1
|
Ding G, Li H, Zhao J, Zhou K, Zhai Y, Lv Z, Zhang M, Yan Y, Han ST, Zhou Y. Nanomaterials for Flexible Neuromorphics. Chem Rev 2024. [PMID: 39499851 DOI: 10.1021/acs.chemrev.4c00369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
The quest to imbue machines with intelligence akin to that of humans, through the development of adaptable neuromorphic devices and the creation of artificial neural systems, has long stood as a pivotal goal in both scientific inquiry and industrial advancement. Recent advancements in flexible neuromorphic electronics primarily rely on nanomaterials and polymers owing to their inherent uniformity, superior mechanical and electrical capabilities, and versatile functionalities. However, this field is still in its nascent stage, necessitating continuous efforts in materials innovation and device/system design. Therefore, it is imperative to conduct an extensive and comprehensive analysis to summarize current progress. This review highlights the advancements and applications of flexible neuromorphics, involving inorganic nanomaterials (zero-/one-/two-dimensional, and heterostructure), carbon-based nanomaterials such as carbon nanotubes (CNTs) and graphene, and polymers. Additionally, a comprehensive comparison and summary of the structural compositions, design strategies, key performance, and significant applications of these devices are provided. Furthermore, the challenges and future directions pertaining to materials/devices/systems associated with flexible neuromorphics are also addressed. The aim of this review is to shed light on the rapidly growing field of flexible neuromorphics, attract experts from diverse disciplines (e.g., electronics, materials science, neurobiology), and foster further innovation for its accelerated development.
Collapse
Affiliation(s)
- Guanglong Ding
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, PR China
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Hang Li
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China
| | - JiYu Zhao
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
| | - Kui Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China
- The Construction Quality Supervision and Inspection Station of Zhuhai, Zhuhai 519000, PR China
| | - Yongbiao Zhai
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Ziyu Lv
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Meng Zhang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, PR China
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Yan Yan
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, PR China
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Su-Ting Han
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom 999077, Hong Kong SAR PR China
| | - Ye Zhou
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, PR China
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China
| |
Collapse
|
2
|
Mei H, Zhang Y, Zhang P, Ricciardulli AG, Samorì P, Yang S. Entropy Engineering of 2D Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2409404. [PMID: 39443829 DOI: 10.1002/advs.202409404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/11/2024] [Indexed: 10/25/2024]
Abstract
Entropy, a measure of disorder or uncertainty in the thermodynamics system, has been widely used to confer desirable functions to alloys and ceramics. The incorporation of three or more principal elements into a single sublattice increases the entropy to medium and high levels, imparting these materials a mélange of advanced mechanical and catalytic properties. In particular, when scaling down the dimensionality of crystals from bulk to the 2D space, the interplay between entropy stabilization and quantum confinement offers enticing opportunities for exploring new fundamental science and applications, since the structural ordering, phase stability, and local electronic states of these distorted 2D materials get significantly reshaped. During the last few years, the large family of high-entropy 2D materials is rapidly expanding to host MXenes, hydrotalcites, chalcogenides, metal-organic frameworks (MOFs), and many other uncharted members. Here, the recent advances in this dynamic field are reviewed, elucidating the influence of entropy on the fundamental properties and underlying elementary mechanisms of 2D materials. In particular, their structure-property relationships resulting from theoretical predictions and experimental findings are discussed. Furthermore, an outlook on the key challenges and opportunities of such an emerging field of 2D materials is also provided.
Collapse
Affiliation(s)
- Hao Mei
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuxuan Zhang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Panpan Zhang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | | | - Paolo Samorì
- University of Strasbourg, CNRS, ISIS UMR 7006, Strasbourg, 67000, France
| | - Sheng Yang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
3
|
Vijayakumar S, Alberstein RG, Zhang Z, Lu YS, Chan A, Wahl CE, Ha JS, Hunka DE, Boss GR, Sailor MJ, Tezcan FA. Designed 2D protein crystals as dynamic molecular gatekeepers for a solid-state device. Nat Commun 2024; 15:6326. [PMID: 39068153 PMCID: PMC11283500 DOI: 10.1038/s41467-024-50567-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 07/12/2024] [Indexed: 07/30/2024] Open
Abstract
The sensitivity and responsiveness of living cells to environmental changes are enabled by dynamic protein structures, inspiring efforts to construct artificial supramolecular protein assemblies. However, despite their sophisticated structures, designed protein assemblies have yet to be incorporated into macroscale devices for real-life applications. We report a 2D crystalline protein assembly of C98/E57/E66L-rhamnulose-1-phosphate aldolase (CEERhuA) that selectively blocks or passes molecular species when exposed to a chemical trigger. CEERhuA crystals are engineered via cobalt(II) coordination bonds to undergo a coherent conformational change from a closed state (pore dimensions <1 nm) to an ajar state (pore dimensions ~4 nm) when exposed to an HCN(g) trigger. When layered onto a mesoporous silicon (pSi) photonic crystal optical sensor configured to detect HCN(g), the 2D CEERhuA crystal layer effectively blocks interferents that would otherwise result in a false positive signal. The 2D CEERhuA crystal layer opens in selective response to low-ppm levels of HCN(g), allowing analyte penetration into the pSi sensor layer for detection. These findings illustrate that designed protein assemblies can function as dynamic components of solid-state devices in non-aqueous environments.
Collapse
Affiliation(s)
- Sanahan Vijayakumar
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Robert G Alberstein
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Zhiyin Zhang
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Yi-Sheng Lu
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Adriano Chan
- Department of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | | | - James S Ha
- Leidos, 4161 Campus Point Ct, San Diego, CA, 92121, USA
- Battelle, 505 King Ave Columbus, Ohio, OH, 43201, USA
| | | | - Gerry R Boss
- Department of Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Michael J Sailor
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA, 92093, USA.
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA.
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - F Akif Tezcan
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA, 92093, USA.
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
4
|
Qin T, Wang T, Zhu J. Recent progress in on-surface synthesis of nanoporous graphene materials. Commun Chem 2024; 7:154. [PMID: 38977754 PMCID: PMC11231364 DOI: 10.1038/s42004-024-01222-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/07/2024] [Indexed: 07/10/2024] Open
Abstract
Nanoporous graphene (NPG) materials are generated by removing internal degree-3 vertices from graphene and introducing nanopores with specific topological structures, which have been widely explored and exploited for applications in electronic devices, membranes, and energy storage. The inherent properties of NPGs, such as the band structures, field effect mobilities and topological properties, are crucially determined by the geometric structure of nanopores. On-surface synthesis is an emerging strategy to fabricate low-dimensional carbon nanostructures with atomic precision. In this review, we introduce the progress of on-surface synthesis of atomically precise NPGs, and classify NPGs from the aspects of element types, topological structures, pore shapes, and synthesis strategies. We aim to provide a comprehensive overview of the recent advancements, promoting interdisciplinary collaboration to further advance the synthesis and applications of NPGs.
Collapse
Affiliation(s)
- Tianchen Qin
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Tao Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, P. R. China.
| | - Junfa Zhu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China.
| |
Collapse
|
5
|
Jia H, Yao N, Jin Y, Wu L, Zhu J, Luo W. Stabilizing atomic Ru species in conjugated sp 2 carbon-linked covalent organic framework for acidic water oxidation. Nat Commun 2024; 15:5419. [PMID: 38926414 PMCID: PMC11208516 DOI: 10.1038/s41467-024-49834-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 06/20/2024] [Indexed: 06/28/2024] Open
Abstract
Suppressing the kinetically favorable lattice oxygen oxidation mechanism pathway and triggering the adsorbate evolution mechanism pathway at the expense of activity are the state-of-the-art strategies for Ru-based electrocatalysts toward acidic water oxidation. Herein, atomically dispersed Ru species are anchored into an acidic stable vinyl-linked 2D covalent organic framework with unique crossed π-conjugation, termed as COF-205-Ru. The crossed π-conjugated structure of COF-205-Ru not only suppresses the dissolution of Ru through strong Ru-N motifs, but also reduces the oxidation state of Ru by multiple π-conjugations, thereby activating the oxygen coordinated to Ru and stabilizing the oxygen vacancies during oxygen evolution process. Experimental results including X-ray absorption spectroscopy, in situ Raman spectroscopy, in situ powder X-ray diffraction patterns, and theoretical calculations unveil the activated oxygen with elevated energy level of O 2p band, decreased oxygen vacancy formation energy, promoted electrochemical stability, and significantly reduced energy barrier of potential determining step for acidic water oxidation. Consequently, the obtained COF-205-Ru displays a high mass activity with 2659.3 A g-1, which is 32-fold higher than the commercial RuO2, and retains long-term durability of over 280 h. This work provides a strategy to simultaneously promote the stability and activity of Ru-based catalysts for acidic water oxidation.
Collapse
Affiliation(s)
- Hongnan Jia
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, PR China
| | - Na Yao
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, Hubei, 430073, PR China
| | - Yiming Jin
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, PR China
| | - Liqing Wu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, PR China
| | - Juan Zhu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, PR China
| | - Wei Luo
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, PR China.
| |
Collapse
|
6
|
Pallasch SM, Bhosale M, Smales GJ, Schmidt C, Riedel S, Zhao-Karger Z, Esser B, Dumele O. Porous Azatruxene Covalent Organic Frameworks for Anion Insertion in Battery Cells. J Am Chem Soc 2024; 146:17318-17324. [PMID: 38869185 DOI: 10.1021/jacs.4c04044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Covalent organic frameworks (COFs) containing well-defined redox-active groups have become competitive materials for next-generation batteries. Although high potentials and rate performance can be expected, only a few examples of p-type COFs have been reported for charge storage to date with even fewer examples on the use of COFs in multivalent ion batteries. Herein, we report the synthesis of a p-type highly porous and crystalline azatruxene-based COF and its application as a positive electrode material in Li- and Mg-based batteries. When this material is used in Li-based half cells as a COF/carbon nanotube (CNT) electrode, a discharge potential of 3.9 V is obtained with discharge capacities of up to 70 mAh g-1 at a 2 C rate. In Mg batteries using a tetrakis(hexafluoroisopropyloxy)borate electrolyte, cycling proceeds with an average discharge voltage of 2.9 V. Even at a fast current rate of 5 C, the capacity retention amounts to 84% over 1000 cycles.
Collapse
Affiliation(s)
- Sebastian M Pallasch
- Department of Chemistry & IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, D-12489 Berlin, Germany
| | - Manik Bhosale
- Institute of Organic Chemistry II and Advanced Materials, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Glen J Smales
- Bundesanstalt für Materialforschung und -prüfung (BAM), 12205 Berlin, Germany
| | - Caroline Schmidt
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany
| | - Sibylle Riedel
- Helmholtz Institute Ulm (HIU), Helmholtzstrasse 11, 89081 Ulm, Germany
| | - Zhirong Zhao-Karger
- Helmholtz Institute Ulm (HIU), Helmholtzstrasse 11, 89081 Ulm, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Birgit Esser
- Institute of Organic Chemistry II and Advanced Materials, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Oliver Dumele
- Department of Chemistry & IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, D-12489 Berlin, Germany
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany
| |
Collapse
|
7
|
Jia B, Liu W, Yao C, Xie W, Xu Y. SO 3-COF@Al 2O 3 modified cathode electrode materials enhance the cycling ability of lithium sulfur batteries. Chem Commun (Camb) 2024; 60:6435-6438. [PMID: 38829288 DOI: 10.1039/d4cc01678e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Herein, a covalent organic framework (SO3-COF) containing sulfonic acid groups has been developed on the surface of alumina by a one-step method, labeled as SO3-COF@Al2O3. The experimental results show that SO3-COF@Al2O3 can effectively inhibit the shuttle effect of soluble lithium polysulfide (LiPSs) in LSBs after loading the active material sulfur, and exhibits better cycling behavior than the initial polymer SO3-COF. The initial discharge specific capacity of this electrode material at 0.05C is as high as 1141 mA h g-1, and the capacity can be maintained at 466 mA h g-1 after 500 cycles with a capacity decay rate of 0.08% per cycle.
Collapse
Affiliation(s)
- Bingxin Jia
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials, Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education (Jilin Normal University), Ministry of Education, Changchun, China.
| | - Wenhui Liu
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials, Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education (Jilin Normal University), Ministry of Education, Changchun, China.
| | - Chan Yao
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials, Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education (Jilin Normal University), Ministry of Education, Changchun, China.
| | - Wei Xie
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials, Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education (Jilin Normal University), Ministry of Education, Changchun, China.
| | - Yanhong Xu
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials, Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education (Jilin Normal University), Ministry of Education, Changchun, China.
| |
Collapse
|
8
|
Gupta RK, Asanuma H, Giner-Casares JJ, Hashimoto A, Ogawa T, Nakanishi T. A compound eye-like morphology formed through hexagonal array of hemispherical microparticles where an alkyl-fullerene derivative self-assembled at atmosphere-sealed air/water interface. NANOTECHNOLOGY 2024; 35:335603. [PMID: 38749413 DOI: 10.1088/1361-6528/ad4bef] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/15/2024] [Indexed: 05/31/2024]
Abstract
Self-assembly processes are widely used in nature to form hierarchically organized structures, prompting us to investigate such processes at the macroscopic scale. We report an unprecedented approach toward the self-assembly of alkyl-fullerene (C60) derivatives into a hexagonal array of hemispherical microparticles akin to the morphology of a compound eye. The method includes casting solvated alkyl-C60compound on an air/water interface followed by controlled evaporation of the solvent under atmosphere-sealed conditions. This leads to the formation of a thin film floating on water with a diameter of up to 1.3 centimeters and exhibiting a hexagonally-packed hemispherical structure with a diameter of approximately 38µm. Various measurements of the formed film reveal that amorphousness is necessary for suppressing uncontrollable crystallization, which affects the microparticle size and film formation mechanism. We tested the feasibility of this approach for the self-assembly of a relatively common C60derivative, [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM), resulting in the formation of a film with a similar pattern of hexagonally-packed larger microparticles approximately 152µm in size of diameter.
Collapse
Affiliation(s)
- Ravindra Kumar Gupta
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Hidehiko Asanuma
- Department of Interfaces, Max-Planck-Institute of Colloids and Interfaces, Research Campus Golm, Potsdam 14424, Germany
| | - Juan J Giner-Casares
- Department of Interfaces, Max-Planck-Institute of Colloids and Interfaces, Research Campus Golm, Potsdam 14424, Germany
| | - Ayako Hashimoto
- Center for Basic Research on Materials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan
| | - Tetsuya Ogawa
- Institute for Chemical Research, Kyoto University, Kyoto 611-0011, Japan
| | - Takashi Nakanishi
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
- Department of Interfaces, Max-Planck-Institute of Colloids and Interfaces, Research Campus Golm, Potsdam 14424, Germany
| |
Collapse
|
9
|
Han J, Bai X, Xu X, Bai X, Husile A, Zhang S, Qi L, Guan J. Advances and challenges in the electrochemical reduction of carbon dioxide. Chem Sci 2024; 15:7870-7907. [PMID: 38817558 PMCID: PMC11134526 DOI: 10.1039/d4sc01931h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/30/2024] [Indexed: 06/01/2024] Open
Abstract
The electrocatalytic carbon dioxide reduction reaction (ECO2RR) is a promising way to realize the transformation of waste into valuable material, which can not only meet the environmental goal of reducing carbon emissions, but also obtain clean energy and valuable industrial products simultaneously. Herein, we first introduce the complex CO2RR mechanisms based on the number of carbons in the product. Since the coupling of C-C bonds is unanimously recognized as the key mechanism step in the ECO2RR for the generation of high-value products, the structural-activity relationship of electrocatalysts is systematically reviewed. Next, we comprehensively classify the latest developments, both experimental and theoretical, in different categories of cutting-edge electrocatalysts and provide theoretical insights on various aspects. Finally, challenges are discussed from the perspectives of both materials and devices to inspire researchers to promote the industrial application of the ECO2RR at the earliest.
Collapse
Affiliation(s)
- Jingyi Han
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| | - Xue Bai
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| | - Xiaoqin Xu
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| | - Xue Bai
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| | - Anaer Husile
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| | - Siying Zhang
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| | - Luoluo Qi
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| | - Jingqi Guan
- Institute of Physical Chemistry, College of Chemistry, Jilin University Changchun 130021 PR China
| |
Collapse
|
10
|
Cooley I, Boobier S, Hirst JD, Besley E. Machine learning insights into predicting biogas separation in metal-organic frameworks. Commun Chem 2024; 7:102. [PMID: 38720065 PMCID: PMC11549324 DOI: 10.1038/s42004-024-01166-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/02/2024] [Indexed: 11/10/2024] Open
Abstract
Breakthroughs in efficient use of biogas fuel depend on successful separation of carbon dioxide/methane streams and identification of appropriate separation materials. In this work, machine learning models are trained to predict biogas separation properties of metal-organic frameworks (MOFs). Training data are obtained using grand canonical Monte Carlo simulations of experimental MOFs which have been carefully curated to ensure data quality and structural viability. The models show excellent performance in predicting gas uptake and classifying MOFs according to the trade-off between gas uptake and selectivity, with R2 values consistently above 0.9 for the validation set. We make prospective predictions on an independent external set of hypothetical MOFs, and examine these predictions in comparison to the results of grand canonical Monte Carlo calculations. The best-performing trained models correctly filter out over 90% of low-performing unseen MOFs, illustrating their applicability to other MOF datasets.
Collapse
Affiliation(s)
- Isabel Cooley
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Samuel Boobier
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Jonathan D Hirst
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Elena Besley
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| |
Collapse
|
11
|
Islam MR, Afroj S, Yin J, Novoselov KS, Chen J, Karim N. Advances in Printed Electronic Textiles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304140. [PMID: 38009793 PMCID: PMC10853734 DOI: 10.1002/advs.202304140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/11/2023] [Indexed: 11/29/2023]
Abstract
Electronic textiles (e-textiles) have emerged as a revolutionary solution for personalized healthcare, enabling the continuous collection and communication of diverse physiological parameters when seamlessly integrated with the human body. Among various methods employed to create wearable e-textiles, printing offers unparalleled flexibility and comfort, seamlessly integrating wearables into garments. This has spurred growing research interest in printed e-textiles, due to their vast design versatility, material options, fabrication techniques, and wide-ranging applications. Here, a comprehensive overview of the crucial considerations in fabricating printed e-textiles is provided, encompassing the selection of conductive materials and substrates, as well as the essential pre- and post-treatments involved. Furthermore, the diverse printing techniques and the specific requirements are discussed, highlighting the advantages and limitations of each method. Additionally, the multitude of wearable applications made possible by printed e-textiles is explored, such as their integration as various sensors, supercapacitors, and heated garments. Finally, a forward-looking perspective is provided, discussing future prospects and emerging trends in the realm of printed wearable e-textiles. As advancements in materials science, printing technologies, and design innovation continue to unfold, the transformative potential of printed e-textiles in healthcare and beyond is poised to revolutionize the way wearable technology interacts and benefits.
Collapse
Affiliation(s)
- Md Rashedul Islam
- Centre for Print Research (CFPR)University of the West of EnglandFrenchay CampusBristolBS16 1QYUK
| | - Shaila Afroj
- Centre for Print Research (CFPR)University of the West of EnglandFrenchay CampusBristolBS16 1QYUK
| | - Junyi Yin
- Department of BioengineeringUniversity of CaliforniaLos AngelesCA90095USA
| | - Kostya S. Novoselov
- Institute for Functional Intelligent MaterialsDepartment of Materials Science and EngineeringNational University of SingaporeSingapore117575Singapore
| | - Jun Chen
- Department of BioengineeringUniversity of CaliforniaLos AngelesCA90095USA
| | - Nazmul Karim
- Centre for Print Research (CFPR)University of the West of EnglandFrenchay CampusBristolBS16 1QYUK
- Nottingham School of Art and DesignNottingham Trent UniversityShakespeare StreetNottinghamNG1 4GGUK
| |
Collapse
|
12
|
Zhang F, Ma J, Song H, He L, Zhang J, Wang E. In situ synthesis of layered nickel organophosphonates for efficient aqueous nickel-zinc battery cathodes. J Colloid Interface Sci 2023; 652:104-112. [PMID: 37591071 DOI: 10.1016/j.jcis.2023.08.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/30/2023] [Accepted: 08/10/2023] [Indexed: 08/19/2023]
Abstract
Aqueous nickel-zinc (Ni-Zn) batteries have received increasing research interests because of their reliable safety and economical-friendliness. However, the retarded ionic diffusion, low capacity and limited stability of traditional Ni-based cathodes greatly impedes the practical application of Ni-Zn batteries. Herein, two metal organophosphonate materials of Ni methylphosphonate (Ni-MPA) and Ni phenylphosphonate (Ni-PPA) directly grown on Ni foam are constructed successfully through one step solvothermal technique. These two self-supported Ni organophosphonates featured hybrid two-dimensional (2D) structures consisting of alternating inorganic and organic layers, where the inorganic layers are formed by six-coordinated Ni2+ bridged by oxygen atoms and capped by organophosphonate groups, availing to provide rich open redox reaction sites, rapid ion diffusion and structural flexibility. The research results reveal that the organic groups in phosphonic acid ligands have important influence on their electrochemical properties. Consequently, the Ni-MPA electrode exhibits a higher specific capacity of 2.27 mAh/cm2 compared to that of the Ni-PPA electrode (1.1 mAh/cm2) at 3.0 mA/cm2; however, it demonstrates a more rapid transformation rate into Ni(OH)2 in an alkaline solution. Furthermore, the constructed Ni-MPA//Zn battery can deliver an impressive areal energy density of 2.95 mWh/cm2, good rate performance as well as a long-term cycling stability.
Collapse
Affiliation(s)
- Feng Zhang
- School of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China; National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng 475004, China; Haohua Junhua Group Co. LTD, China.
| | - Jinjin Ma
- School of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China
| | - Hao Song
- School of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China
| | - Luying He
- School of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China
| | - Jingwei Zhang
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng 475004, China.
| | | |
Collapse
|
13
|
Li L, Yang H, Peng H, Lei Z, Xu Y. Covalent Organic Frameworks in Aqueous Zinc-Ion Batteries. Chemistry 2023; 29:e202302502. [PMID: 37621027 DOI: 10.1002/chem.202302502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 08/26/2023]
Abstract
The development and utilization of green renewable energy are imperative with the aggravation of environmental pollution and energy crisis. In recent years, the exploration of electrochemical energy storage systems has gradually become a research hotspot in energy. Among them, aqueous zinc-ion batteries (ZIBs) have progressively developed into highly competitive and efficient energy storage devices owing to their inherent safety, natural abundance, and higher theoretical capacity. However, the practical application of ZIBs suffers from the limitation of challenges such as the absence of proper cathode materials and the unavoidable zinc dendrites and side reactions of Zn anode. Covalent organic frameworks (COFs) are an attractive class of electrode materials due to their inherent advantages, like structural designability, high stability, and ordered-open channels, bestowing them with great potential to overcome the problems of ZIBs. In this review, we concentrate on the discussion of designed strategies of COFs applied to ZIBs. Furthermore, the methods of using COFs to solve the challenging problems of cathode development, anode modification, and electrolyte optimization for ZIBs are summarized. Finally, the existing difficulties, solution measures, and prospects of COFs for ZIBs applications are discussed. Our commentary hopes to serve as a valuable reference for developing COFs-based ZIBs.
Collapse
Affiliation(s)
- Lihua Li
- Key Laboratory of Eco-functional, Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, 730070, Lanzhou, Gansu, P. R. China
| | - Haohao Yang
- Key Laboratory of Eco-functional, Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, 730070, Lanzhou, Gansu, P. R. China
| | - Hui Peng
- Key Laboratory of Eco-functional, Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, 730070, Lanzhou, Gansu, P. R. China
| | - Ziqiang Lei
- Key Laboratory of Eco-functional, Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, 730070, Lanzhou, Gansu, P. R. China
| | - Yuxi Xu
- Institute of Advanced Technology, Westlake Institute for Advanced Study, School of Engineering, Westlake University, 310024, Hangzhou, Zhejiang, P. R. China
| |
Collapse
|
14
|
Lopatik N, De A, Paasch S, Schneemann A, Brunner E. High-field and fast-spinning 1H MAS NMR spectroscopy for the characterization of two-dimensional covalent organic frameworks. Phys Chem Chem Phys 2023; 25:30237-30245. [PMID: 37921503 DOI: 10.1039/d3cp04144a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Two-dimensional (2D) materials, like 2D covalent organic frameworks (COFs), have been attracting increasing research interest. They are usually obtained as polycrystalline powders. Solid-state NMR spectroscopy is capable of delivering structural information about such materials. Previous studies have applied, for example, 13C cross-polarization magic angle spinning (CP MAS) NMR experiments to characterize 2D COFs. Herein, we demonstrate the usefulness of high-field and fast-spinning 1H MAS NMR spectroscopy to resolve and quantify the signals of different 1H species within 2D COFs, including the edge sites and/or defects. Moreover, 1H-13C heteronuclear correlation (HETCOR) spectroscopy has also been applied and can provide improved resolution to obtain further information about stacking effects as well as edge sites/defects.
Collapse
Affiliation(s)
- Nikolaj Lopatik
- Chair of Bioanalytical Chemistry, Faculty of Chemistry and Food Chemistry, TU Dresden, 01062 Dresden, Germany.
| | - Ankita De
- Chair of Inorganic Chemistry I, Faculty of Chemistry and Food Chemistry, TU Dresden, 01062 Dresden, Germany
| | - Silvia Paasch
- Chair of Bioanalytical Chemistry, Faculty of Chemistry and Food Chemistry, TU Dresden, 01062 Dresden, Germany.
| | - Andreas Schneemann
- Chair of Inorganic Chemistry I, Faculty of Chemistry and Food Chemistry, TU Dresden, 01062 Dresden, Germany
| | - Eike Brunner
- Chair of Bioanalytical Chemistry, Faculty of Chemistry and Food Chemistry, TU Dresden, 01062 Dresden, Germany.
| |
Collapse
|
15
|
Haldar S, Schneemann A, Kaskel S. Covalent Organic Frameworks as Model Materials for Fundamental and Mechanistic Understanding of Organic Battery Design Principles. J Am Chem Soc 2023. [PMID: 37307595 DOI: 10.1021/jacs.3c01131] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Redox-active covalent organic frameworks (COFs) have recently emerged as advanced electrodes in polymer batteries. COFs provide ideal molecular precision for understanding redox mechanisms and increasing the theoretical charge-storage capacities. Furthermore, the functional groups on the pore surface of COFs provide highly ordered and easily accessible interaction sites, which can be modeled to establish a synergy between ex situ/in situ mechanism studies and computational methods, permitting the creation of predesigned structure-property relationships. This perspective integrates and categorizes the redox functionalities of COFs, providing a deeper understanding of the mechanistic investigation of guest ion interactions in batteries. Additionally, it highlights the tunable electronic and structural properties that influence the activation of redox reactions in this promising organic electrode material.
Collapse
Affiliation(s)
- Sattwick Haldar
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Dresden 01069, Germany
| | - Andreas Schneemann
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Dresden 01069, Germany
| | - Stefan Kaskel
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Dresden 01069, Germany
- Fraunhofer Institute for Material and Beam Technology (IWS), Dresden 01277, Germany
| |
Collapse
|
16
|
Cicirello G, Wang M, Sam QP, Hart JL, Williams NL, Yin H, Cha JJ, Wang J. Two-Dimensional Violet Phosphorus P 11: A Large Band Gap Phosphorus Allotrope. J Am Chem Soc 2023; 145:8218-8230. [PMID: 36996286 DOI: 10.1021/jacs.3c01766] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
The discovery of novel large band gap two-dimensional (2D) materials with good stability and high carrier mobility will innovate the next generation of electronics and optoelectronics. A new allotrope of 2D violet phosphorus P11 was synthesized via a salt flux method in the presence of bismuth. Millimeter-sized crystals of violet-P11 were collected after removing the salt flux with DI water. From single-crystal X-ray diffraction, the crystal structure of violet-P11 was determined to be in the monoclinic space group C2/c (no. 15) with unit cell parameters of a = 9.166(6) Å, b = 9.121(6) Å, c = 21.803(14)Å, β = 97.638(17)°, and a unit cell volume of 1807(2) Å3. The structure differences between violet-P11, violet-P21, and fibrous-P21 are discussed. The violet-P11 crystals can be mechanically exfoliated down to a few layers (∼6 nm). Photoluminescence and Raman measurements reveal the thickness-dependent nature of violet-P11, and exfoliated violet-P11 flakes were stable in ambient air for at least 1 h, exhibiting moderate ambient stability. The bulk violet-P11 crystals exhibit excellent stability, being stable in ambient air for many days. The optical band gap of violet-P11 bulk crystals is 2.0(1) eV measured by UV-Vis and electron energy-loss spectroscopy measurements, in agreement with density functional theory calculations which predict that violet-P11 is a direct band gap semiconductor with band gaps of 1.8 and 1.9 eV for bulk and monolayer, respectively, and with a high carrier mobility. This band gap is the largest among the known single-element 2D layered bulk crystals and thus attractive for various optoelectronic devices.
Collapse
Affiliation(s)
- Gary Cicirello
- Department of Chemistry and Biochemistry, Wichita State University, Wichita, Kansas 67260, United States
| | - Mengjing Wang
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, United States
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14850, United States
| | - Quynh P Sam
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14850, United States
| | - James L Hart
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14850, United States
| | - Natalie L Williams
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14850, United States
| | - Huabing Yin
- Institute for Computational Materials Science, Joint Center for Theoretical Physics, and International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Judy J Cha
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, United States
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14850, United States
| | - Jian Wang
- Department of Chemistry and Biochemistry, Wichita State University, Wichita, Kansas 67260, United States
| |
Collapse
|
17
|
Thaggard GC, Haimerl J, Park KC, Lim J, Fischer RA, Maldeni Kankanamalage BKP, Yarbrough BJ, Wilson GR, Shustova NB. Metal-Photoswitch Friendship: From Photochromic Complexes to Functional Materials. J Am Chem Soc 2022; 144:23249-23263. [PMID: 36512744 DOI: 10.1021/jacs.2c09879] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cooperative metal-photoswitch interfaces comprise an application-driven field which is based on strategic coupling of metal cations and organic photochromic molecules to advance the behavior of both components, resulting in dynamic molecular and material properties controlled through external stimuli. In this Perspective, we highlight the ways in which metal-photoswitch interplay can be utilized as a tool to modulate a system's physicochemical properties and performance in a variety of structural motifs, including discrete molecular complexes or cages, as well as periodic structures such as metal-organic frameworks. This Perspective starts with photochromic molecular complexes as the smallest subunit in which metal-photoswitch interactions can occur, and progresses toward functional materials. In particular, we explore the role of the metal-photoswitch relationship for gaining fundamental knowledge of switchable electronic and magnetic properties, as well as in the design of stimuli-responsive sensors, optically gated memory devices, catalysts, and photodynamic therapeutic agents. The abundance of stimuli-responsive systems in the natural world only foreshadows the creative directions that will uncover the full potential of metal-photoswitch interactions in the coming years.
Collapse
Affiliation(s)
- Grace C Thaggard
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Johanna Haimerl
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States.,Inorganic and Metal-Organic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, Garching 85748, Germany
| | - Kyoung Chul Park
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Jaewoong Lim
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Roland A Fischer
- Inorganic and Metal-Organic Chemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, Garching 85748, Germany
| | - Buddhima K P Maldeni Kankanamalage
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Brandon J Yarbrough
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Gina R Wilson
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Natalia B Shustova
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| |
Collapse
|
18
|
Islam MR, Afroj S, Novoselov KS, Karim N. Smart Electronic Textile-Based Wearable Supercapacitors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203856. [PMID: 36192164 PMCID: PMC9631069 DOI: 10.1002/advs.202203856] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/05/2022] [Indexed: 05/05/2023]
Abstract
Electronic textiles (e-textiles) have drawn significant attention from the scientific and engineering community as lightweight and comfortable next-generation wearable devices due to their ability to interface with the human body, and continuously monitor, collect, and communicate various physiological parameters. However, one of the major challenges for the commercialization and further growth of e-textiles is the lack of compatible power supply units. Thin and flexible supercapacitors (SCs), among various energy storage systems, are gaining consideration due to their salient features including excellent lifetime, lightweight, and high-power density. Textile-based SCs are thus an exciting energy storage solution to power smart gadgets integrated into clothing. Here, materials, fabrications, and characterization strategies for textile-based SCs are reviewed. The recent progress of textile-based SCs is then summarized in terms of their electrochemical performances, followed by the discussion on key parameters for their wearable electronics applications, including washability, flexibility, and scalability. Finally, the perspectives on their research and technological prospects to facilitate an essential step towards moving from laboratory-based flexible and wearable SCs to industrial-scale mass production are presented.
Collapse
Affiliation(s)
- Md Rashedul Islam
- Centre for Print Research (CFPR)The University of the West of EnglandFrenchay CampusBristolBS16 1QYUK
| | - Shaila Afroj
- Centre for Print Research (CFPR)The University of the West of EnglandFrenchay CampusBristolBS16 1QYUK
| | - Kostya S. Novoselov
- Institute for Functional Intelligent Materials, Department of Materials Science and EngineeringNational University of SingaporeSingapore117575Singapore
- Chongqing 2D Materials InstituteLiangjiang New AreaChongqing400714China
| | - Nazmul Karim
- Centre for Print Research (CFPR)The University of the West of EnglandFrenchay CampusBristolBS16 1QYUK
| |
Collapse
|
19
|
Gan X, Lei D. Plasmonic-metal/2D-semiconductor hybrids for photodetection and photocatalysis in energy-related and environmental processes. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214665] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
20
|
Kulachenkov N, Barsukova M, Alekseevskiy P, Sapianik AA, Sergeev M, Yankin A, Krasilin AA, Bachinin S, Shipilovskikh S, Poturaev P, Medvedeva N, Denislamova E, Zelenovskiy PS, Shilovskikh VV, Kenzhebayeva Y, Efimova A, Novikov AS, Lunev A, Fedin VP, Milichko VA. Dimensionality Mediated Highly Repeatable and Fast Transformation of Coordination Polymer Single Crystals for All-Optical Data Processing. NANO LETTERS 2022; 22:6972-6981. [PMID: 36018814 DOI: 10.1021/acs.nanolett.2c01770] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A family of coordination polymers (CPs) based on dynamic structural elements are of great fundamental and commercial interest addressing modern problems in controlled molecular separation, catalysis, and even data processing. Herein, the endurance and fast structural dynamics of such materials at ambient conditions are still a fundamental challenge. Here, we report on the design of a series of Cu-based CPs [Cu(bImB)Cl2] and [Cu(bImB)2Cl2] with flexible ligand bImB (1,4-bis(imidazol-1-yl)butane) packed into one- and two-dimensional (1D, 2D) structures demonstrating dimensionality mediated flexibility and reversible structural transformations. Using the laser pulses as a fast source of activation energy, we initiate CP heating followed by anisotropic thermal expansion and 0.2-0.8% volume changes with the record transformation rates from 2220 to 1640 s-1 for 1D and 2D CPs, respectively. The endurance over 103 cycles of structural transformations, achieved for the CPs at ambient conditions, allows demonstrating optical fiber integrated all-optical data processing.
Collapse
Affiliation(s)
- Nikita Kulachenkov
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Marina Barsukova
- Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090, Russia
- Functional Materials Design, Discovery and Development Research Group (FMD3), Advanced Membranes and Porous Materials Center (AMPM), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Pavel Alekseevskiy
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Aleksandr A Sapianik
- Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090, Russia
- Functional Materials Design, Discovery and Development Research Group (FMD3), Advanced Membranes and Porous Materials Center (AMPM), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Maxim Sergeev
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Andrei Yankin
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Andrei A Krasilin
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
- Ioffe Institute, St. Petersburg 194021, Russia
| | - Semyon Bachinin
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Sergei Shipilovskikh
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
- Department of Chemistry, Perm State University, Perm, 614990, Russia
| | - Petr Poturaev
- Department of Chemistry, Perm State University, Perm, 614990, Russia
| | - Natalia Medvedeva
- Department of Chemistry, Perm State University, Perm, 614990, Russia
| | | | - Pavel S Zelenovskiy
- Institute of Natural Sciences and Mathematics, Ural Federal University, Yekaterinburg 620000, Russia
| | | | - Yuliya Kenzhebayeva
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Anastasiia Efimova
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Alexander S Novikov
- Saint Petersburg State University, Saint Petersburg 198504, Russia
- Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russia
| | - Artem Lunev
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Vladimir P Fedin
- Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090, Russia
| | - Valentin A Milichko
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
- Institut Jean Lamour, Universit de Lorraine, UMR CNRS 7198, 54011 Nancy, France
| |
Collapse
|
21
|
Qiu X, Huang J, Yu C, Zhao Z, Zhu H, Ke Z, Liao P, Chen X. A Stable and Conductive Covalent Organic Framework with Isolated Active Sites for Highly Selective Electroreduction of Carbon Dioxide to Acetate. Angew Chem Int Ed Engl 2022; 61:e202206470. [DOI: 10.1002/anie.202206470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Indexed: 01/18/2023]
Affiliation(s)
- Xiao‐Feng Qiu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Jia‐Run Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Can Yu
- Institute of High Energy Physics Chinese Academy of Sciences (CAS) Beijing 100049 China
| | - Zhen‐Hua Zhao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Hao‐Lin Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Zhuofeng Ke
- School of Materials Science & Engineering Sun Yat-sen University Guangzhou 510275 China
| | - Pei‐Qin Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| | - Xiao‐Ming Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-sen University Guangzhou 510275 China
| |
Collapse
|
22
|
Wang J, Chen M, Lu Z, Chen Z, Si L. Radical Covalent Organic Frameworks Associated with Liquid Na-K toward Dendrite-Free Alkali Metal Anodes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203058. [PMID: 35861409 PMCID: PMC9475504 DOI: 10.1002/advs.202203058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/21/2022] [Indexed: 05/27/2023]
Abstract
Liquid sodium-potassium (Na-K) alloy has the characteristics of high abundance, low redox potential, high capacity, and no dendrites, which has become an ideal alternative material for potassium/sodium metal anodes. However, the high surface tension of liquid sodium potassium alloy at room temperature makes it inconvenient in practical use. Here, the Na-K as reducing agent treats with hydrazone linkages of covalent organic frameworks (COFs) and obtain the carbon-oxygen radical COFs (COR-Tf-DHzDM-COFs). The preparation method solves the problems that the preparation process of the traditional Na-K composite anode is complex and has high cost. The structures of the COR-Tf-DHzDM-COFs are characterized by X-ray diffraction (XRD), fourier transform infrared (FT-IR), electron paramagnetic resonance (EPR), and solid-state NMR measurements. It is the first time that carbon-oxygen radical COFs from bulk COFs are constructed by one-step method and the operation is flexible, convenient, and high rate of quality, which is suitable for big production and widely used. The cycle stability of the composite Na-K anode is improved, which provides a new idea for the design of high-performance liquid metal anode.
Collapse
Affiliation(s)
- Jianyi Wang
- School of Materials Science and Hydrogen EnergyFoshan UniversityFoshan528000P. R. China
| | - Menghui Chen
- Institute for Sustainable Energy/College of SciencesShanghai UniversityShanghai200444P. R. China
| | - Zicong Lu
- School of Materials Science and Hydrogen EnergyFoshan UniversityFoshan528000P. R. China
| | - Zhida Chen
- School of Materials Science and Hydrogen EnergyFoshan UniversityFoshan528000P. R. China
| | - Liping Si
- School of Materials Science and Hydrogen EnergyFoshan UniversityFoshan528000P. R. China
| |
Collapse
|
23
|
Yang Y, Sandra AP, Idström A, Schäfer C, Andersson M, Evenäs L, Börjesson K. Electroactive Covalent Organic Framework Enabling Photostimulus-Responsive Devices. J Am Chem Soc 2022; 144:16093-16100. [PMID: 36007228 PMCID: PMC9460776 DOI: 10.1021/jacs.2c06333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Two-dimensional covalent organic frameworks (2D COFs)
feature graphene-type
2D layered sheets but with a tunable structure, electroactivity, and
high porosity. If these traits are well-combined, then 2D COFs can
be applied in electronics to realize functions with a high degree
of complexity. Here, a highly crystalline electroactive COF, BDFamide-Tp,
was designed and synthesized. It shows regularly distributed pores
with a width of 1.35 nm. Smooth and successive films of such a COF
were fabricated and found to be able to increase the conductivity
of an organic semiconductor by 103 by interfacial doping.
Upon encapsulation of a photoswitchable molecule (spiropyran) into
the voids of the COF layer, the resulted devices respond differently
to light of different wavelengths. Specifically, the current output
ratio after UV vs Vis illumination reaches 100 times, thus effectively
creating on and off states. The respective positive and negative feedbacks
are memorized by the device and can be reprogrammed by UV/Vis illumination.
The reversible photostimulus responsivity and reliable memory of the
device are derived from the combination of electroactivity and porosity
of the 2D COF. This work shows the capability of 2D COFs in higher-level
electronic functions and extends their possible applications in information
storage.
Collapse
Affiliation(s)
- Yizhou Yang
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41296 Gothenburg, Sweden
| | - Amritha P Sandra
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41296 Gothenburg, Sweden
| | - Alexander Idström
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Clara Schäfer
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41296 Gothenburg, Sweden
| | - Martin Andersson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Lars Evenäs
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Karl Börjesson
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41296 Gothenburg, Sweden
| |
Collapse
|
24
|
Bhunia S, Saha P, Moitra P, Addicoat MA, Bhattacharya S. Efficacious and sustained release of an anticancer drug mitoxantrone from new covalent organic frameworks using protein corona. Chem Sci 2022; 13:7920-7932. [PMID: 35865887 PMCID: PMC9258399 DOI: 10.1039/d2sc00260d] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 06/02/2022] [Indexed: 11/21/2022] Open
Abstract
Solid porous and crystalline covalent organic frameworks (COFs) are characterized by their higher specific BET surface areas and functional pore walls, which allow the adsorption of various bioactive molecules inside the porous lattices. We have introduced a perylene-based COF, PER@PDA-COF-1, which acts as an effective porous volumetric reservoir for an anticancer drug, mitoxantrone (MXT). The drug-loaded COF (MXT-PER@PDA-COF-1) exhibited zero cellular release of MXT towards cancer cells, which can be attributed to the strong intercalation between the anthracene-dione motif of the drug and the perylene-based COF backbone. Here, we have introduced a strategy involving the serum-albumin-triggered intracellular release of mitoxantrone from MXT-PER@PDA-COF-1. The serum albumin acts as an exfoliating agent and as a colloidal stabilizer in PBS medium (pH = 7.4), rapidly forming a protein corona around the exfoliated COF crystallites and inducing the sustained release of MXT from the COF into tumorigenic cells.
Collapse
Affiliation(s)
- Subhajit Bhunia
- Department of Chemistry & Biochemistry, University of Texas at El Paso El Paso Texas 79968 USA
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science Kolkata West Bengal 700032 India
| | - Pranay Saha
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science Kolkata West Bengal 700032 India
| | - Parikshit Moitra
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science Kolkata West Bengal 700032 India
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland Baltimore School of Medicine, Health Sciences Facility III Baltimore Maryland 21201 USA
| | - Matthew A Addicoat
- School of Science and Technology, Nottingham Trent University Nottingham NG11 8NS UK
| | - Santanu Bhattacharya
- Department of Organic Chemistry, Indian Institute of Science Bangalore 560012 India
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science Kolkata West Bengal 700032 India
| |
Collapse
|
25
|
Denis M, Grenèche JM, Gautier N, Poizot P, Devic T. Deciphering the Thermal and Electrochemical Behaviors of Dual Redox-Active Iron Croconate Violet Coordination Complexes. Inorg Chem 2022; 61:9308-9317. [PMID: 35679597 DOI: 10.1021/acs.inorgchem.2c01043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Interest in coordination compounds based on non-innocent ligands (NILs) for electrochemical energy storage has risen in the last few years. We have focused our attention on an overlooked redox active linker, croconate violet, which has not yet been addressed in this field although closely related to standard NILs such as catecholate and tetracyanoquinodimethane. Two anionic complexes consisting of Fe(II) and croconate violet (-2) with balancing potassium cations were isolated and structurally characterized. By a combination of in situ and ex situ techniques (powder and single-crystal X-ray diffraction, infrared, and 57Fe Mössbauer spectroscopies), we have shown that their dehydration occurs through complex patterns, whose reversibility depends on the initial crystal structure but that the structural rearrangements around the iron cations occur without any oxidation. While electrochemical studies performed in solution clearly show that both the organic and inorganic parts can be reversibly addressed, in the solid state, poor charge storage capacities were initially measured, mainly due to the solubilization of the solids in the electrolyte. By optimizing the formulation of the electrode and the composition of the electrolyte, a capacity of >100 mA h g-1 after 10 cycles could be achieved. This suggests that this family of redox active linkers deserves to be investigated for solid-state electrochemical energy storage, although it requires the solving of the issues related to the solubilization of the derived coordination compounds.
Collapse
Affiliation(s)
- Morgane Denis
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN, Nantes F-44000, France
| | - Jean-Marc Grenèche
- Institut des Molécules et Matériaux du Mans, IMMM UMR CNRS 6283, Le Mans Université, Le Mans Cedex 9 F-72085, France
| | - Nicolas Gautier
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN, Nantes F-44000, France
| | - Philippe Poizot
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN, Nantes F-44000, France
| | - Thomas Devic
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN, Nantes F-44000, France
| |
Collapse
|
26
|
Qiu XF, Huang JR, Yu C, Zhao ZH, Zhu HL, Ke Z, Liao PQ, Chen XM. A Stable and Conductive Covalent Organic Framework with Isolated Active Sites for Highly Selective Electroreduction of Carbon Dioxide to Acetate. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | - Can Yu
- Chinses Academy of Science Institute of High Energy Physics CHINA
| | | | - Hao-Lin Zhu
- Sun Yat-Sen University School of Chemistry CHINA
| | - Zhuofeng Ke
- Sun Yat-sen University School of Chemistry CHINA
| | - Pei-Qin Liao
- Sun Yat-Sen University School of Chemistry No. 135, Xingang Xi Road 510275 Guangzhou CHINA
| | | |
Collapse
|
27
|
Schwotzer F, Horak J, Senkovska I, Schade E, Gorelik TE, Wollmann P, Anh ML, Ruck M, Kaiser U, Weidinger IM, Kaskel S. Cooperative Assembly of 2D-MOF Nanoplatelets into Hierarchical Carpets and Tubular Superstructures for Advanced Air Filtration. Angew Chem Int Ed Engl 2022; 61:e202117730. [PMID: 35285126 PMCID: PMC9315001 DOI: 10.1002/anie.202117730] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Indexed: 11/10/2022]
Abstract
Clean air is an indispensable prerequisite for human health. The capture of small toxic molecules requires the development of advanced materials for air filtration. Two-dimensional nanomaterials offer highly accessible surface areas but for real-world applications their assembly into well-defined hierarchical mesostructures is essential. DUT-134(Cu) ([Cu2 (dttc)2 ]n , dttc=dithieno[3,2-b : 2',3'-d]thiophene-2,6-dicarboxylate]) is a metal-organic framework forming platelet-shaped particles, that can be organized into complex structures, such as millimeter large free-standing layers (carpets) and tubes. The structured material demonstrates enhanced accessibility of open metal sites and significantly enhanced H2 S adsorption capacity in gas filtering tests compared with traditional bulk analogues.
Collapse
Affiliation(s)
- Friedrich Schwotzer
- Inorganic Chemistry Center ITechnische Universität DresdenBergstr. 6601069DresdenGermany
| | - Jacob Horak
- Inorganic Chemistry Center ITechnische Universität DresdenBergstr. 6601069DresdenGermany
| | - Irena Senkovska
- Inorganic Chemistry Center ITechnische Universität DresdenBergstr. 6601069DresdenGermany
| | - Elke Schade
- IWS DresdenWinterbergstr. 2801277DresdenGermany
| | - Tatiana E. Gorelik
- Electron Microscopy Group of Materials Science (EMMS)Central Facility for Electron MicroscopyUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Philipp Wollmann
- ElectrochemistryTechnische Universität DresdenZellescher Weg 1901069DresdenGermany
| | - Mai Lê Anh
- Inorganic Chemistry IITechnische Universität DresdenBergstr. 6601069DresdenGermany
| | - Michael Ruck
- Inorganic Chemistry IITechnische Universität DresdenBergstr. 6601069DresdenGermany
- Max Planck Institute for Chemical Physics of SolidsNöthnitzer Str. 4001187DresdenGermany
| | - Ute Kaiser
- Electron Microscopy Group of Materials Science (EMMS)Central Facility for Electron MicroscopyUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Inez M. Weidinger
- ElectrochemistryTechnische Universität DresdenZellescher Weg 1901069DresdenGermany
| | - Stefan Kaskel
- Inorganic Chemistry Center ITechnische Universität DresdenBergstr. 6601069DresdenGermany
- IWS DresdenWinterbergstr. 2801277DresdenGermany
| |
Collapse
|
28
|
Zanganeh AR. COF-43 based voltammetric sensor for Ag(I) determination: optimization of experimental conditions by Box-Behnken design. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1623-1633. [PMID: 35388830 DOI: 10.1039/d2ay00028h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hydrazone-linked covalent organic framework-43 (COF-43) was synthesized and the carbon paste electrode (CPE) modified with this COF was used as a voltammetric sensor to measure silver(I). Various characterization tests (XRD, FTIR, BET, SEM/EDX, electrochemical impedance (EIS), and cyclic voltammetry (CV)) were performed on the synthesized COF-43 and the prepared COF-43/CPE. Box-Behnken design was used to optimize the preparation and operation conditions of the sensor. EIS and CV investigations reveal the diffusive characteristics of silver transport in the electrode matrix. An appropriate mechanism for the sensor procedure has been suggested and ratified by electrochemical and SEM/EDX techniques. The COF-43 used has several recognition elements for the selective binding of silver ion and due to its high porosity provides a large space for the deposition and reduction of large amounts of silver. Therefore, due to the correct selection of COF used in the construction of the sensor, high selectivity and sensitivity for the prepared sensor has been achieved. The obtained data disclosed that the modification of the carbon paste electrode by COF-43 significantly improves the analytical characteristics of the sensor, which specifies the performance of COF-43 as a sensory material for determining silver(I). The obtained calibration curve is linear in the concentration range from 0.001 μM to 10.0 μM and the detection limit is 1.5 × 10-10 M. Various statistical tests have been employed to evaluate the sensor performance. The appropriate accuracy and precision of the proposed method were confirmed using the analysis of variance (ANOVA) approach. Potential interferences were investigated and it was found that the other species did not have a significant effect on the sensor performance. The prepared sensor has been successfully used to measure silver in two samples of photographic effluents, bleaching, and fixing agents. The results from the analysis of real samples demonstrate the reliable applicability of the fabricated sensor.
Collapse
Affiliation(s)
- Ali Reza Zanganeh
- Department of Chemistry, Shahreza Branch, Islamic Azad University, Shahreza, Iran.
| |
Collapse
|
29
|
Chen H, Suo X, Yang Z, Dai S. Graphitic Aza-Fused π-Conjugated Networks: Construction, Engineering, and Task-Specific Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107947. [PMID: 34739143 DOI: 10.1002/adma.202107947] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/01/2021] [Indexed: 06/13/2023]
Abstract
2D π-conjugated networks linked by aza-fused units represent a pivotal category of graphitic materials with stacked nanosheet architectures. Extensive efforts have been directed at their fabrication and application since the discovery of covalent triazine frameworks (CTFs). Besides the triazine cores, tricycloquinazoline and hexaazatriphenylene linkages are further introduced to tailor the structures and properties. Diverse related materials have been developed rapidly, and a thorough outlook is necessitated to unveil the structure-property-application relationships across multiple subcategories, which is pivotal to guide the design and fabrication toward enhanced task-specific performance. Herein, the structure types and development of related materials including CTFs, covalent quinazoline networks, and hexaazatriphenylene networks, are introduced. Advanced synthetic strategies coupled with characterization techniques provide powerful tools to engineer the properties and tune the associated behaviors in corresponding applications. Case studies in the areas of gas adsorption, membrane-based separation, thermo-/electro-/photocatalysis, and energy storage are then addressed, focusing on the correlation between structure/property engineering and optimization of the corresponding performance, particularly the preferred features and strategies in each specific field. In the last section, the underlying challenges and opportunities in construction and application of this emerging and promising material category are discussed.
Collapse
Affiliation(s)
- Hao Chen
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, TN, 37996, USA
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Xian Suo
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, TN, 37996, USA
| | - Zhenzhen Yang
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Sheng Dai
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, TN, 37996, USA
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| |
Collapse
|
30
|
Schwotzer F, Horak J, Senkovska I, Schade E, Gorelik TE, Wollmann P, Anh ML, Ruck M, Kaiser U, Weidinger IM, Kaskel S. Cooperative Assembly of 2D‐MOF Nanoplatelets into Hierarchical Carpets and Tubular Superstructures for Advanced Air Filtration. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Friedrich Schwotzer
- Inorganic Chemistry Center I Technische Universität Dresden Bergstr. 66 01069 Dresden Germany
| | - Jacob Horak
- Inorganic Chemistry Center I Technische Universität Dresden Bergstr. 66 01069 Dresden Germany
| | - Irena Senkovska
- Inorganic Chemistry Center I Technische Universität Dresden Bergstr. 66 01069 Dresden Germany
| | - Elke Schade
- IWS Dresden Winterbergstr. 28 01277 Dresden Germany
| | - Tatiana E. Gorelik
- Electron Microscopy Group of Materials Science (EMMS) Central Facility for Electron Microscopy Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Philipp Wollmann
- Electrochemistry Technische Universität Dresden Zellescher Weg 19 01069 Dresden Germany
| | - Mai Lê Anh
- Inorganic Chemistry II Technische Universität Dresden Bergstr. 66 01069 Dresden Germany
| | - Michael Ruck
- Inorganic Chemistry II Technische Universität Dresden Bergstr. 66 01069 Dresden Germany
- Max Planck Institute for Chemical Physics of Solids Nöthnitzer Str. 40 01187 Dresden Germany
| | - Ute Kaiser
- Electron Microscopy Group of Materials Science (EMMS) Central Facility for Electron Microscopy Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Inez M. Weidinger
- Electrochemistry Technische Universität Dresden Zellescher Weg 19 01069 Dresden Germany
| | - Stefan Kaskel
- Inorganic Chemistry Center I Technische Universität Dresden Bergstr. 66 01069 Dresden Germany
- IWS Dresden Winterbergstr. 28 01277 Dresden Germany
| |
Collapse
|
31
|
Ma D, Zhao H, Cao F, Zhao H, Li J, Wang L, Liu K. A carbonyl-rich covalent organic framework as a high-performance cathode material for aqueous rechargeable zinc-ion batteries. Chem Sci 2022; 13:2385-2390. [PMID: 35310488 PMCID: PMC8864830 DOI: 10.1039/d1sc06412f] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/31/2022] [Indexed: 12/11/2022] Open
Abstract
Aqueous rechargeable zinc-ion batteries (ZIBs) provide high theoretical capacity, operational safety, low-cost and environmental friendliness for large-scale energy storage and wearable electronic devices, but their future development is plagued by low capacity and poor cycle life due to the lack of suitable cathode materials. In this work, a covalent organic framework (Tp-PTO-COF) with multiple carbonyl active sites is synthesized and successfully introduced in aqueous rechargeable ZIBs for the first time. Tp-PTO-COF delivers high specific capacities of 301.4 and 192.8 mA h g-1 at current densities of 0.2 and 5 A g-1, respectively, along with long-term durability and flat charge-discharge plateaus. The remarkable electrochemical performance is attributed to the abundance of nucleophilic carbonyl active sites, well defined porous structure and inherent chemical stability of Tp-PTO-COF. Moreover, the structural evolution and Zn2+ ion intercalation mechanism are discussed and revealed by the experimental analysis and density functional theory calculations. These results highlight a new avenue to develop organic cathode materials for high performance and sustainable aqueous rechargeable ZIBs.
Collapse
Affiliation(s)
- Dingxuan Ma
- College of Chemistry and Molecular Engineering, Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Qingdao University of Science and Technology Qingdao 266042 Shandong P. R. China
| | - Huimin Zhao
- College of Chemistry and Molecular Engineering, Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Qingdao University of Science and Technology Qingdao 266042 Shandong P. R. China
| | - Fan Cao
- School of Materials Science and Engineering, Shandong Jianzhu University Jinan 250101 Shandong P. R. China
| | - Huihui Zhao
- College of Chemistry and Molecular Engineering, Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Qingdao University of Science and Technology Qingdao 266042 Shandong P. R. China
| | - Jixin Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University Changchun 130012 P. R. China
| | - Lei Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology Qingdao 266042 Shandong P. R. China
| | - Kang Liu
- College of Chemistry and Molecular Engineering, Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Qingdao University of Science and Technology Qingdao 266042 Shandong P. R. China
| |
Collapse
|
32
|
Zhong H, Wang M, Chen G, Dong R, Feng X. Two-Dimensional Conjugated Metal-Organic Frameworks for Electrocatalysis: Opportunities and Challenges. ACS NANO 2022; 16:1759-1780. [PMID: 35049290 DOI: 10.1021/acsnano.1c10544] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A highly effective electrocatalyst is the central component of advanced electrochemical energy conversion. Recently, two-dimensional conjugated metal-organic frameworks (2D c-MOFs) have emerged as a class of promising electrocatalysts because of their advantages including 2D layered structure with high in-plane conjugation, intrinsic electrical conductivity, permanent pores, large surface area, chemical stability, and structural diversity. In this Review, we summarize the recent advances of 2D c-MOF electrocatalysts for electrochemical energy conversion. First, we introduce the chemical design principles and synthetic strategies of the reported 2D c-MOFs, as well as the functional design for the electrocatalysis. Subsequently, we present the representative 2D c-MOF electrocatalysts in various electrochemical reactions, such as hydrogen/oxygen evolution, and reduction reactions of oxygen, carbon dioxide, and nitrogen. We highlight the strategies for the structural design and property tuning of 2D c-MOF electrocatalysts to boost the catalytic performance, and we offer our perspectives in regard to the challenges to be overcome.
Collapse
Affiliation(s)
- Haixia Zhong
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, 01062, Germany
| | - Mingchao Wang
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, 01062, Germany
| | - Guangbo Chen
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, 01062, Germany
| | - Renhao Dong
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, 01062, Germany
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, 01062, Germany
- Max Planck Institute of Microstructure Physics, Halle (Saale) 06120, Germany
| |
Collapse
|
33
|
Wychowaniec JK, Saini H, Scheibe B, Dubal DP, Schneemann A, Jayaramulu K. Hierarchical porous metal–organic gels and derived materials: from fundamentals to potential applications. Chem Soc Rev 2022; 51:9068-9126. [DOI: 10.1039/d2cs00585a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review summarizes recent progress in the development and applications of metal–organic gels (MOGs) and their hybrids and derivatives dividing them into subclasses and discussing their synthesis, design and structure–property relationship.
Collapse
Affiliation(s)
- Jacek K. Wychowaniec
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
- AO Research Institute Davos, Clavadelerstrasse 8, 7270, Davos, Switzerland
| | - Haneesh Saini
- Department of Chemistry, Indian Institute of Technology Jammu, Nagrota Bypass Road, Jammu & Kashmir, 181221, India
| | - Błażej Scheibe
- Adam Mickiewicz University in Poznań, NanoBioMedical Centre, Wszechnicy Piastowskiej 3, PL61614 Poznań, Poland
| | - Deepak P. Dubal
- School of Chemistry and Physics, Queensland University of Technology, Gardens Point Campus, Brisbane, QLD 4001, Australia
| | - Andreas Schneemann
- Lehrstuhl für Anorganische Chemie I, Technische Universität Dresden, Bergstr. 66, 01067 Dresden, Germany
| | - Kolleboyina Jayaramulu
- Department of Chemistry, Indian Institute of Technology Jammu, Nagrota Bypass Road, Jammu & Kashmir, 181221, India
| |
Collapse
|
34
|
Lu Y, Li L, Zhang Q, Cai Y, Ni Y, Chen J. High-performance all-solid-state electrolyte for sodium batteries enabled by the interaction between the anion in salt and Na 3SbS 4. Chem Sci 2022; 13:3416-3423. [PMID: 35432884 PMCID: PMC8943854 DOI: 10.1039/d1sc06745a] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/22/2022] [Indexed: 01/06/2023] Open
Abstract
All-solid-state sodium batteries with poly(ethylene oxide) (PEO)-based electrolytes have shown great promise for large-scale energy storage applications. However, the reported PEO-based electrolytes still suffer from a low Na+ transference number and poor ionic conductivity, which mainly result from the simultaneous migration of Na+ and anions, the high crystallinity of PEO, and the low concentration of free Na+. Here, we report a high-performance PEO-based all-solid-state electrolyte for sodium batteries by introducing Na3SbS4 to interact with the TFSI− anion in the salt and decrease the crystallinity of PEO. The optimal PEO/NaTFSI/Na3SbS4 electrolyte exhibits a remarkably enhanced Na+ transference number (0.49) and a high ionic conductivity of 1.33 × 10−4 S cm−1 at 45 °C. Moreover, we found that the electrolyte can largely alleviate Na+ depletion near the electrode surface in symmetric cells and, thus, contributes to stable and dendrite-free Na plating/stripping for 500 h. Furthermore, all-solid-state Na batteries with a 3,4,9,10-perylenetetracarboxylic dianhydride cathode exhibit a high capacity retention of 84% after 200 cycles and superior rate performance (up to 10C). Our work develops an effective way to realize a high-performance all-solid-state electrolyte for sodium batteries. A high-performance all-solid-state PEO/NaTFSI/Na3SbS4 electrolyte for sodium batteries is realized owing to the electrostatic interaction between TFSI− in the salt and Na3SbS4, which immobilizes TFSI− anions and promotes the dissociation of NaTFSI.![]()
Collapse
Affiliation(s)
- Yong Lu
- Frontiers Science Center for New Organic Matter, Renewable Energy Conversion and Storage Center (RECAST), Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Lin Li
- Frontiers Science Center for New Organic Matter, Renewable Energy Conversion and Storage Center (RECAST), Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Qiu Zhang
- Frontiers Science Center for New Organic Matter, Renewable Energy Conversion and Storage Center (RECAST), Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yichao Cai
- Frontiers Science Center for New Organic Matter, Renewable Energy Conversion and Storage Center (RECAST), Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Youxuan Ni
- Frontiers Science Center for New Organic Matter, Renewable Energy Conversion and Storage Center (RECAST), Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Jun Chen
- Frontiers Science Center for New Organic Matter, Renewable Energy Conversion and Storage Center (RECAST), Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
35
|
Yang P, Wang Y. Super-2D metal organic frameworks with vertical layer skeletons and good adsorption performances. NEW J CHEM 2022. [DOI: 10.1039/d2nj01373h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Super-2D MOFs with vertical layered skeletons promoted the accessibility to external guests and exhibited good adsorption performances for various adsorbates.
Collapse
Affiliation(s)
- Pan Yang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Youfu Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
36
|
Wang J, Wang K, Xu Y. Emerging Two-Dimensional Covalent and Coordination Polymers for Stable Lithium Metal Batteries: From Liquid to Solid. ACS NANO 2021; 15:19026-19053. [PMID: 34842431 DOI: 10.1021/acsnano.1c09194] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lithium metal anodes (LMAs) have attracted much attention in recent years because of their high theoretical capacity (3860 mAh g-1) and low electrochemical potential (-3.040 V vs standard hydrogen electrode). Lithium metal can be coupled with various cathodes to construct high-energy-density lithium metal batteries (LMBs) which hold great promise for next-generation batteries. However, the unstable solid electrolyte interphases (SEIs) and the uncontrollable lithium dendrite growth severely hinder the commercial development of LMAs. The emerging 2D polymers (2DPs), which possess high mechanical flexibility, high specific surface area, abundant surface chemistry, and rich chemical modification characteristics, have shown great advantages in addressing the inherent issues of LMAs. Herein, the current progress of 2DPs for stable and dendrite-free LMAs in liquid- and solid-based batteries is comprehensively reviewed. Some perspectives for the application of 2DPs in LMBs are also discussed. It is believed that the emerging 2DPs will provide insights into developing high-energy-density LMBs and beyond.
Collapse
Affiliation(s)
- Jiwei Wang
- School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China
- Northeast Center for Chemical Energy Storage (NECCES), Binghamton University, Binghamton, New York 13902, United States
| | - Kaixi Wang
- School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau SAR 999078, China
| | - Yuxi Xu
- School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
37
|
Banda H, Dou JH, Chen T, Zhang Y, Dincă M. Dual-Ion Intercalation and High Volumetric Capacitance in a Two-Dimensional Non-Porous Coordination Polymer. Angew Chem Int Ed Engl 2021; 60:27119-27125. [PMID: 34597446 DOI: 10.1002/anie.202112811] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Indexed: 11/07/2022]
Abstract
Intercalation is a promising ion-sorption mechanism for enhancing the energy density of electrochemical capacitors (ECs) because it offers enhanced access to the electrochemical surface area. It requires a rapid transport of ions in and out of a host material, and it must occur without phase transformations. Materials that fulfil these requirements are rare; those that do intercalate almost exclusively cations. Herein, we show that Ni3 (benzenehexathiol) (Ni3 BHT), a non-porous two-dimensional (2D) layered coordination polymer (CP), intercalates both cations and anions with a variety of charges. Whereas cation intercalation is pseudocapacitive, anions intercalate in a purely capacitive fashion. The excellent EC performance of Ni3 BHT provides a general basis for investigating similar dual-ion intercalation mechanisms in the large family of non-porous 2D CPs.
Collapse
Affiliation(s)
- Harish Banda
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Jin-Hu Dou
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Tianyang Chen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Yugang Zhang
- Center for Functional Nanomaterials, Brookhaven National Laboratories, 735 Brookhaven Avenue, Upton, NY, 11973, USA
| | - Mircea Dincă
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| |
Collapse
|
38
|
Ninawe P, Gupta K, Ballav N. Chemically Integrating a 2D Metal-Organic Framework with 2D Functionalized Graphene. Inorg Chem 2021; 60:19079-19085. [PMID: 34851108 DOI: 10.1021/acs.inorgchem.1c02910] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two-dimensional metal-organic frameworks (2D MOFs) are the next-generation 2D crystalline solids. Integrating 2D MOFs with conventional 2D materials like graphene is promising for a variety of applications, including energy or gas storage, catalysis, and sensing. However, unraveling the importance of chemical interaction over an additive effect is essential. Here, we present an unconventional chemistry to integrate a Cu-based 2D MOF, Cu-HHTP (HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene), with 2D functionalized graphene, reduced graphene oxide (rGO), by an in situ oxidation-reduction reaction. Combined Raman spectroscopy, electron spin resonance (ESR) spectroscopy, and X-ray photoelectron spectroscopy (XPS) measurements along with structural analysis evidenced the chemical interaction between Cu-HHTP and rGO, which was subsequently assigned to be the key for the manifestation of significantly modified physical properties. Of particular mention is the conversion of an n-type crystalline solid to a p-type crystalline solid upon the chemical integration of Cu-HHTP with rGO, as revealed by Seebeck coefficient. More importantly, the thermoelectric power factor exhibited an increasing trend with increasing temperature, unlike an opposite trend observed due to an additive effect. The results anticipate the ability of a redox reaction to chemically integrate other 2D MOFs with rGO and show how an in situ synthesis can trigger chemical interaction between two distinctive 2D materials.
Collapse
Affiliation(s)
- Pranay Ninawe
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune 411008, India
| | - Kriti Gupta
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune 411008, India
| | - Nirmalya Ballav
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune 411008, India
| |
Collapse
|
39
|
Banda H, Dou J, Chen T, Zhang Y, Dincă M. Dual‐Ion Intercalation and High Volumetric Capacitance in a Two‐Dimensional Non‐Porous Coordination Polymer. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202112811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Harish Banda
- Department of Chemistry Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Jin‐Hu Dou
- Department of Chemistry Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Tianyang Chen
- Department of Chemistry Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| | - Yugang Zhang
- Center for Functional Nanomaterials, Brookhaven National Laboratories 735 Brookhaven Avenue Upton NY 11973 USA
| | - Mircea Dincă
- Department of Chemistry Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge MA 02139 USA
| |
Collapse
|
40
|
Naberezhnyi D, Park S, Li W, Westphal M, Feng X, Dong R, Dementyev P. Mass Transfer in Boronate Ester 2D COF Single Crystals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2104392. [PMID: 34713582 DOI: 10.1002/smll.202104392] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/05/2021] [Indexed: 06/13/2023]
Abstract
Unlike graphene and similar structures, 2D covalent organic frameworks (2D COFs) exhibit intrinsic porosity with a high areal density of well-defined and uniform openings. Given the pore size adjustability, 2D COFs are likely to outperform artificially perforated inorganic layers with respect to their prospects in membrane separation. Yet, exploring the mass transport in 2D COFs is hidden by the lack of laterally extended free-standing membranes. This work reports on direct molecular permeation measurements with single crystals of an interfacially synthesized boronate ester 2D COF. In accordance with the material topography, the atmospheric and noble gases readily pass the suspended nanosheets while their areal porosity is quantified to be almost 40% exceeding that in any 2D membranes known. However, bulkier aromatic hydrocarbons are found to deviate substantially from Graham's law of diffusion. Counterintuitively, the permeation rate is demonstrated to rise from benzene to toluene and further to xylene despite the increase in the molecular mass and dimensions. The results are interpreted in terms of adsorption-mediated flow that appears to be an important transport mechanism for microporous planar nanomaterials.
Collapse
Affiliation(s)
- Daniil Naberezhnyi
- Physics of Supramolecular Systems and Surfaces, Faculty of Physics, Bielefeld University, 33615, Bielefeld, Germany
| | - SangWook Park
- Center for Advancing Electronics Dresden, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Wei Li
- Center for Advancing Electronics Dresden, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Michael Westphal
- Physics of Supramolecular Systems and Surfaces, Faculty of Physics, Bielefeld University, 33615, Bielefeld, Germany
| | - Xinliang Feng
- Center for Advancing Electronics Dresden, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Renhao Dong
- Center for Advancing Electronics Dresden, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Petr Dementyev
- Physics of Supramolecular Systems and Surfaces, Faculty of Physics, Bielefeld University, 33615, Bielefeld, Germany
| |
Collapse
|
41
|
Dementyev P, Khayya N, Kreie J, Gölzhäuser A. Vapor Adsorption Measurements with Two-Dimensional Membranes. Chemphyschem 2021; 23:e202100732. [PMID: 34817107 PMCID: PMC9300110 DOI: 10.1002/cphc.202100732] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/22/2021] [Indexed: 11/08/2022]
Abstract
Two-dimensional (2D) membranes display extraordinary mass transfer properties, in particular for the permeation of gaseous substances. Their ultimate thickness not only ensures the shortest diffusion pathways, but also makes the membrane surface play a significant role in accommodating and guiding the permeating molecules. As saturated vapors of water and organic solvents are often observed to pass 2D membranes faster than inert gases, condensation is believed to be responsible for surface-mediated transport. Here, we present a spectroscopic experiment to probe adsorption of condensable species on 2D membranes under realistic conditions. Polarization-modulation infrared reflection absorption spectroscopy (PM IRAS) is coupled with a reaction chamber and a vacuum system to control the vaporous environments. The measurements are demonstrated to yield quantitative information on the amount of adsorbates onto supported 2D layers. As a case study, the azeotropic mixture of water and propanol is revealed to maintain its molar composition upon interaction with carbon nanomembranes.
Collapse
Affiliation(s)
- Petr Dementyev
- Faculty of Physics, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Neita Khayya
- Faculty of Physics, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Jakob Kreie
- Faculty of Physics, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Armin Gölzhäuser
- Faculty of Physics, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| |
Collapse
|
42
|
Duan H, Li K, Xie M, Chen JM, Zhou HG, Wu X, Ning GH, Cooper AI, Li D. Scalable Synthesis of Ultrathin Polyimide Covalent Organic Framework Nanosheets for High-Performance Lithium-Sulfur Batteries. J Am Chem Soc 2021; 143:19446-19453. [PMID: 34731564 DOI: 10.1021/jacs.1c08675] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Development of new porous materials as hosts to suppress the dissolution and shuttle of lithium polysulfides is beneficial for constructing highly efficient lithium-sulfur batteries (LSBs). Although 2D covalent organic frameworks (COFs) as host materials exhibit promising potential for LSBs, their performance is still not satisfactory. Herein, we develop polyimide COFs (PI-COF) with a well-defined lamellar structure, which can be exfoliated into ultrathin (∼1.2 nm) 2D polyimide nanosheets (PI-CONs) with a large size (∼6 μm) and large quantity (40 mg/batch). Explored as new sulfur host materials for LSBs, PI-COF and PI-CONs deliver high capacities (1330 and 1205 mA h g-1 at 0.1 C, respectively), excellent rate capabilities (620 and 503 mA h g-1 at 4 C, respectively), and superior cycling stability (96% capacity retention at 0.2 C for PI-CONs) by virtue of the synergy of robust conjugated porous frameworks and strong oxygen-lithium interactions, surpassing the vast majority of organic/polymeric lithium-sulfur battery cathodes ever reported. Our finding demonstrates that ultrathin 2D COF nanosheets with carbonyl groups could be promising host materials for LSBs with excellent electrochemical performance.
Collapse
Affiliation(s)
- Haiyan Duan
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China.,Department of Chemistry and Materials Innovation Factory and Leverhulme Research Centre for Functional Materials Design, University of Liverpool, Liverpool L69 7ZD, United Kingdom.,State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Ke Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.,School of Chemistry, Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) & Advanced Materials and Bio-Engineering Research (AMBER) Centre, Trinity College Dublin, Dublin 2, Ireland
| | - Mo Xie
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Jia-Ming Chen
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Hou-Gan Zhou
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Xiaofeng Wu
- Department of Chemistry and Materials Innovation Factory and Leverhulme Research Centre for Functional Materials Design, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Guo-Hong Ning
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Andrew I Cooper
- Department of Chemistry and Materials Innovation Factory and Leverhulme Research Centre for Functional Materials Design, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Dan Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| |
Collapse
|
43
|
Gilmanova L, Bon V, Shupletsov L, Pohl D, Rauche M, Brunner E, Kaskel S. Chemically Stable Carbazole-Based Imine Covalent Organic Frameworks with Acidochromic Response for Humidity Control Applications. J Am Chem Soc 2021; 143:18368-18373. [PMID: 34726056 PMCID: PMC8587605 DOI: 10.1021/jacs.1c07148] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
![]()
Isoreticular chemically
stable two-dimensional imine covalent organic
frameworks (COFs), further denoted as DUT-175 and DUT-176, are obtained
in a reaction of 4,4′-bis(9H-carbazol-9-yl)biphenyl
tetraaldehyde with phenyldiamine and benzidine. The crystal structures,
solved and refined from the powder X-ray diffraction data and confirmed
by high-resolution transmission electron microscopy, indicate AA-stacked
layer structures. Both structures feature distorted hexagonal channel
pores, assuring remarkable porosity (SBET = 1071 m2 g–1 for DUT-175 and SBET = 1062 m2 g–1 for DUT-176), as confirmed by adsorption of gases and vapors. The
complex conjugated π system of the COFs involves electron-rich
carbazole building units, which in combination with the imine groups
allow reversible pH-dependent protonation of the frameworks, accompanied
by charge transfer and shift of the absorption bands in the UV–vis
spectrum. The sigmoidal shape of the water vapor adsorption and desorption
isotherms with a steep adsorption step at p/p0 = 0.4–0.6 in combination with excellent
stability over dozens of adsorption and desorption cycles ranks these
COFs among the best materials for indoor humidity control applications.
Collapse
Affiliation(s)
- Leisan Gilmanova
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Bergstraße 66, 01069 Dresden, Germany
| | - Volodymyr Bon
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Bergstraße 66, 01069 Dresden, Germany
| | - Leonid Shupletsov
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Bergstraße 66, 01069 Dresden, Germany
| | - Darius Pohl
- Dresden Center of Nanoanalysis, cfaed, Technische Universität Dresden, Helmholtzstraße 18, 01069, Dresden, Germany
| | - Marcus Rauche
- Chair of Bioanalytical Chemistry, Technische Universität Dresden, Bergstraße 66, 01069 Dresden, Germany
| | - Eike Brunner
- Chair of Bioanalytical Chemistry, Technische Universität Dresden, Bergstraße 66, 01069 Dresden, Germany
| | - Stefan Kaskel
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Bergstraße 66, 01069 Dresden, Germany
| |
Collapse
|
44
|
Benzotrithiophene and triphenylamine based covalent organic frameworks as heterogeneous photocatalysts for benzimidazole synthesis. J Catal 2021. [DOI: 10.1016/j.jcat.2021.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Yang H, Yang D, Zhou Y, Wang X. Polyoxometalate Interlayered Zinc-Metallophthalocyanine Molecular Layer Sandwich as Photocoupled Electrocatalytic CO 2 Reduction Catalyst. J Am Chem Soc 2021; 143:13721-13730. [PMID: 34425671 DOI: 10.1021/jacs.1c05580] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Developing efficient and robust heterogeneous metallophthalocyanine electrocatalysts for CO2 reduction remains a challenge. Here, a general synthetic method of zinc-metallophthalocyanine (MPc) molecular layer/polyoxometalate (POM) sandwich lamellar material is developed, and thus improved performance of electrocatalytic and photocoupled electrocatalytic CO2 reduction is achieved. The incorporation of POM could prevent the packing of MPc molecular layers from aggregation, which would be favorable to the exposure of active sites. The molecular layer sandwich catalyst presents superior CO2 reduction activity, delivering the highest CO Faradaic efficiency (FECO) of 96.1% at -0.7 V vs RHE in dark field. Under light irradiation, over 93% FECO is achieved in a broad potential range from -0.6 to -0.9 V vs RHE with a maximum of 96.2%, and the carbon monoxide turnover frequency could exceed 2060 h-1. Photoelectrochemical tests and luminescence characterizations reveal the molecular layer is beneficial for carrier separation during light irradiation; density functional theory calculations and electron paramagnetic resonance indicated a 2-fold enhancement of the external light field on the catalytic performance.
Collapse
Affiliation(s)
- Haozhou Yang
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Deren Yang
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yue Zhou
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xun Wang
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
46
|
|
47
|
Schwotzer F, Senkovska I, Bon V, Lochmann S, Evans JD, Pohl D, Rellinghaus B, Kaskel S. Solvent-assisted delamination of layered copper dithienothiophene-dicarboxylate (DUT-134). Inorg Chem Front 2021. [DOI: 10.1039/d1qi00349f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Rational selection of the delamination solvent enables efficient exfoliation of layered MOF, resulting in suspension of the nanosheets stable over days.
Collapse
Affiliation(s)
- Friedrich Schwotzer
- Inorganic Chemistry I
- Faculty of Chemistry and Food Chemistry
- Technische Universität Dresden
- 01069 Dresden
- Germany
| | - Irena Senkovska
- Inorganic Chemistry I
- Faculty of Chemistry and Food Chemistry
- Technische Universität Dresden
- 01069 Dresden
- Germany
| | - Volodymyr Bon
- Inorganic Chemistry I
- Faculty of Chemistry and Food Chemistry
- Technische Universität Dresden
- 01069 Dresden
- Germany
| | - Stefanie Lochmann
- Inorganic Chemistry I
- Faculty of Chemistry and Food Chemistry
- Technische Universität Dresden
- 01069 Dresden
- Germany
| | - Jack D. Evans
- Inorganic Chemistry I
- Faculty of Chemistry and Food Chemistry
- Technische Universität Dresden
- 01069 Dresden
- Germany
| | - Darius Pohl
- Dresden Center for Nanoanalysis (DCN)
- Center for advancing electronics Dresden
- Technische Universität Dresden
- 01069 Dresden
- Germany
| | - Bernd Rellinghaus
- Dresden Center for Nanoanalysis (DCN)
- Center for advancing electronics Dresden
- Technische Universität Dresden
- 01069 Dresden
- Germany
| | - Stefan Kaskel
- Inorganic Chemistry I
- Faculty of Chemistry and Food Chemistry
- Technische Universität Dresden
- 01069 Dresden
- Germany
| |
Collapse
|
48
|
Kasbe PS, Luo X, Xu W. Interface engineering and integration of two-dimensional polymeric and inorganic materials for advanced hybrid structures. NEW J CHEM 2021. [DOI: 10.1039/d1nj04022g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent progress and future directions in the creation of hybrid structures based on 2D polymers and inorganic 2D materials are discussed.
Collapse
Affiliation(s)
- Pratik S. Kasbe
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325, USA
| | - Xiongyu Luo
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325, USA
| | - Weinan Xu
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325, USA
| |
Collapse
|