center for Molecular Modeling, Ghent University, Zwijnaarde, Ghent 9000, Belgium
| | - Louis Vanduyfhuys
- Center for Molecular Modeling, Ghent University, Zwijnaarde, Ghent 9000, Belgium
| | | | | | - C. Richard A. Catlow
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, U.K
- Department of Chemistry, University College London, 20 Gordon Street, London WC1E 6BT, U.K
- UK Catalysis Hub, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Oxford OX11 0FA, U.K
| | - Andrew J. Logsdail
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, U.K
| |
Collapse
|