1
|
Sarkar D, Dutta S, Hanusch F, Koley D, Inoue S. Synthesis and reactivity of N-heterocyclic carbene (NHC)-supported heavier nitrile ylides. Chem Sci 2024; 15:2391-2397. [PMID: 38362429 PMCID: PMC10866356 DOI: 10.1039/d3sc06430a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/08/2024] [Indexed: 02/17/2024] Open
Abstract
The synthesis and isolation of stable heavier analogues of nitrile ylide as N-heterocyclic carbene (NHC) adducts of phosphasilenyl-tetrylene [(NHC)(TerAr)Si(H)PE14(TerAr)] (E14 = Ge 1, Sn 2; TerAr = 2,6-Mes2C6H3, NHC = IMe4) are reported. The delocalized Si-P-E14 π-conjugation was examined experimentally and computationally. Interestingly, the germanium derivative 1 exhibits a 1,3-dipolar nature, leading to an unprecedented [3 + 2] cycloaddition with benzaldehyde, resulting in unique heterocycles containing four heteroatoms from group 14, 15, and 16. Further exploiting the nucleophilicity of germanium, activation of the P-P bond of P4 was achieved, leading to a [(NHC)(phosphasilenyl germapolyphide)] complex. Moreover, the [3 + 2] cycloaddition and the σ-bond activation by 1 resemble the characteristics of the classic nitrile ylide.
Collapse
Affiliation(s)
- Debotra Sarkar
- TUM School of Natural Sciences, Department of Chemistry, Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München Lichtenbergstraße 4 85748 Garching Germany
| | - Sayan Dutta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur 741 246 India
| | - Franziska Hanusch
- TUM School of Natural Sciences, Department of Chemistry, Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München Lichtenbergstraße 4 85748 Garching Germany
| | - Debasis Koley
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur 741 246 India
| | - Shigeyoshi Inoue
- TUM School of Natural Sciences, Department of Chemistry, Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München Lichtenbergstraße 4 85748 Garching Germany
| |
Collapse
|
2
|
Dolati H, Denker L, Martínez JP, Trzaskowski B, Frank R. Iminoboranes With Parent B=NH Entity: Imino Group Metathesis, Nucleophilic Reactivity and N-N Coupling. Chemistry 2023; 29:e202302494. [PMID: 37584302 DOI: 10.1002/chem.202302494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/11/2023] [Accepted: 08/11/2023] [Indexed: 08/17/2023]
Abstract
While R2 C=N-R double bonds in organic imines are well established, the related iminoboranes R-B=N-R are either prone to oligomerization or can only be stabilized at sufficient steric congestion. In particular, the examples of unsubstituted parent B=N-H entity are rare. We demonstrate that the amino imidazoline-2-imine ligand system (HAmIm) not only gives rise to the isolation of a parent (AmIm)B=N-H iminoborane, but also to species of type (AmIm)B=N-SiMe3 with concomitant stabilization by lithium bromide. The double bond character in these systems is unambiguously corroborated by DFT calculations. The steric accessibility of the (AmIm)B=NH unit allows facile reactivity including metathesis reactions with C=O and C=S bonds, nucleophilic addition toward organic and organometallic carbonyl compounds, but also oxidative N-N coupling within a dimeric unit. Thus, the chemical behavior of the (AmIm)B=N-H and (AmIm)B=N-SiMe3 is distinctly different from that of organic imines.
Collapse
Affiliation(s)
- Hadi Dolati
- Institute of Inorganic and Analytical Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| | - Lars Denker
- Institute of Inorganic and Analytical Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| | - Juan Pablo Martínez
- Centre of New Technologies, University of Warsaw, Banacha 2 C, 02-097, Warszawa, Poland
| | - Bartosz Trzaskowski
- Centre of New Technologies, University of Warsaw, Banacha 2 C, 02-097, Warszawa, Poland
| | - René Frank
- Institute of Inorganic and Analytical Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| |
Collapse
|
3
|
Zhu H, Fujimori S, Kostenko A, Inoue S. Dearomatization of C 6 Aromatic Hydrocarbons by Main Group Complexes. Chemistry 2023; 29:e202301973. [PMID: 37535350 DOI: 10.1002/chem.202301973] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/04/2023]
Abstract
The dearomatization reaction is a powerful method for transformation of simple aromatic compounds to unique chemical architectures rapidly in synthetic chemistry. Over the past decades, the chemistry in this field has evolved significantly and various important organic compounds such as crucial bioactive molecules have been synthesized through dearomatization. In general, photochemical conditions or assistance by transition metals are required for dearomatization of rigid arenes. Recently, main-group elements, especially naturally abundant elements in the Earth's crust, have attracted attention as they have low toxicity and are cost-effective compared to the late transition metals. In recent decades, a variety of low-valent main-group molecules, which enable the activation of stable aromatic compounds under mild conditions, have been developed. This minireview highlights the developments in the chemistry of dearomatization of C6 aromatic hydrocarbons by main-group compounds leading to the formation of seven-membered EC6 (E=main-group elements) ring or cycloaddition products.
Collapse
Affiliation(s)
- Huaiyuan Zhu
- TUM School of Natural Sciences, Department of Chemistry, Catalysis Research Center and Institute of Silicon Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching bei München, Germany
| | - Shiori Fujimori
- TUM School of Natural Sciences, Department of Chemistry, Catalysis Research Center and Institute of Silicon Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching bei München, Germany
| | - Arseni Kostenko
- TUM School of Natural Sciences, Department of Chemistry, Catalysis Research Center and Institute of Silicon Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching bei München, Germany
| | - Shigeyoshi Inoue
- TUM School of Natural Sciences, Department of Chemistry, Catalysis Research Center and Institute of Silicon Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching bei München, Germany
| |
Collapse
|
4
|
Guo R, Hu C, Li Q, Liu LL, Tung CH, Kong L. BN Analogue of Butadiyne: A Platform for Dinitrogen Release and Reduction. J Am Chem Soc 2023; 145:18767-18772. [PMID: 37582249 DOI: 10.1021/jacs.3c07469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Exploration of the metallomimetic chemistry of main group elements is of the utmost importance from the perspective of both fundamental research and potential applications. Here, we report the synthesis, bonding analysis, and reactivities of an isolable diiminoborane, Mes*B≡N─N≡BMes* (Mes* = 2,4,6-tri-tert-butylphenyl) (1), a BN analogue of butadiyne. This species is characterized by a conjugated B≡N─N≡B moiety, a structural feature that enables the controlled release of N2 when it is exposed to organic nitriles. Furthermore, the N2 unit in 1 could be reduced to an ammonium salt via cleavage of the BN triple bond. Our work shows a rare example of an unsaturated BN system, serving as a platform for both the release and reduction of N2. This discovery opens new pathways and holds substantial influence on the future design of functional main group N2 species.
Collapse
Affiliation(s)
- Rui Guo
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Chaopeng Hu
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qianli Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Liu Leo Liu
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Lingbing Kong
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
5
|
Loh YK, Melaimi M, Munz D, Bertrand G. An Air-Stable "Masked" Bis(imino)carbene: A Carbon-Based Dual Ambiphile. J Am Chem Soc 2023; 145:2064-2069. [PMID: 36649656 DOI: 10.1021/jacs.2c12847] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Carbenes, once considered laboratory curiosities, now serve as powerful tools in the chemical and material sciences. To date, all stable singlet carbenes are single-site ambiphiles. Here we describe the synthesis of a carbene which is a carbon-based dual ambiphile (both single-site and dual-site). The key is to employ imino substituents derived from a cyclic (alkyl)(amino)carbene (CAAC), which imparts a 1,3-dipolar character to the carbene. Its dual ambiphilic nature is consistent with the ability to activate simple organic molecules in both 1,1- and 1,3-fashion. Furthermore, its 1,3-ambiphilicity facilitates an unprecedented reversible intramolecular dearomative [3 + 2] cycloaddition with a proximal arene substituent, giving the carbene the ability to "mask" itself as an air-stable cycloadduct. We perceive that the concept of dual ambiphilicity opens a new dimension for future carbene chemistry, expanding the repertoire of applications beyond that known for classical single-site ambiphilic carbenes.
Collapse
Affiliation(s)
- Ying Kai Loh
- UCSD-CNRS Joint Research Laboratory (UMI 3555), Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States
| | - Mohand Melaimi
- UCSD-CNRS Joint Research Laboratory (UMI 3555), Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States
| | - Dominik Munz
- Coordination Chemistry, Saarland University, Campus C4.1, 66123 Saarbrücken, Germany
| | - Guy Bertrand
- UCSD-CNRS Joint Research Laboratory (UMI 3555), Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States
| |
Collapse
|
6
|
Baird SR, Vogels CM, Geier SJ, Watanabe LK, Binder JF, Macdonald CLB, Westcott SA. The phosphinoboration of thiosemicarbazones. CAN J CHEM 2022. [DOI: 10.1139/cjc-2022-0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This study reports on the exploration of the phosphinoboration reaction with several thiosemicarbazones (R5R4NC(S)NR3N=CR1R2). Reactions between either Ph2PBpin (pin = 1,2-O2C2Me4) or Ph2PBcat (cat = 1,2-O2C6H4) with thiosemicarbazones containing a terminal primary or secondary amine afforded boron-containing heterocyclic 1,3,4-thiadiazoline products in excellent yield. The addition of Ph2PBpin to thiosemicarbazones containing an NMe2 group in the terminal position generated novel five-membered heterocycles in moderate yield, which included boron, sulfur, and nitrogen atoms. Heterocyclization of the thiosemicarbazones occurs preferentially in the presence of functional groups such as acetyl and pyridyl groups.
Collapse
Affiliation(s)
- Samuel R. Baird
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Christopher M. Vogels
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Stephen J. Geier
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Lara K. Watanabe
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Justin F. Binder
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada
| | | | - Stephen A. Westcott
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| |
Collapse
|
7
|
Qiu S, Zhang X, Hu C, Chu H, Li Q, Ruiz DA, Liu LL, Tung C, Kong L. Unveiling Hetero‐Enyne Reactivity of Aryliminoboranes: Dearomative Hetero‐Diels–Alder‐Like Reactions. Angew Chem Int Ed Engl 2022; 61:e202205814. [DOI: 10.1002/anie.202205814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Shuang Qiu
- School of Chemistry and Chemical Engineering Shandong University Jinan 250100 China
| | - Xin Zhang
- Department of Chemistry Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Chaopeng Hu
- Department of Chemistry Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Hongxu Chu
- School of Chemistry and Chemical Engineering Shandong University Jinan 250100 China
| | - Qianli Li
- School of Chemistry and Chemical Engineering Liaocheng University Liaocheng 252059 China
| | - David A. Ruiz
- Department of Chemistry Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Liu Leo Liu
- Department of Chemistry Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Chen‐Ho Tung
- School of Chemistry and Chemical Engineering Shandong University Jinan 250100 China
| | - Lingbing Kong
- School of Chemistry and Chemical Engineering Shandong University Jinan 250100 China
- State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
8
|
Qiu S, Zhang X, Hu C, Chu H, Li Q, Ruiz DA, Liu LL, Tung CH, Kong L. Unveiling Hetero‐Enyne Reactivity of Aryliminoboranes: Dearomative Hetero‐Diels‐Alder‐Like Reactions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shuang Qiu
- Shandong University School of Chemistry and Chemical Engineering CHINA
| | - Xin Zhang
- Southern University of Science and Technology Department of Chemistry CHINA
| | - Chaopeng Hu
- Southern University of Science and Technology Department of Chemistry CHINA
| | - Hongxu Chu
- Shandong University School of Chemistry and Chemical Engineering CHINA
| | - Qianli Li
- Liaocheng University School of Chemistry and Chemical Engineering CHINA
| | - David A Ruiz
- Southern University of Science and Technology Department of Chemistry CHINA
| | - Liu Leo Liu
- Southern University of Science and Technology Department of Chemistry CHINA
| | - Chen-Ho Tung
- Shandong University School of Chemistry and Chemical Engineering CHINA
| | - Lingbing Kong
- Shandong University School of Chemistry and Chemical Engineering 27 Shanda Nanlu 250100 Jinan CHINA
| |
Collapse
|
9
|
Guo R, Zhang X, Li T, Li Q, Ruiz DA, Liu LL, Tung CH, Kong L. Unraveling the reactivity of a cationic iminoborane: avenues to unusual boron cations. Chem Sci 2022; 13:2303-2309. [PMID: 35310477 PMCID: PMC8864711 DOI: 10.1039/d2sc00002d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 01/26/2022] [Indexed: 11/21/2022] Open
Abstract
A cationic terminal iminoborane [Mes*N
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
B ← IPr2Me2][AlBr4] (3+[AlBr4]−) (Mes* = 2,4,6-tri-tert-butylphenyl and IPr2Me2 = 1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene) has been synthesized and characterized. The employment of an aryl group and N-heterocyclic carbene (NHC) ligand enables 3+[AlBr4]− to exhibit both B-centered Lewis acidity and BN multiple bond reactivities, thus allowing for the construction of tri-coordinate boron cations 5+–12+. More importantly, initial reactions involving coordination, addition, and [2 + 3] cycloadditions have been observed for the cationic iminoborane, demonstrating the potential to build numerous organoboron species via several synthetic routes. An NHC-stabilized aryliminoboryl cation exhibits both boron-centered Lewis acidity and multiple bond reactivity and could be utilized as an effective synthon for unusual cationic boron species.![]()
Collapse
Affiliation(s)
- Rui Guo
- School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 P. R. China
| | - Xin Zhang
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology Shenzhen 518055 P. R. China
| | - Tong Li
- School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 P. R. China
| | - Qianli Li
- School of Chemistry and Chemical Engineering, Liaocheng University Liaocheng 252059 P. R. China
| | - David A Ruiz
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology Shenzhen 518055 P. R. China
| | - Liu Leo Liu
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology Shenzhen 518055 P. R. China
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 P. R. China
| | - Lingbing Kong
- School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 P. R. China .,State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin 300071 P. R. China
| |
Collapse
|
10
|
Erguven H, Zhou C, Arndtsen BA. Multicomponent formation route to a new class of oxygen-based 1,3-dipoles and the modular synthesis of furans. Chem Sci 2021; 12:15077-15083. [PMID: 34909148 PMCID: PMC8612406 DOI: 10.1039/d1sc04088j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/26/2021] [Indexed: 11/21/2022] Open
Abstract
A new class of phosphorus-containing 1,3-dipoles can be generated by the multicomponent reaction of aldehydes, acid chlorides and the phosphonite PhP(catechyl). These 1,3-dipoles are formally cyclic tautomers of simple Wittig-type ylides, where the angle strain and moderate nucleophilicity in the catechyl-phosphonite favor their cyclization and also direct 1,3-dipolar cycloaddition to afford single regioisomers of substituted products. Coupling the generation of the dipoles with 1,3-dipolar cycloaddition offers a unique, modular route to furans from combinations of available aldehydes, acid chlorides and alkynes with independent control of all four substituents.
Collapse
Affiliation(s)
- Huseyin Erguven
- Department of Chemistry and Chemical Biology, Rutgers University 123 Bevier Road, Piscataway NJ 08854 USA
| | - Cuihan Zhou
- Department of Chemistry, McGill University 801 Sherbrooke Street West Montreal QC H3A0B8 Canada
| | - Bruce A Arndtsen
- Department of Chemistry, McGill University 801 Sherbrooke Street West Montreal QC H3A0B8 Canada
| |
Collapse
|
11
|
Guo R, Li T, Wei R, Zhang X, Li Q, Liu LL, Tung CH, Kong L. Boraiminolithium: An Iminoborane-Transfer Reagent. J Am Chem Soc 2021; 143:13483-13488. [PMID: 34427439 DOI: 10.1021/jacs.1c06152] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BN/CC isosterism can give rise to attractive molecules with unique physical or chemical properties. We report here the synthesis, characterization, and reactivities of the boraiminolithium species 2, a room-temperature-stable crystalline solid accessible through a facile dehydrohalogenation/deprotonation reaction. This species, bearing a polarized B≡N triple bond and an anionic N center, is the first example of a BN analogue to the well-known alkynyllithium molecules (lithium acetylides). It has demonstrated a remarkable ability for iminoborane-transfer reactions, which allows for the isolation of a series of unprecedented N-functionalized iminoboranes as well as novel main-group heterocycles. Stable boraiminolithium reagents may become powerful tools in the exploration of new BN-containing building blocks for synthetic chemistry and materials science.
Collapse
Affiliation(s)
- Rui Guo
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Tong Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Rui Wei
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Xin Zhang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Qianli Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
| | - Liu Leo Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Lingbing Kong
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
12
|
Gao H, Li Q, Cui P, Tung CH, Kong L. Facile Access to Alkylideneborane and Diborabutadiene N-Heterocyclic Carbene Complexes. Inorg Chem 2021; 60:8432-8436. [PMID: 34043317 DOI: 10.1021/acs.inorgchem.1c00866] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A facile route to synthesis of B═C double-bonded systems has been developed. Specifically, both dibromofluorenylborane (FluH-BBr2) and a 1,1-dibromo-2,2-difluorenyldiborane/dimethyl sulfide adduct [(FluH)2B-BBr2(SMe2)] could be smoothly dehydrobrominated and subsequently coordinated by N-heterocyclic carbenes (NHCs) with formation of the respective alkylideneborane 1 and diborabutadiene 3. The electronic structures of 1 and 3 are interrogated and compared with those of base-free counterparts through density functional theory calculations.
Collapse
Affiliation(s)
- Hao Gao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Qianli Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Ping Cui
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Lingbing Kong
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
13
|
Guo R, Jiang J, Ke Z, Tung CH, Kong L. Incorporation of H 2O and CO 2 into a BN-embedded 3 aH-3 a1H-acephenanthrylene derivative. Chem Commun (Camb) 2021; 57:1226-1229. [PMID: 33416813 DOI: 10.1039/d0cc07276a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A fused tetracyclic BN-species 1 featuring nucleophilic nitrogen and electrophilic boron centers behaves as a reactive N/B frustrated Lewis pair (FLP) for small molecule activation. Specifically, the O-H and C[double bond, length as m-dash]O bonds have been cleaved by 1 with the formation of fused borinic acid 2, borenium species 3, anionic boranuidacarboxylic acid 4 and oxadiazaborolidinone 5, respectively. Quantum-mechanical calculations are conducted to comprehensively understand the activation processes of small molecules by 1.
Collapse
Affiliation(s)
- Rui Guo
- School of Chemistry and Chemical Engineering, Key Lab of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, People's Republic of China.
| | - Jingxing Jiang
- School of Materials Science & Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou 510275, People's Republic of China.
| | - Zhuofeng Ke
- School of Materials Science & Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou 510275, People's Republic of China.
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, Key Lab of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, People's Republic of China.
| | - Lingbing Kong
- School of Chemistry and Chemical Engineering, Key Lab of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, People's Republic of China.
| |
Collapse
|