1
|
Shami Z, Derakhshan SA, Ahmadi R. Facile Aqueous Route to Large-Scale Superhydrophilic TiO 2-Incorporated Graphitic Carbon Nitride-Coated Ni(OH) 2 and Ni 2P Nano-Architecture Arrays as Efficient Electrocatalysts for Enhanced Hydrogen Production. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:1217-1230. [PMID: 39787597 DOI: 10.1021/acs.langmuir.4c03236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Water splitting by an electrochemical method to generate hydrogen gas is an economic and green approach to resolve the looming energy and environmental crisis. Designing a composite electrocatalyst having integrated multichannel charge separation, robust stability, and low-cost facile scalability could be considered to address the issue of electrochemical hydrogen evolution. Herein, we report a superhydrophilic, noble-metal-free bimetallic nanostructure TiO2/Ni2P coated on graphitic polyacrylonitrile carbon fibers (g-C/TiO2/Ni2P) using a facile hydrothermal method followed by phosphorylation. In an aqueous-based route, PAN is dissolved in water in the presence of ZnCl2, followed by wet-spinning to prepare scalable PAN/ZnCl2 fibers. The nitrogen-contained porous graphitic carbon fibers are prepared via the pyrolysis of PAN/ZnCl2 fibers; now ZnCl2 acts as a volatile porogen to form porous matrix structures. Finally, the as-prepared graphitic carbon fibers are electrochemically activated by incorporating TiO2/Ni2P active sites. The materials formed in this work show excellent electrocatalytic activity for the hydrogen evolution reaction. The as-synthesized g-C/TiO2/Ni2P catalyst shows a low overpotential, its electrocatalytic activity is improved, and its efficiency is better than that of the commercial Pt/C catalyst. At a current density of -10 mA/cm2, the g-C/TiO2/Ni2P catalyst shows an overpotential of 55 mV, while the commercial Pt/C catalyst shows an overpotential of 77 mV. Our work provides a facile aqueous scalable route with no need for noble metals that can be considered as a potential alternative for the commercial Pt/C catalyst.
Collapse
Affiliation(s)
- Zahed Shami
- Department of Chemistry, Faculty of Science, University of Kurdistan, Pasdaran Boulevard, Sanandaj 66177-15175, Iran
| | - Seyed Arad Derakhshan
- Department of Chemistry, Faculty of Science, University of Kurdistan, Pasdaran Boulevard, Sanandaj 66177-15175, Iran
| | - Rezgar Ahmadi
- Department of Chemistry, Faculty of Science, University of Kurdistan, Pasdaran Boulevard, Sanandaj 66177-15175, Iran
| |
Collapse
|
2
|
Armani-Calligaris G, Carrasco S, Atienzar P, Navalón S, Martineau-Corcos C, Ávila D, de la Peña O'Shea VA, García H, Salles F, Horcajada P. Regioselectivity in Pyrene-Templated Polymerization Using MOFs as 1D Porous Scaffolds. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45411-45421. [PMID: 39158685 DOI: 10.1021/acsami.4c07124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Physicochemical properties of polymers strongly depend on the arrangement and distribution of attached monomers. Templated polymerization using porous crystalline materials appears as a promising route to gain control on the process. Thus, we demonstrate here the potential of metal-organic frameworks as scaffolds with a versatile and very regular porosity, well adapted for the regioselective oxidative polymerization of pyrene. This photoresponsive monomer was first encapsulated within the one-dimensional (1D) microporosity of the robust zirconium(IV) carboxylate metal-organic framework (MOF) (MIL-140D) to, later, undergo in situ oxidative polymerization, enabling the growth of a highly selective polypyrene (PPyr) regioisomer over other potential polymer configurations. To confirm the polymerization and the geometry control of pyrene, the resulting composites were exhaustively characterized by powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), N2 sorption measurements, scanning transmission electron microscopy coupled with energy-dispersive X-ray (STEM-EDX) spectroscopy, and fluorescence spectroscopy. Among others, photoluminescence quenching and emission shift in the solid state demonstrated the presence of PPyr inside the MOF porosity. Furthermore, an in-depth joint analysis combining solid-state, magic-angle spinning (MAS) 1H and 13C NMR spectroscopy, Fourier transform infrared (FTIR) spectroscopy, matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI-TOF MS), and molecular simulations (grand canonical Monte Carlo (GCMC) and density functional theory (DFT)) allowed the elucidation of the spatial, host-guest interactions driving the polymerization reaction.
Collapse
Affiliation(s)
- Giacomo Armani-Calligaris
- Advanced Porous Materials Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra 3, Móstoles, Madrid 28935, Spain
- Photoactivated Processes Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra 3, Móstoles, Madrid 28935, Spain
| | - Sergio Carrasco
- Advanced Porous Materials Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra 3, Móstoles, Madrid 28935, Spain
| | - Pedro Atienzar
- Instituto de Tecnología Química (CSIC-UPV), Universitat Politécnica de València, Av. De los Naranjos, s/n, Valencia 46022, Spain
| | - Sergio Navalón
- Departamento de Química, Universitat Politécnica de València, C/Camino de Vera, s/n, Valencia 46022, Spain
| | - Charlotte Martineau-Corcos
- Institut Lavoisier de Versailles, UMR CNRS 8180, Université de Versailles St-Quentin-en-Yvelines, Université Paris-Saclay, 45 Av. des Etats-Unis, Versailles 78035, France
| | - David Ávila
- Inorganic Chemistry Department, Chemistry Sciences Faculty, Complutense University of Madrid, Ciudad Universitaria, Madrid 28040, Spain
| | - Víctor A de la Peña O'Shea
- Photoactivated Processes Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra 3, Móstoles, Madrid 28935, Spain
| | - Hermenegildo García
- Instituto de Tecnología Química (CSIC-UPV), Universitat Politécnica de València, Av. De los Naranjos, s/n, Valencia 46022, Spain
| | - Fabrice Salles
- Institut Charles Gerhardt Montpellier, University of Montpellier, CNRS, ENSCM, 1919 route de Mende, Montpellier 34293, France
| | - Patricia Horcajada
- Advanced Porous Materials Unit, IMDEA Energy Institute, Avda. Ramón de la Sagra 3, Móstoles, Madrid 28935, Spain
| |
Collapse
|
3
|
Liu L, Shen S, Zhao N, Zhao H, Wang K, Cui X, Wen B, Wang J, Xiao C, Hu X, Su Y, Ding S. Revealing the Indispensable Role of In Situ Electrochemically Reconstructed Mn(II)/Mn(III) in Improving the Performance of Lithium-Carbon Dioxide Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403229. [PMID: 38598727 DOI: 10.1002/adma.202403229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Li-CO2 batteries are regarded as promising high-energy-density energy conversion and storage devices, but their practicability is severely hindered by the sluggish CO2 reduction/evolution reaction (CORR/COER) kinetics. Due to the various crystal structures and unique electronic configuration, Mn-based cathode catalysts have shown considerable competition to facilitate CORR/COER. However, the specific active sites and regulation principle of Mn-based catalysts remain ambiguous and limited. Herein, this work designs novel Mn dual-active sites (MOC) supported on N-doped carbon nanofibers and conduct a comprehensive investigation into the underlying relationship between different Mn active sites and their electrochemical performance in Li-CO2 batteries. Impressively, this work finds that owing to the in situ generation and stable existence of Mn(III), MOC undergoes obvious electrochemical reconstruction during battery cycling. Moreover, a series of characterizations and theoretical calculations demonstrate that the different electronic configurations and coordination environments of Mn(II) and Mn(III) are conducive to promoting CORR and COER, respectively. Benefiting from such a modulating behavior, the Li-CO2 batteries deliver a high full discharge capacity of 10.31 mAh cm-2, and ultra-long cycle life (327 cycles/1308 h). This fundamental understanding of MOC reconstruction and the electrocatalytic mechanisms provides a new perspective for designing high-performance multivalent Mn-integrated hybrid catalysts for Li-CO2 batteries.
Collapse
Affiliation(s)
- Limin Liu
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, State Key Laboratory for Mechanical Behavior of Materials, and National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shenyu Shen
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, State Key Laboratory for Mechanical Behavior of Materials, and National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ning Zhao
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, State Key Laboratory for Mechanical Behavior of Materials, and National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Hongyang Zhao
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, State Key Laboratory for Mechanical Behavior of Materials, and National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ke Wang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, State Key Laboratory for Mechanical Behavior of Materials, and National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiaofeng Cui
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, State Key Laboratory for Mechanical Behavior of Materials, and National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Bo Wen
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, State Key Laboratory for Mechanical Behavior of Materials, and National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jiuhong Wang
- School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Chunhui Xiao
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, State Key Laboratory for Mechanical Behavior of Materials, and National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiaofei Hu
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, State Key Laboratory for Mechanical Behavior of Materials, and National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yaqiong Su
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, State Key Laboratory for Mechanical Behavior of Materials, and National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shujiang Ding
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, State Key Laboratory for Mechanical Behavior of Materials, and National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
4
|
Castillo-Blas C, Chester AM, Keen DA, Bennett TD. Thermally activated structural phase transitions and processes in metal-organic frameworks. Chem Soc Rev 2024; 53:3606-3629. [PMID: 38426588 DOI: 10.1039/d3cs01105d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The structural knowledge of metal-organic frameworks is crucial to the understanding and development of new efficient materials for industrial implementation. This review classifies and discusses recent advanced literature reports on phase transitions that occur during thermal treatments on metal-organic frameworks and their characterisation. Thermally activated phase transitions and procceses are classified according to the temperaturatures at which they occur: high temperature (reversible and non-reversible) and low temperature. In addition, theoretical calculations and modelling approaches employed to better understand these structural phase transitions are also reviewed.
Collapse
Affiliation(s)
- Celia Castillo-Blas
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB30FS, UK.
| | - Ashleigh M Chester
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB30FS, UK.
| | - David A Keen
- ISIS Facility, Rutherford Appleton Laboratory, Harwell Campus, OX11 0DE, Didcot, Oxfordshire, UK
| | - Thomas D Bennett
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB30FS, UK.
| |
Collapse
|
5
|
Erokhin KS, Pentsak EO, Sorokin VR, Agaev YV, Zaytsev RG, Isaeva VI, Ananikov VP. Dynamic behavior of metal nanoparticles in MOF materials: analysis with electron microscopy and deep learning. Phys Chem Chem Phys 2023; 25:21640-21648. [PMID: 37551526 DOI: 10.1039/d3cp02595k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Electron microscopy is a key characterization technique for nanoscale systems, and electron microscopy images are typically recorded and analyzed in terms of the morphology of the objects under study in static mode. The emerging current trend is to analyze the dynamic behavior at the nanoscale observed during electron microscopy measurements. In this work, the study of the stability of MOF structures with different compositions and topologies under conditions of an electron microscope experiment revealed an unusual dynamic behavior of M NPs formed due to the electron-beam-induced transformation of specific frameworks. The transition to the liquid phase led to spatial movement, rapid sintering, and an increase in the M NPs size within seconds. In the case of copper nanoparticles, instantaneous sublimation was observed. The dynamic behavior of Co NPs was analyzed with a computational framework combining deep learning and classic computer vision techniques. The present study for the first time revealed unique information about the stability of a variety of MOFs under an electron beam and the dynamic behavior of the formed M NPs. The formation of Fe, Ni, Cu, and Co NPs was observed from a molecular framework with a specific subsequent behavior - a stable form for Fe, excessive dynamics for Co, and sublimation/condensation for Cu. Two important outcomes of the present study should be mentioned: (i) electron microscopy investigations of MOF samples should be made with care, as decomposition under an electron beam may lead to incorrect results and the appearance of "phantom" nanoparticles; and (ii) MOFs represent an excellent model for fundamental studies of molecular-to-nano transitions in situ in video mode, including a number of dynamic transformations.
Collapse
Affiliation(s)
- Kirill S Erokhin
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect, 47, Moscow, 119991, Russia.
| | - Evgeniy O Pentsak
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect, 47, Moscow, 119991, Russia.
| | - Vyacheslav R Sorokin
- Platov South-Russian State Polytechnic University (NPI), Prosveschenia Str. 132, Novocherkassk 346428, Russia
| | - Yury V Agaev
- Platov South-Russian State Polytechnic University (NPI), Prosveschenia Str. 132, Novocherkassk 346428, Russia
| | - Roman G Zaytsev
- Platov South-Russian State Polytechnic University (NPI), Prosveschenia Str. 132, Novocherkassk 346428, Russia
| | - Vera I Isaeva
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect, 47, Moscow, 119991, Russia.
| | - Valentine P Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect, 47, Moscow, 119991, Russia.
- Platov South-Russian State Polytechnic University (NPI), Prosveschenia Str. 132, Novocherkassk 346428, Russia
| |
Collapse
|
6
|
Sepehrmansourie H, Kalhor S, Zarei M, Zolfigol MA, Hosseinifard M. A convenient catalytic method for preparation of new tetrahydropyrido[2,3- d]pyrimidines via a cooperative vinylogous anomeric based oxidation. RSC Adv 2022; 12:34282-34292. [PMID: 36545580 PMCID: PMC9709663 DOI: 10.1039/d2ra05655k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/21/2022] [Indexed: 12/02/2022] Open
Abstract
In this study, a novel functionalized metal-organic frameworks MIL-125(Ti)-N(CH2PO3H2)2 was designed and synthesized via post-modification methodology. Then, MIL-125(Ti)-N(CH2PO3H2)2 as a mesoporous catalyst was applied for the synthesis of a wide range of novel tetrahydropyrido[2,3-d]pyrimidines as bioactive candidate compounds by one-pot condensation reaction of 3-(1-methyl-1H-pyrrol-2-yl)-3-oxopropanenitrile, 6-amino-1,3-dimethylpyrimidine-2,4(1H,3H)-dione and aromatic aldehydes at 100 °C under solvent-free condition. Interestingly, the preparation of tetrahydropyrido[2,3-d]pyrimidine was achieved via vinylogous anomeric based oxidation mechanism with a high yield and short reaction time.
Collapse
Affiliation(s)
- Hassan Sepehrmansourie
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina UniversityHamedan 6517838683Iran+988138380709+988138282807
| | - Sima Kalhor
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina UniversityHamedan 6517838683Iran+988138380709+988138282807
| | - Mahmoud Zarei
- Department of Chemistry, Faculty of Science, University of QomQom37185-359Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina UniversityHamedan 6517838683Iran+988138380709+988138282807
| | - Mojtaba Hosseinifard
- Department of Energy, Materials and Energy Research CenterP.O. Box 31787-316KarajIran
| |
Collapse
|
7
|
Chen D, Wei L, Yu Y, Zhao L, Sun Q, Han C, Lu J, Nie H, Shao LX, Qian J, Yang Z. Size-Selective Suzuki-Miyaura Coupling Reaction over Ultrafine Pd Nanocatalysts in a Water-Stable Indium-Organic Framework. Inorg Chem 2022; 61:15320-15324. [PMID: 36137280 DOI: 10.1021/acs.inorgchem.2c02877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metal nanoparticles stabilized by crystalline metal-organic frameworks (MOFs) are highly promising for green heterogeneous catalysis. In this work, in situ formed ultrafine Pd nanocatalysts with an average size of 3.14 nm have been successfully immobilized into the mesopores or defects of a water-stable indium-based MOF by the double-solvent method and subsequent reduction. Significantly, the obtained Pd@InOF-1 displays an obvious and satisfactory size-selective effect in the Suzuki-Miyaura coupling reaction between arylboronic acids and aryl bromides. On the basis of the synergistic effect, microporous InOF-1 nanorods afford a confined space for improving the selectivity of target products while Pd nanoparticles endow abundant active sites for catalysis. Herein, choosing the smallest size reactant with only one benzene ring gives the highest isolated yield of 90%, and if the size is larger, the yield is obviously reduced or even the target product could not be collected. Looking forward, this demonstrated study not only assembles a well-designed Pd@MOF composite with unique micro-nanostructures but also delivers an impressive option for cross-coupling reaction, which has implications for the further development of MOF hybrids for sustainable applications.
Collapse
Affiliation(s)
- Dandan Chen
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, P. R. China
| | - Linsha Wei
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, P. R. China
| | - Yihan Yu
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, P. R. China
| | - Lei Zhao
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, P. R. China
| | - Qiuhong Sun
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, P. R. China
| | - Cheng Han
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, P. R. China
| | - Jianmei Lu
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, P. R. China
| | - Huagui Nie
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, P. R. China
| | - Li-Xiong Shao
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, P. R. China
| | - Jinjie Qian
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, P. R. China
| | - Zhi Yang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, P. R. China
| |
Collapse
|
8
|
|
9
|
Kitao T. Controlled assemblies of conjugated polymers in metal−organic frameworks. Polym J 2022. [DOI: 10.1038/s41428-022-00657-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Chaikittisilp W, Yamauchi Y, Ariga K. Material Evolution with Nanotechnology, Nanoarchitectonics, and Materials Informatics: What will be the Next Paradigm Shift in Nanoporous Materials? ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107212. [PMID: 34637159 DOI: 10.1002/adma.202107212] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/05/2021] [Indexed: 05/27/2023]
Abstract
Materials science and chemistry have played a central and significant role in advancing society. With the shift toward sustainable living, it is anticipated that the development of functional materials will continue to be vital for sustaining life on our planet. In the recent decades, rapid progress has been made in materials science and chemistry owing to the advances in experimental, analytical, and computational methods, thereby producing several novel and useful materials. However, most problems in material development are highly complex. Here, the best strategy for the development of functional materials via the implementation of three key concepts is discussed: nanotechnology as a game changer, nanoarchitectonics as an integrator, and materials informatics as a super-accelerator. Discussions from conceptual viewpoints and example recent developments, chiefly focused on nanoporous materials, are presented. It is anticipated that coupling these three strategies together will open advanced routes for the swift design and exploratory search of functional materials truly useful for solving real-world problems. These novel strategies will result in the evolution of nanoporous functional materials.
Collapse
Affiliation(s)
- Watcharop Chaikittisilp
- JST-ERATO Yamauchi Materials Space-Tectonics Project, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Research and Services Division of Materials Data and Integrated System (MaDIS), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Yusuke Yamauchi
- JST-ERATO Yamauchi Materials Space-Tectonics Project, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Katsuhiko Ariga
- JST-ERATO Yamauchi Materials Space-Tectonics Project, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| |
Collapse
|
11
|
Kitao T, Zhang X, Uemura T. Nanoconfined synthesis of conjugated ladder polymers. Polym Chem 2022. [DOI: 10.1039/d2py00809b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review highlights recent advances in controlled synthesis of conjugated ladder polymers using templates.
Collapse
Affiliation(s)
- Takashi Kitao
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- JST-PRESTO, Kawaguchi, Saitama 332-0012, Japan
| | - Xiyuan Zhang
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Takashi Uemura
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
12
|
Mijailović DM, Radmilović VV, Lačnjevac UČ, Stojanović DB, Bustillo KC, Jović VD, Radmilović VR, Uskoković PS. Tetragonal CoMn 2O 4 nanocrystals on electrospun carbon fibers as high-performance battery-type supercapacitor electrode materials. Dalton Trans 2021; 50:15669-15678. [PMID: 34676859 DOI: 10.1039/d1dt02829d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We herein report a simple two-step procedure for fabricating tetragonal CoMn2O4 spinel nanocrystals on carbon fibers. The battery-type behavior of these composite fibers arises from the redox activity of CoMn2O4 in an alkaline aqueous solution, which, in combination with the carbon fibers, endows good electrochemical performance and long-term stability. The C@CoMn2O4 electrode exhibited high specific capacity, up to 62 mA h g-1 at 1 A g-1 with a capacity retention of around 90% after 4000 cycles. A symmetrical coin-cell device assembled with the composite electrodes delivered a high energy density of 7.3 W h kg-1 at a power density of 0.1 kW kg-1, which is around 13 times higher than that of bare carbon electrodes. The coin cell was cycled for 5000 cycles with 96.3% capacitance retention, at a voltage of up to 0.8 V, demonstrating excellent cycling stability.
Collapse
Affiliation(s)
- Daniel M Mijailović
- Innovation Center, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia
| | - Vuk V Radmilović
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia
| | - Uroš Č Lačnjevac
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | - Dušica B Stojanović
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia
| | - Karen C Bustillo
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, 94720 California, USA
| | - Vladimir D Jović
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | - Velimir R Radmilović
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia.,Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000 Belgrade, Serbia
| | - Petar S Uskoković
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia
| |
Collapse
|
13
|
Zeinali S, Pawliszyn J. Needle-Trap Device Containing a Filter: A Novel Device for Aerosol Studies. Anal Chem 2021; 93:14401-14408. [PMID: 34661386 DOI: 10.1021/acs.analchem.1c01964] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Particles in an aerosol sample contain a portion of the total available analytes. Therefore, particle trapping is required to fully characterize a gaseous sample. Needle-trap devices (NTDs) are highly useful to this end, as they allow sampling and preconcentration of free analytes, as well as the trapping of particles. Packing sorbents into the needle creates a filter that traps solid particles or liquid droplets. However, the particle-trapping efficiency of sorbent-packed NTDs is limited, especially for nanoparticles. To address this issue, an aerogel based on electrospun polyacrylonitrile (PAN) was prepared for trapping small particles to analyze particle-bound analytes. The PAN aerogel filter was fabricated by cutting electrospun PAN fibers and removing the remaining solvent via freeze-drying to obtain a light porous fibrous structure. The PAN aerogel was heated (H-PAN) prior to packing to ensure stability during thermal desorption. The trapping efficiency of the H-PAN-packed NTD was measured using a range of conditions, with high filtration efficiencies (>99%) being obtained in all cases. The mechanical stability of the H-PAN aerogel was tested using multiple extraction/desorption cycles with and without solid sorbent particles, with results indicating high repeatability (n = 94, relative standard deviation (RSD) <6%). The developed NTD was compared to thin-film microextraction with respect to their ability to characterize breath samples obtained with or without face masks; the NTD was able to trap both free and droplet-bound analytes, while thin-film microextraction was only able to extract free analytes, which is fully reflected in concentrations obtained with these two methods.
Collapse
Affiliation(s)
- Shakiba Zeinali
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
14
|
Kalhor S, Zarei M, Zolfigol MA, Sepehrmansourie H, Nematollahi D, Alizadeh S, Shi H, Arjomandi J. Anodic electrosynthesis of MIL-53(Al)-N(CH 2PO 3H 2) 2 as a mesoporous catalyst for synthesis of novel (N-methyl-pyrrol)-pyrazolo[3,4-b]pyridines via a cooperative vinylogous anomeric based oxidation. Sci Rep 2021; 11:19370. [PMID: 34588471 PMCID: PMC8481481 DOI: 10.1038/s41598-021-97801-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/24/2021] [Indexed: 02/08/2023] Open
Abstract
In this paper, the MIL-53(Al)-NH2 metal-organic frameworks (MOFs) was prepared based on the anodic electrosynthesis under green conditions. The anodic electrosynthesis as an environmentally friendly procedure was performed in the aqueous solution, room temperature, atmospheric pressure, and in the short reaction time (30 min). Also, the employed procedure was accomplished without the need for the ex-situ salt and base/probase additives as cation source and ligand activating agent at the constant current mode (10.0 mA cm-2). The electrosynthesized MOFs was functionalized with phosphorus acid tags as a novel mesoporous catalyst. This mesoporous catalyst was successfully employed for synthesis of new series (N-methyl-pyrrol)-pyrazolo[3,4-b]pyridines by one-pot condensation reaction of 3-methyl-1-phenyl-1H-pyrazol-5-amine, 3-(1-methyl-1H-pyrrol-2-yl)-3-oxopropanenitrile and various aromatic aldehydes (mono, bis and tripodal). This catalyst proceeded the organic synthetic reaction via a cooperative vinylogous anomeric based oxidation mechanism with a marginal decreasing its catalytic activity after recycling and reusability.
Collapse
Affiliation(s)
- Sima Kalhor
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, PO Box 6517838683, Hamedan, Iran
| | - Mahmoud Zarei
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, PO Box 6517838683, Hamedan, Iran.
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, PO Box 6517838683, Hamedan, Iran.
| | - Hassan Sepehrmansourie
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, PO Box 6517838683, Hamedan, Iran
| | - Davood Nematollahi
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, PO Box 6517838683, Hamedan, Iran.
| | - Saber Alizadeh
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, PO Box 6517838683, Hamedan, Iran.
| | - Hu Shi
- School of Chemistry and Chemical Engineering, Institute of Molecular Science, Shanxi University, Taiyuan, 030006, China.
| | - Jalal Arjomandi
- Department of Physical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, PO Box 6517838683, Hamedan, Iran
| |
Collapse
|
15
|
Hosono N, Uemura T. Development of Functional Materials via Polymer Encapsulation into Metal–Organic Frameworks. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210191] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Nobuhiko Hosono
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Takashi Uemura
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
16
|
Che S, Li C, Wang C, Zaheer W, Ji X, Phillips B, Gurbandurdyyev G, Glynn J, Guo ZH, Al-Hashimi M, Zhou HC, Banerjee S, Fang L. Solution-processable porous graphitic carbon from bottom-up synthesis and low-temperature graphitization. Chem Sci 2021; 12:8438-8444. [PMID: 34221325 PMCID: PMC8221055 DOI: 10.1039/d1sc01902c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 05/17/2021] [Indexed: 11/21/2022] Open
Abstract
It is urgently desired yet challenging to synthesize porous graphitic carbon (PGC) in a bottom-up manner while circumventing the need for high-temperature pyrolysis. Here we present an effective and scalable strategy to synthesize PGC through acid-mediated aldol triple condensation followed by low-temperature graphitization. The deliberate structural design enables its graphitization in situ in solution and at low pyrolysis temperature. The resulting material features ultramicroporosity characterized by a sharp pore size distribution. In addition, the pristine homogeneous composition of the reaction mixture allows for solution-processability of the material for further characterization and applications. Thin films of this PGC exhibit several orders of magnitude higher electrical conductivity compared to analogous control materials that are carbonized at the same temperatures. The integration of low-temperature graphitization and solution-processability not only allows for an energy-efficient method for the production and fabrication of PGC, but also paves the way for its wider employment in applications such as electrocatalysis, sensing, and energy storage.
Collapse
Affiliation(s)
- Sai Che
- Department of Chemistry, Texas A&M University College Station Texas 77843 USA
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum Changping Beijing 102249 China
| | - Chenxuan Li
- Department of Chemistry, Texas A&M University College Station Texas 77843 USA
| | - Chenxu Wang
- Department of Materials Science & Engineering, Texas A&M University College Station Texas 77843 USA
| | - Wasif Zaheer
- Department of Chemistry, Texas A&M University College Station Texas 77843 USA
| | - Xiaozhou Ji
- Department of Chemistry, Texas A&M University College Station Texas 77843 USA
| | - Bailey Phillips
- Department of Chemistry, Texas A&M University College Station Texas 77843 USA
| | | | - Jessica Glynn
- Department of Chemistry, Texas A&M University College Station Texas 77843 USA
| | - Zi-Hao Guo
- South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology Guangzhou Guangdong 510640 China
| | - Mohammed Al-Hashimi
- Department of Chemistry, Texas A&M University at Qatar P. O. Box 23874 Doha Qatar
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University College Station Texas 77843 USA
- Department of Materials Science & Engineering, Texas A&M University College Station Texas 77843 USA
| | - Sarbajit Banerjee
- Department of Chemistry, Texas A&M University College Station Texas 77843 USA
- Department of Materials Science & Engineering, Texas A&M University College Station Texas 77843 USA
| | - Lei Fang
- Department of Chemistry, Texas A&M University College Station Texas 77843 USA
- Department of Materials Science & Engineering, Texas A&M University College Station Texas 77843 USA
| |
Collapse
|
17
|
Sen B, Santos JCC, Haldar R, Zhang Q, Hashem T, Qin P, Li Y, Kirschhöfer F, Brenner-Weiss G, Gliemann H, Heinke L, Barner-Kowollik C, Knebel A, Wöll C. Introducing electrical conductivity to metal-organic framework thin films by templated polymerization of methyl propiolate. NANOSCALE 2020; 12:24419-24428. [PMID: 33300536 DOI: 10.1039/d0nr06848a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We herein present a case study on the templated, Pd-catalyzed polymerization reaction of methyl propiolate in the confined pore space of three different surface anchored metal-organic framework (SURMOF) systems in order to introduce electrical conductivity to MOF thin films and provide predictions for potential device integrations. To gain comprehensive insight into the influence of the template on polymerization, we chose Cu(bpdc), Cu2(bdc)2(dabco) and HKUST-1 because of their different types of pore channels, 1D, quasi-1D and 3D, and their free pore volumes. Well-defined MOF thin films were prepared using layer-by-layer deposition, which allows for the application of several characterization techniques not applicable for conventional powder MOFs. With SEM, AFM, XRD, MALDI-ToF/MS, ToF-SIMS and QCM, we were able to investigate the behaviour of the polymer formation. For lower dimensional pore channels, we find a depot-like release of monomeric units leading to top-layer formation determined by desorption kinetics, whereas for the 3D channels, quick release of an excess amount of monomers was observed and polymerization proceeds perfectly. Despite polymerization issues, control over the maximum chain lengths and the molecular weight distribution was achieved depending on the dimensionality of the pore systems. For the HKUST-1 system, polymerization was optimized and we were able to measure the electrical conductivity introduced by the conjugated polymer inside the channels.
Collapse
Affiliation(s)
- Beren Sen
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Begum S, Hassan Z, Bräse S, Tsotsalas M. Polymerization in MOF-Confined Nanospaces: Tailored Architectures, Functions, and Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:10657-10673. [PMID: 32787055 DOI: 10.1021/acs.langmuir.0c01832] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This feature article describes recent trends and advances in structuring network polymers using a coordination-driven metal-organic framework (MOF)-based template approach to demonstrate the concept of crystal-controlled polymerization in confined nanospaces, forming tailored architectures ranging from simple linear one-dimensional macromolecules to tunable three-dimensional cross-linked network polymers and interwoven molecular architectures. MOF-templated network polymers combine the characteristics and advantages of crystalline MOFs (high porosity, structural regularity, and designability) with the intrinsic behaviors of soft polymers (flexibility, processability, stability, or biocompatibility) with widespread application possibilities and tunable properties. The article ends with a summary of the remaining challenges to be addressed, and future research opportunities in this field are discussed.
Collapse
Affiliation(s)
- Salma Begum
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Zahid Hassan
- 3D Matter Made To Order - Cluster of Excellence (EXC-2082/1-390761711), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
- Institute for Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Stefan Bräse
- 3D Matter Made To Order - Cluster of Excellence (EXC-2082/1-390761711), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
- Institute of Biological and Chemical Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Institute for Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Manuel Tsotsalas
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
- Institute for Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| |
Collapse
|