1
|
Oberdick SD, Dodd SJ, Koretsky AP, Zabow G. Shaped Magnetogel Microparticles for Multispectral Magnetic Resonance Contrast and Sensing. ACS Sens 2024; 9:42-51. [PMID: 38113475 DOI: 10.1021/acssensors.3c01373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Multispectral magnetic resonance imaging (MRI) contrast agents are microfabricated three-dimensional magnetic structures that encode nearby water protons with discrete frequencies. The agents have a unique radiofrequency (RF) resonance that can be tuned by engineering the geometric parameters of these microstructures. Multispectral contrast agents can be used as sensors by incorporating a stimulus-driven shape-changing response into their structure. These geometrically encoded magnetic sensors (GEMS) enable MRI-based sensing via environmentally induced changes to their geometry and their corresponding RF resonance. Previously, GEMS have been made using thin-film lithography techniques in a cleanroom environment. While these approaches offer precise control of the microstructure, they can be a limitation for researchers who do not have cleanroom access or microfabrication expertise. Here, an alternative approach for GEMS fabrication based on soft lithography is introduced. The fabrication scheme uses cheap, accessible materials and simple chemistry to produce shaped magnetic hydrogel microparticles with multispectral MRI contrast properties. The microparticles can be used as sensors by fabricating them out of shape-reconfigurable, "smart" hydrogels. The change in shape causes a corresponding shift in the resonance of the GEMS, producing an MRI-addressable readout of the microenvironment. Proof-of-principle experiments showing a multispectral response to pH change with cylindrical shell-shaped magnetogel GEMS are presented.
Collapse
Affiliation(s)
- Samuel D Oberdick
- Department of Physics, University of Colorado, Boulder, Colorado 80309, United States
- National Institute of Standards and Technology, Boulder, Colorado 80305, United States
| | - Stephen J Dodd
- Laboratory of Functional and Molecular Imaging, NINDS, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Alan P Koretsky
- Laboratory of Functional and Molecular Imaging, NINDS, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Gary Zabow
- National Institute of Standards and Technology, Boulder, Colorado 80305, United States
| |
Collapse
|
2
|
Stoll JA, Lachowicz D, Kmita A, Gajewska M, Sikora M, Berent K, Przybylski M, Russek SE, Celinski ZJ, Hankiewicz JH. Synthesis of Manganese Zinc Ferrite Nanoparticles in Medical-Grade Silicone for MRI Applications. Int J Mol Sci 2023; 24:ijms24065685. [PMID: 36982758 PMCID: PMC10059734 DOI: 10.3390/ijms24065685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
The aim of this project is to fabricate hydrogen-rich silicone doped with magnetic nanoparticles for use as a temperature change indicator in magnetic resonance imaging-guided (MRIg) thermal ablations. To avoid clustering, the particles of mixed MnZn ferrite were synthesized directly in a medical-grade silicone polymer solution. The particles were characterized by transmission electron microscopy, powder X-ray diffraction, soft X-ray absorption spectroscopy, vibrating sample magnetometry, temperature-dependent nuclear magnetic resonance relaxometry (20 °C to 60 °C, at 3.0 T), and magnetic resonance imaging (at 3.0 T). Synthesized nanoparticles were the size of 4.4 nm ± 2.1 nm and exhibited superparamagnetic behavior. Bulk silicone material showed a good shape stability within the study’s temperature range. Embedded nanoparticles did not influence spin–lattice relaxation, but they shorten the longer component of spin–spin nuclear relaxation times of silicone’s protons. However, these protons exhibited an extremely high r2* relaxivity (above 1200 L s−1 mmol−1) due to the presence of particles, with a moderate decrease in the magnetization with temperature. With an increased temperature decrease of r2*, this ferro–silicone can be potentially used as a temperature indicator in high-temperature MRIg ablations (40 °C to 60 °C).
Collapse
Affiliation(s)
- Joshua A. Stoll
- Colorado Springs Center for the BioFrontiers Institute, University of Colorado, 1420 Austin Bluffs Pkwy, Colorado Springs, CO 80918, USA
| | - Dorota Lachowicz
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, 30-059 Krakow, Poland
- Correspondence:
| | - Angelika Kmita
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, 30-059 Krakow, Poland
| | - Marta Gajewska
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, 30-059 Krakow, Poland
| | - Marcin Sikora
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, 30-059 Krakow, Poland
| | - Katarzyna Berent
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, 30-059 Krakow, Poland
| | - Marek Przybylski
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, 30-059 Krakow, Poland
| | - Stephen E. Russek
- National Institute of Standards and Technology, 325 Broadway St., Boulder, CO 80305, USA
| | - Zbigniew J. Celinski
- Colorado Springs Center for the BioFrontiers Institute, University of Colorado, 1420 Austin Bluffs Pkwy, Colorado Springs, CO 80918, USA
| | - Janusz H. Hankiewicz
- Colorado Springs Center for the BioFrontiers Institute, University of Colorado, 1420 Austin Bluffs Pkwy, Colorado Springs, CO 80918, USA
| |
Collapse
|
3
|
Oberdick SD, Borchers JA, Krycka KL. Magnetic correlations of iron oxide nanoparticles as probed by polarized SANS in stretched magnetic nanoparticle-elastomer composites. APPLIED PHYSICS LETTERS 2022; 120:10.1063/5.0081922. [PMID: 36620127 PMCID: PMC9813909 DOI: 10.1063/5.0081922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/17/2022] [Indexed: 06/17/2023]
Abstract
We have investigated the magnetic correlations among 7 nm iron oxide nanoparticles embedded in stretched silicone elastomers using polarized Small Angle Neutron Scattering (SANS). The magnetic nanoparticle (MNP)-elastomer composite can be stretched during experiments, and macroscopic deformations cause rearrangement of the iron oxide particles on the nanoscale. Polarized neutrons can be used to nondestructively probe the arrangement of magnetic nanoparticles before and after stretching, so that the relationship between applied stress and nanoscale magnetization can be interrogated. We find that stretching the MNP-elastomer composite past a certain threshold dramatically changes the structural and magnetic morphology of the system. The unstretched sample is modeled well by ~40 nm clusters of ~7 nm particles arranged in a hard sphere packing with a "volume fraction" parameter of 0.3. After the sample is stretched 3× its original size, however, the scattering data can be modeled by smaller, 16 nm clusters with a higher volume fraction of 0.4. We suggest that the effect can be understood by considering a stretching transformation on FCC-like crystallites of iron oxide nanoparticles embedded in an elastomeric medium.
Collapse
Affiliation(s)
- S. D. Oberdick
- Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
- National Institute of Standards and Technology, Boulder, Colorado 80305, USA
| | - J. A. Borchers
- National Institute of Standards and Technology, NIST Center for Neutron Research, Gaithersburg, Maryland 20899, USA
| | - K. L. Krycka
- National Institute of Standards and Technology, NIST Center for Neutron Research, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
4
|
Stroud J, Hankiewicz JH, Camley RE, Celinski Z. On the optimization of imaging parameters for magnetic resonance imaging thermometry using magnetic microparticles. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 333:107108. [PMID: 34823069 DOI: 10.1016/j.jmr.2021.107108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/21/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Magnetic Resonance Imaging thermometry is an extremely useful technique which allows one to determine, noninvasively, the temperature deep in the tissue in two or three dimensions. Many methods of MR thermometry have been developed, including those that rely on the intrinsic MR properties of tissue and those which depend on the addition of contrast agents injected into the tissue to create temperature dependent MR images. One such method is to introduce magnetic particles whose magnetization's temperature dependence influences the MR properties of the surrounding tissue and obtain temperature from calibrated intensity changes of T2* weighted MR images. One limitation of this method is the temperature resolution which is determined by the rate of change of the magnetization with temperature. One can change the MR response either through varying the particles properties or finding the MR scan parameters which maximize the image contrast due to T2* weighting of images. In this work we calculate the MR signal strength, using known values of T1 and T2* relaxation times for agarose gel phantoms with embedded magnetic particles, and compared this with the temperature dependent intensity of experimental MR images. We seek to optimize the change in signal intensity with temperature by varying the selectable MR scanner parameters: echo time, repetition time, and flip angle. Based on comparison with experimental data we find that the change in signal with temperature can be significantly increased (by as much as 100%) through the appropriate choice of MR scan parameters.
Collapse
Affiliation(s)
- John Stroud
- Center for the BioFrontiers Institute, University of Colorado at Colorado Springs, 1420 Austin Bluffs Pkwy, Colorado Springs, CO, 80918, United States.
| | - Janusz H Hankiewicz
- Center for the BioFrontiers Institute, University of Colorado at Colorado Springs, 1420 Austin Bluffs Pkwy, Colorado Springs, CO, 80918, United States
| | - Robert E Camley
- Center for the BioFrontiers Institute, University of Colorado at Colorado Springs, 1420 Austin Bluffs Pkwy, Colorado Springs, CO, 80918, United States; Department of Physics and Energy Science, University of Colorado at Colorado Springs, 1420 Austin Bluffs Pkwy, Colorado Springs, CO, 80918, United States
| | - Zbigniew Celinski
- Center for the BioFrontiers Institute, University of Colorado at Colorado Springs, 1420 Austin Bluffs Pkwy, Colorado Springs, CO, 80918, United States; Department of Physics and Energy Science, University of Colorado at Colorado Springs, 1420 Austin Bluffs Pkwy, Colorado Springs, CO, 80918, United States
| |
Collapse
|
5
|
Tang J, Zeng L, Liu Z. Fabrication of patterned magnetic hydrogels by ion transfer printing. SOFT MATTER 2021; 17:8059-8067. [PMID: 34524342 DOI: 10.1039/d1sm00869b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Magnetic hydrogels have found a myriad of applications in bioengineering and soft robotics. As the function of magnetic hydrogels is affected by the distribution of magnetic nanoparticles, it is imperative to propose a strategy for fabricating patterned magnetic hydrogels. However, previous strategies can only achieve very simple distribution by using external magnetic fields to guide the chain-like assembly of nanoparticles. It remains challenging to realize the complex distribution of magnetic nanoparticles in a hydrogel. Here we propose an ion transfer printing strategy to prepare patterned magnetic hydrogels, taking advantage of the ion permeation and nanoparticle precipitation in the hydrogel. The polyacrylamide (PAAm) hydrogel is loaded with Fe2+/Fe3+ ions and covered with a patterned filter paper with OH- ions to generate Fe3O4 nanoparticles locally. The effect of the ion concentration and covering time on the generation of nanoparticles is investigated by using a reaction-diffusion model. Furthermore, the magnetothermal response of the patterned magnetic hydrogels has been characterized to reveal the distribution and thermogenesis of magnetic nanoparticles. We hope that the fabricated magnetic hydrogels with complex patterns can open up new opportunities for applications.
Collapse
Affiliation(s)
- Jingda Tang
- State Key Lab for Strength and Vibration of Mechanical Structures, International Center for Applied Mechanics, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Liangsong Zeng
- State Key Lab for Strength and Vibration of Mechanical Structures, International Center for Applied Mechanics, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Zishun Liu
- State Key Lab for Strength and Vibration of Mechanical Structures, International Center for Applied Mechanics, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|