1
|
Pradhan N, Hilty C. Cross-Polarization of Insensitive Nuclei from Water Protons for Detection of Protein-Ligand Binding. J Am Chem Soc 2024; 146:24754-24758. [PMID: 39225120 PMCID: PMC11403598 DOI: 10.1021/jacs.4c08241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Hyperpolarization derived from water protons enhances the NMR signal of 15N nuclei in a small molecule, enabling the sensitive detection of a protein-ligand interaction. The water hyperpolarized by dissolution dynamic nuclear polarization (D-DNP) acts as a universal signal enhancement agent. The 15N signal of benzamidine was increased by 1480-fold through continuous polarization transfer by J-coupling-mediated cross-polarization (J-CP) via the exchangeable protons. The signal enhancement factor favorably compares to factors of 110- or 17-fold using non-CP-based polarization transfer mechanisms. The hyperpolarization enabled detection of the binding of benzamidine to the target protein trypsin with a single-scan measurement of 15N R2 relaxation. J-CP provides an efficient polarization mechanism for 15N or other low-frequency nuclei near an exchangeable proton. The hyperpolarization transfer sustained within the relaxation time limit of water protons additionally can be applied for the study of macromolecular structure and biological processes.
Collapse
Affiliation(s)
- Nirmalya Pradhan
- Chemistry Department, Texas A&M University, 3255 TAMU, College Station, Texas 77843, United States
| | - Christian Hilty
- Chemistry Department, Texas A&M University, 3255 TAMU, College Station, Texas 77843, United States
| |
Collapse
|
2
|
Eills J, Picazo-Frutos R, Bondar O, Cavallari E, Carrera C, Barker SJ, Utz M, Herrero-Gómez A, Marco-Rius I, Tayler MCD, Aime S, Reineri F, Budker D, Blanchard JW. Enzymatic Reactions Observed with Zero- and Low-Field Nuclear Magnetic Resonance. Anal Chem 2023; 95:17997-18005. [PMID: 38047582 PMCID: PMC10720634 DOI: 10.1021/acs.analchem.3c02087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 09/11/2023] [Indexed: 12/05/2023]
Abstract
We demonstrate that enzyme-catalyzed reactions can be observed in zero- and low-field NMR experiments by combining recent advances in parahydrogen-based hyperpolarization methods with state-of-the-art magnetometry. Specifically, we investigated two model biological processes: the conversion of fumarate into malate, which is used in vivo as a marker of cell necrosis, and the conversion of pyruvate into lactate, which is the most widely studied metabolic process in hyperpolarization-enhanced imaging. In addition to this, we constructed a microfluidic zero-field NMR setup to perform experiments on microliter-scale samples of [1-13C]fumarate in a lab-on-a-chip device. Zero- to ultralow-field (ZULF) NMR has two key advantages over high-field NMR: the signals can pass through conductive materials (e.g., metals), and line broadening from sample heterogeneity is negligible. To date, the use of ZULF NMR for process monitoring has been limited to studying hydrogenation reactions. In this work, we demonstrate this emerging analytical technique for more general reaction monitoring and compare zero- vs low-field detection.
Collapse
Affiliation(s)
- James Eills
- Barcelona
Institute of Science and Technology, Institute
for Bioengineering of Catalonia, Barcelona 08028, Spain
- GSI
Helmholtzzentrum für Schwerionenforschung, Helmholtz-Institut Mainz, Mainz 55128, Germany
- Institute
for Physics, Johannes Gutenberg-Universität
Mainz, Mainz 55099, Germany
| | - Román Picazo-Frutos
- GSI
Helmholtzzentrum für Schwerionenforschung, Helmholtz-Institut Mainz, Mainz 55128, Germany
- Institute
for Physics, Johannes Gutenberg-Universität
Mainz, Mainz 55099, Germany
| | - Oksana Bondar
- Department
of Molecular Biotechnology and Health Sciences, Center of Molecular
Imaging, University of Turin, Turin 10126, Italy
| | - Eleonora Cavallari
- Department
of Molecular Biotechnology and Health Sciences, Center of Molecular
Imaging, University of Turin, Turin 10126, Italy
| | - Carla Carrera
- Institute
of Biostructures and Bioimaging, National Research Council of Italy, Turin 10126, Italy
| | - Sylwia J. Barker
- School of
Chemistry, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Marcel Utz
- School of
Chemistry, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Alba Herrero-Gómez
- Barcelona
Institute of Science and Technology, Institute
for Bioengineering of Catalonia, Barcelona 08028, Spain
| | - Irene Marco-Rius
- Barcelona
Institute of Science and Technology, Institute
for Bioengineering of Catalonia, Barcelona 08028, Spain
| | - Michael C. D. Tayler
- The
Barcelona Institute of Science and Technology, ICFO—Institut de Ciéncies Fotóniques, Castelldefels, Barcelona 08860, Spain
| | - Silvio Aime
- Department
of Molecular Biotechnology and Health Sciences, Center of Molecular
Imaging, University of Turin, Turin 10126, Italy
| | - Francesca Reineri
- Department
of Molecular Biotechnology and Health Sciences, Center of Molecular
Imaging, University of Turin, Turin 10126, Italy
| | - Dmitry Budker
- GSI
Helmholtzzentrum für Schwerionenforschung, Helmholtz-Institut Mainz, Mainz 55128, Germany
- Institute
for Physics, Johannes Gutenberg-Universität
Mainz, Mainz 55099, Germany
- Department
of Physics, University of California at
Berkeley, Berkeley, California 94720, United States
| | - John W. Blanchard
- GSI
Helmholtzzentrum für Schwerionenforschung, Helmholtz-Institut Mainz, Mainz 55128, Germany
- Quantum
Technology Center, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
3
|
Jagtap AP, Mamone S, Glöggler S. Molecular precursors to produce para-hydrogen enhanced metabolites at any field. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2023; 61:674-680. [PMID: 37821237 DOI: 10.1002/mrc.5402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 10/13/2023]
Abstract
Enhancing magnetic resonance signal via hyperpolarization techniques enables the real-time detection of metabolic transformations even in vivo. The use of para-hydrogen to enhance 13 C-enriched metabolites has opened a rapid pathway for the production of hyperpolarized metabolites, which usually requires specialized equipment. Metabolite precursors that can be hyperpolarized and converted into metabolites at any given field would open up opportunities for many labs to make use of this technology because already existing hardware could be used. We report here on the complete synthesis and hyperpolarization of suitable precursor molecules of the side-arm hydrogenation approach. The better accessibility to such side-arms promises that the para-hydrogen approach can be implemented in every lab with existing two channel NMR spectrometers for 1 H and 13 C independent of the magnetic field.
Collapse
Affiliation(s)
- Anil P Jagtap
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medicine Göttingen, Göttingen, Germany
| | - Salvatore Mamone
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medicine Göttingen, Göttingen, Germany
| | - Stefan Glöggler
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medicine Göttingen, Göttingen, Germany
| |
Collapse
|
4
|
Ding Y, Stevanato G, von Bonin F, Kube D, Glöggler S. Real-time cell metabolism assessed repeatedly on the same cells via para-hydrogen induced polarization. Chem Sci 2023; 14:7642-7647. [PMID: 37476713 PMCID: PMC10355108 DOI: 10.1039/d3sc01350b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023] Open
Abstract
Signal-enhanced or hyperpolarized nuclear magnetic resonance (NMR) spectroscopy stands out as a unique tool to monitor real-time enzymatic reactions in living cells. The singlet state of para-hydrogen is thereby one source of spin order that can be converted into largely enhanced signals of e.g. metabolites. Here, we have investigated a parahydrogen-induced polarization (PHIP) approach as a biological assay for in vitro cellular metabolic characterization. Here, we demonstrate the possibility to perform consecutive measurements yielding metabolic information on the same sample. We observed a strongly reduced pyruvate-to-lactate conversion rate (flux) of a Hodgkin's lymphoma cancer cell line L1236 treated with FK866, an inhibitor of nicotinamide phosphoribosyltransferase (NAMPT) affecting the amount of NAD+ and thus NADH in cells. In the consecutive measurement the flux was recovered by NADH to the same amount as in the single-measurement-per-sample and provides a promising new analytical tool for continuous real-time studies combinable with bioreactors and lab-on-a-chip devices in the future.
Collapse
Affiliation(s)
- Yonghong Ding
- Group of NMR Signal Enhancement Max Planck Institute for Multidisciplinary Sciences Am Fassberg 11 37077 Göttingen Germany
- Center for Biostructural Imaging of Neurodegeneration University Medical Center Göttingen Von-Siebold-Str. 3A 37075 Göttingen Germany
| | - Gabriele Stevanato
- Group of NMR Signal Enhancement Max Planck Institute for Multidisciplinary Sciences Am Fassberg 11 37077 Göttingen Germany
- Center for Biostructural Imaging of Neurodegeneration University Medical Center Göttingen Von-Siebold-Str. 3A 37075 Göttingen Germany
| | - Frederike von Bonin
- Clinic for Hematology and Medical Oncology University Medical Center Göttingen Robert-Koch-Str. 40 37075 Göttingen Germany
| | - Dieter Kube
- Clinic for Hematology and Medical Oncology University Medical Center Göttingen Robert-Koch-Str. 40 37075 Göttingen Germany
| | - Stefan Glöggler
- Group of NMR Signal Enhancement Max Planck Institute for Multidisciplinary Sciences Am Fassberg 11 37077 Göttingen Germany
- Center for Biostructural Imaging of Neurodegeneration University Medical Center Göttingen Von-Siebold-Str. 3A 37075 Göttingen Germany
| |
Collapse
|
5
|
Stevanato G, Ding Y, Mamone S, Jagtap AP, Korchak S, Glöggler S. Real-Time Pyruvate Chemical Conversion Monitoring Enabled by PHIP. J Am Chem Soc 2023; 145:5864-5871. [PMID: 36857108 PMCID: PMC10021011 DOI: 10.1021/jacs.2c13198] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
In recent years, parahydrogen-induced polarization side arm hydrogenation (PHIP-SAH) has been applied to hyperpolarize [1-13C]pyruvate and map its metabolic conversion to [1-13C]lactate in cancer cells. Developing on our recent MINERVA pulse sequence protocol, in which we have achieved 27% [1-13C]pyruvate carbon polarization, we demonstrate the hyperpolarization of [1,2-13C]pyruvate (∼7% polarization on each 13C spin) via PHIP-SAH. By altering a single parameter in the pulse sequence, MINERVA enables the signal enhancement of C1 and/or C2 in [1,2-13C]pyruvate with the opposite phase, which allows for the simultaneous monitoring of different chemical reactions with enhanced spectral contrast or for the same reaction via different carbon sites. We first demonstrate the ability to monitor the same enzymatic pyruvate to lactate conversion at 7T in an aqueous solution, in vitro, and in-cell (HeLa cells) via different carbon sites. In a second set of experiments, we use the C1 and C2 carbon positions as spectral probes for simultaneous chemical reactions: the production of acetate, carbon dioxide, bicarbonate, and carbonate by reacting [1,2-13C]pyruvate with H2O2 at a high temperature (55 °C). Importantly, we detect and characterize the intermediate 2-hydroperoxy-2-hydroxypropanoate in real time and at high temperature.
Collapse
Affiliation(s)
- Gabriele Stevanato
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration of the University Medical Center Göttingen, Von-Siebold-Street 3A, 37075 Göttingen, Germany
| | - Yonghong Ding
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration of the University Medical Center Göttingen, Von-Siebold-Street 3A, 37075 Göttingen, Germany
| | - Salvatore Mamone
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration of the University Medical Center Göttingen, Von-Siebold-Street 3A, 37075 Göttingen, Germany
| | - Anil P Jagtap
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration of the University Medical Center Göttingen, Von-Siebold-Street 3A, 37075 Göttingen, Germany
| | - Sergey Korchak
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration of the University Medical Center Göttingen, Von-Siebold-Street 3A, 37075 Göttingen, Germany
| | - Stefan Glöggler
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration of the University Medical Center Göttingen, Von-Siebold-Street 3A, 37075 Göttingen, Germany
| |
Collapse
|
6
|
Hune T, Mamone S, Schroeder H, Jagtap AP, Sternkopf S, Stevanato G, Korchak S, Fokken C, Müller CA, Schmidt AB, Becker D, Glöggler S. Metabolic Tumor Imaging with Rapidly Signal-Enhanced 1- 13 C-Pyruvate-d 3. Chemphyschem 2023; 24:e202200615. [PMID: 36106366 PMCID: PMC10092681 DOI: 10.1002/cphc.202200615] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/14/2022] [Indexed: 01/20/2023]
Abstract
The metabolism of malignant cells differs significantly from that of healthy cells and thus, it is possible to perform metabolic imaging to reveal not only the exact location of a tumor, but also intratumoral areas of high metabolic activity. Herein, we demonstrate the feasibility of metabolic tumor imaging using signal-enhanced 1-13 C-pyruvate-d3 , which is rapidly enhanced via para-hydrogen, and thus, the signal is amplified by several orders of magnitudes in less than a minute. Using as a model, human melanoma xenografts injected with signal-enhanced 1-13 C-pyruvate-d3, we show that the conversion of pyruvate into lactate can be monitored along with its kinetics, which could pave the way for rapidly detecting and monitoring changes in tumor metabolism.
Collapse
Affiliation(s)
- Theresa Hune
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration of the University Medical Center Göttingen, Von-Siebold-Str. 3A, 37075, Göttigen, Germany
| | - Salvatore Mamone
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration of the University Medical Center Göttingen, Von-Siebold-Str. 3A, 37075, Göttigen, Germany
| | - Henning Schroeder
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration of the University Medical Center Göttingen, Von-Siebold-Str. 3A, 37075, Göttigen, Germany
| | - Anil P Jagtap
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration of the University Medical Center Göttingen, Von-Siebold-Str. 3A, 37075, Göttigen, Germany
| | - Sonja Sternkopf
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration of the University Medical Center Göttingen, Von-Siebold-Str. 3A, 37075, Göttigen, Germany
| | - Gabriele Stevanato
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration of the University Medical Center Göttingen, Von-Siebold-Str. 3A, 37075, Göttigen, Germany
| | - Sergey Korchak
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration of the University Medical Center Göttingen, Von-Siebold-Str. 3A, 37075, Göttigen, Germany
| | - Claudia Fokken
- Department of NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Christoph A Müller
- German Cancer Consortium (DKTK), partner site Freiburg, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany.,Division of Medical Physics, Department of Radiology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK), partner site Freiburg, Killianstr. 5a, Freiburg, 79106, Germany
| | - Andreas B Schmidt
- German Cancer Consortium (DKTK), partner site Freiburg, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany.,Division of Medical Physics, Department of Radiology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK), partner site Freiburg, Killianstr. 5a, Freiburg, 79106, Germany.,Integrative Biosciences (Ibio), Department of Chemistry, Karmanos Cancer Institute (KCI), Wayne State University, 5101 Cass Ave, 48202, Detroit, MI, USA
| | - Dorothea Becker
- Department of NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Stefan Glöggler
- NMR Signal Enhancement Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration of the University Medical Center Göttingen, Von-Siebold-Str. 3A, 37075, Göttigen, Germany
| |
Collapse
|
7
|
Mamone S, Jagtap AP, Korchak S, Ding Y, Sternkopf S, Glöggler S. A Field-Independent Method for the Rapid Generation of Hyperpolarized [1- 13 C]Pyruvate in Clean Water Solutions for Biomedical Applications. Angew Chem Int Ed Engl 2022; 61:e202206298. [PMID: 35723041 PMCID: PMC9543135 DOI: 10.1002/anie.202206298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Indexed: 11/08/2022]
Abstract
Hyperpolarization methods in magnetic resonance enhance the signals by several orders of magnitude, opening new windows for real-time investigations of dynamic processes in vitro and in vivo. Here, we propose a field-independent para-hydrogen-based pulsed method to produce rapidly hyperpolarized 13 C-labeled substrates. We demonstrate the method by polarizing the carboxylic carbon of the pyruvate moiety in a purposely designed precursor to 24 % at ≈22 mT. Following a fast purification procedure, we measure 8 % polarization on free [1-13 C]pyruvate in clean water solutions at physiological conditions at 7 T. The enhanced signals allow real-time monitoring of the pyruvate-lactate conversion in cancer cells, demonstrating the potential of the method for biomedical applications in combination with existing or developing magnetic resonance technologies.
Collapse
Affiliation(s)
- Salvatore Mamone
- Max Planck Institute for Multidisciplinary SciencesNMR Signal Enhancement GroupAm Fassberg 1137077GöttingenGermany
- Center for Biostructural Imaging of Neurodegeneration of UMGNMR Signal Enhancement GroupVon-Siebold-Straße 3 A37075GöttingenGermany
| | - Anil P. Jagtap
- Max Planck Institute for Multidisciplinary SciencesNMR Signal Enhancement GroupAm Fassberg 1137077GöttingenGermany
- Center for Biostructural Imaging of Neurodegeneration of UMGNMR Signal Enhancement GroupVon-Siebold-Straße 3 A37075GöttingenGermany
| | - Sergey Korchak
- Max Planck Institute for Multidisciplinary SciencesNMR Signal Enhancement GroupAm Fassberg 1137077GöttingenGermany
- Center for Biostructural Imaging of Neurodegeneration of UMGNMR Signal Enhancement GroupVon-Siebold-Straße 3 A37075GöttingenGermany
| | - Yonghong Ding
- Max Planck Institute for Multidisciplinary SciencesNMR Signal Enhancement GroupAm Fassberg 1137077GöttingenGermany
- Center for Biostructural Imaging of Neurodegeneration of UMGNMR Signal Enhancement GroupVon-Siebold-Straße 3 A37075GöttingenGermany
| | - Sonja Sternkopf
- Max Planck Institute for Multidisciplinary SciencesNMR Signal Enhancement GroupAm Fassberg 1137077GöttingenGermany
- Center for Biostructural Imaging of Neurodegeneration of UMGNMR Signal Enhancement GroupVon-Siebold-Straße 3 A37075GöttingenGermany
| | - Stefan Glöggler
- Max Planck Institute for Multidisciplinary SciencesNMR Signal Enhancement GroupAm Fassberg 1137077GöttingenGermany
- Center for Biostructural Imaging of Neurodegeneration of UMGNMR Signal Enhancement GroupVon-Siebold-Straße 3 A37075GöttingenGermany
| |
Collapse
|
8
|
Mamone S, Jagtap AP, Korchak S, Ding Y, Sternkopf S, Glöggler S. A Field‐Independent Method for the Rapid Generation of Hyperpolarized [1‐13C]Pyruvate in Clean Water Solutions for Biomedical Applications. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Salvatore Mamone
- Max Planck Institute for Multidisciplinary Sciences - Fassberg Campus: Max-Planck-Institut fur Multidisziplinare Naturwissenschaften NMR Signal Enhancement GERMANY
| | - Anil P Jagtap
- Max Planck Institute for Multidisciplinary Sciences: Max-Planck-Institut fur Multidisziplinare Naturwissenschaften NMR Signal Enhancement GERMANY
| | - Sergey Korchak
- Max Planck Institute for Multidisciplinary Sciences: Max-Planck-Institut fur Multidisziplinare Naturwissenschaften NMR Signal Enhancement GERMANY
| | - Yonghong Ding
- Max Planck Institute for Multidisciplinary Sciences: Max-Planck-Institut fur Multidisziplinare Naturwissenschaften NMR Signal Enhancement GERMANY
| | - Sonja Sternkopf
- Max Planck Institute for Multidisciplinary Sciences: Max-Planck-Institut fur Multidisziplinare Naturwissenschaften NMR Signal Enhancement GERMANY
| | - Stefan Glöggler
- Max-Planck-Institute for Biophysical Chemistry NMR Signal Enhancement Group Am Fassberg 11 37077 Göttingen GERMANY
| |
Collapse
|
9
|
Schmidt AB, Bowers CR, Buckenmaier K, Chekmenev EY, de Maissin H, Eills J, Ellermann F, Glöggler S, Gordon JW, Knecht S, Koptyug IV, Kuhn J, Pravdivtsev AN, Reineri F, Theis T, Them K, Hövener JB. Instrumentation for Hydrogenative Parahydrogen-Based Hyperpolarization Techniques. Anal Chem 2022; 94:479-502. [PMID: 34974698 PMCID: PMC8784962 DOI: 10.1021/acs.analchem.1c04863] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Andreas B. Schmidt
- Department of Radiology – Medical Physics, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, Freiburg 79106, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - C. Russell Bowers
- Department of Chemistry, University of Florida, 2001 Museum Road, Gainesville, Florida 32611, USA
- National High Magnetic Field Laboratory, 1800 E. Paul Dirac Drive, Tallahassee, Florida 32310, USA
| | - Kai Buckenmaier
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Max-Planck-Ring 11, 72076, Tübingen, Germany
| | - Eduard Y. Chekmenev
- Intergrative Biosciences (Ibio), Department of Chemistry, Karmanos Cancer Institute (KCI), Wayne State University, 5101 Cass Ave, Detroit, MI 48202, United States
- Russian Academy of Sciences (RAS), Leninskiy Prospect, 14, 119991 Moscow, Russia
| | - Henri de Maissin
- Department of Radiology – Medical Physics, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, Freiburg 79106, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - James Eills
- Institute for Physics, Johannes Gutenberg University, D-55090 Mainz, Germany
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Helmholtz-Institut Mainz, 55128 Mainz, Germany
| | - Frowin Ellermann
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Stefan Glöggler
- NMR Signal Enhancement Group Max Planck Institutefor Biophysical Chemistry Am Fassberg 11, 37077 Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration of UMG Von-Siebold-Str. 3A, 37075 Göttingen, Germany
| | - Jeremy W. Gordon
- Department of Radiology & Biomedical Imaging, University of California San Francisco, 185 Berry St., San Francisco, CA, 94158, USA
| | | | - Igor V. Koptyug
- International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
| | - Jule Kuhn
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Andrey N. Pravdivtsev
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Francesca Reineri
- Dept. Molecular Biotechnology and Health Sciences, Via Nizza 52, University of Torino, Italy
| | - Thomas Theis
- Departments of Chemistry, Physics and Biomedical Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Kolja Them
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| |
Collapse
|
10
|
Tsagogiannis E, Vandera E, Primikyri A, Asimakoula S, Tzakos AG, Gerothanassis IP, Koukkou AI. Characterization of Protocatechuate 4,5-Dioxygenase from Pseudarthrobacter phenanthrenivorans Sphe3 and In Situ Reaction Monitoring in the NMR Tube. Int J Mol Sci 2021; 22:9647. [PMID: 34502555 PMCID: PMC8431788 DOI: 10.3390/ijms22179647] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022] Open
Abstract
The current study aims at the functional and kinetic characterization of protocatechuate (PCA) 4,5-dioxygenase (PcaA) from Pseudarthrobacter phenanthrenivorans Sphe3. This is the first single subunit Type II dioxygenase characterized in Actinobacteria. RT-PCR analysis demonstrated that pcaA and the adjacent putative genes implicated in the PCA meta-cleavage pathway comprise a single transcriptional unit. The recombinant PcaA is highly specific for PCA and exhibits Michaelis-Menten kinetics with Km and Vmax values of 21 ± 1.6 μM and 44.8 ± 4.0 U × mg-1, respectively, in pH 9.5 and at 20 °C. PcaA also converted gallate from a broad range of substrates tested. The enzymatic reaction products were identified and characterized, for the first time, through in situ biotransformation monitoring inside an NMR tube. The PCA reaction product demonstrated a keto-enol tautomerization, whereas the gallate reaction product was present only in the keto form. Moreover, the transcriptional levels of pcaA and pcaR (gene encoding a LysR-type regulator of the pathway) were also determined, showing an induction when cells were grown on PCA and phenanthrene. Studying key enzymes in biodegradation pathways is significant for bioremediation and for efficient biocatalysts development.
Collapse
Affiliation(s)
- Epameinondas Tsagogiannis
- Laboratory of Biochemistry, Sector of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (E.T.); (E.V.); (S.A.)
| | - Elpiniki Vandera
- Laboratory of Biochemistry, Sector of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (E.T.); (E.V.); (S.A.)
| | - Alexandra Primikyri
- Laboratory of Organic Chemistry, Sector of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (A.P.); (A.G.T.); (I.P.G.)
| | - Stamatia Asimakoula
- Laboratory of Biochemistry, Sector of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (E.T.); (E.V.); (S.A.)
| | - Andreas G. Tzakos
- Laboratory of Organic Chemistry, Sector of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (A.P.); (A.G.T.); (I.P.G.)
| | - Ioannis P. Gerothanassis
- Laboratory of Organic Chemistry, Sector of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (A.P.); (A.G.T.); (I.P.G.)
| | - Anna-Irini Koukkou
- Laboratory of Biochemistry, Sector of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece; (E.T.); (E.V.); (S.A.)
| |
Collapse
|
11
|
Laine S, Morfin JF, Galibert M, Aucagne V, Bonnet CS, Tóth É. Lanthanide DO3A-Complexes Bearing Peptide Substrates: The Effect of Peptidic Side Chains on Metal Coordination and Relaxivity. Molecules 2021; 26:2176. [PMID: 33918899 PMCID: PMC8069257 DOI: 10.3390/molecules26082176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 12/22/2022] Open
Abstract
Two DO3A-type ligands conjugated to substrates of urokinase (L3) and caspase-3 (L4) via a propyl-amide linker were synthesized and their lanthanide(III) (Ln3+) complexes studied. A model compound without peptide substrate (L2) and an amine derivative ligand mimicking the state after enzymatic cleavage (L1) were also prepared. Proton Nuclear Magnetic Relaxation Dispersion (NMRD) profiles recorded on the gadolinium(III) (Gd3+) complexes, complemented with the assessment of hydration numbers via luminescence lifetime measurements on the Eu3+ analogues, allowed us to characterize the lanthanide coordination sphere in the chelates. These data suggest that the potential donor groups of the peptide side chains (carboxylate, amine) interfere in metal coordination, leading to non-hydrated LnL3 and LnL4 complexes. Nevertheless, GdL3 and GdL4 retain a relatively high relaxivity due to an important second-sphere contribution generated by the strongly hydrophilic peptide chain. Weak PARACEST effects are detected for the amine-derivative EuL1 and NdL1 chelates. Unfortunately, the GdL3 and GdL4 complexes are not significantly converted by the enzymes. The lack of enzymatic recognition of these complexes can likely be explained by the participation of donor groups from the peptide side chain in metal coordination.
Collapse
Affiliation(s)
| | | | | | | | | | - Éva Tóth
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron, CEDEX 2, 45071 Orléans, France; (S.L.); (J.-F.M.); (M.G.); (V.A.); (C.S.B.)
| |
Collapse
|