1
|
Chen Y, Liu F, Pal S, Hu Q. Proteolysis-targeting drug delivery system (ProDDS): integrating targeted protein degradation concepts into formulation design. Chem Soc Rev 2024; 53:9582-9608. [PMID: 39171633 DOI: 10.1039/d4cs00411f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Targeted protein degradation (TPD) has emerged as a revolutionary paradigm in drug discovery and development, offering a promising avenue to tackle challenging therapeutic targets. Unlike traditional drug discovery approaches that focus on inhibiting protein function, TPD aims to eliminate proteins of interest (POIs) using modular chimeric structures. This is achieved through the utilization of proteolysis-targeting chimeras (PROTACs), which redirect POIs to E3 ubiquitin ligases, rendering them for degradation by the cellular ubiquitin-proteasome system (UPS). Additionally, other TPD technologies such as lysosome-targeting chimeras (LYTACs) and autophagy-based protein degraders facilitate the transportation of proteins to endo-lysosomal or autophagy-lysosomal pathways for degradation, respectively. Despite significant growth in preclinical TPD research, many chimeras fail to progress beyond this stage in the drug development. Various factors contribute to the limited success of TPD agents, including a significant hurdle of inadequate delivery to the target site. Integrating TPD into delivery platforms could surmount the challenges of in vivo applications of TPD strategies by reshaping their pharmacokinetics and pharmacodynamic profiles. These proteolysis-targeting drug delivery systems (ProDDSs) exhibit superior delivery performance, enhanced targetability, and reduced off-tissue side effects. In this review, we will survey the latest progress in TPD-inspired drug delivery systems, highlight the importance of introducing delivery ideas or technologies to the development of protein degraders, outline design principles of protein degrader-inspired delivery systems, discuss the current challenges, and provide an outlook on future opportunities in this field.
Collapse
Affiliation(s)
- Yu Chen
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Fengyuan Liu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Samira Pal
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
2
|
You J, Guo Y, Dong Z. Polypeptides-Based Nanocarriers in Tumor Therapy. Pharmaceutics 2024; 16:1192. [PMID: 39339228 PMCID: PMC11435007 DOI: 10.3390/pharmaceutics16091192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/07/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
Cancer remains a worldwide problem, and new treatment strategies are being actively developed. Peptides have the characteristics of good biocompatibility, strong targeting, functional diversity, modifiability, membrane permeable ability, and low immunogenicity, and they have been widely used to construct targeted drug delivery systems (DDSs). In addition, peptides, as endogenous substances, have a high affinity, which can not only regulate immune cells but also work synergistically with drugs to kill tumor cells, demonstrating significant potential for application. In this review, the latest progress of polypeptides-based nanocarriers in tumor therapy has been outlined, focusing on their applications in killing tumor cells and regulating immune cells. Additionally, peptides as carriers were found to primarily provide a transport function, which was also a subject of interest to us. At the end of the paper, the shortcomings in the construction of peptide nano-delivery system have been summarized, and possible solutions are proposed therein. The application of peptides provides a promising outlook for cancer treatment, and we hope this article can provide in-depth insights into possible future avenues of exploration.
Collapse
Affiliation(s)
- Juhua You
- School of Pharmacy, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Xiangfang District, Harbin 150040, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Yifei Guo
- School of Pharmacy, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Xiangfang District, Harbin 150040, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| | - Zhengqi Dong
- School of Pharmacy, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Xiangfang District, Harbin 150040, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing 100193, China
| |
Collapse
|
3
|
Yang S, Xu P. HemoDL: Hemolytic peptides prediction by double ensemble engines from Rich sequence-derived and transformer-enhanced information. Anal Biochem 2024; 690:115523. [PMID: 38552762 DOI: 10.1016/j.ab.2024.115523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/02/2024]
Abstract
Hemolytic peptides can trigger hemolysis by rupturing red blood cells' membranes and triggering cell disruption. Due to the labor-intensive and time-consuming in-lab identification process, accurate, high-throughput hemolytic peptide prediction is crucial for the growth of peptide sequence data in proteomics and peptidomics. In this study, we offer the HemoDL ensemble learning model, which learns the distinct distribution of sequence characteristics for predicting the hemolytic activity of peptides using a double LightGBM framework. To determine the most informative encoding features, we compare 17 widely used features across four benchmark datasets. Our investigation reveals that CTD, BPF, Charge, AAC, GDPC, ATC, QSO, and transformer-based features exhibit more positive contributions to detecting the hemolytic activity of peptides. Comparison with eight state-of-the-art methods demonstrates that HemoDL outperforms other models, attaining higher Matthews Correlation Coefficient values on four test datasets, ranging from 6.30% to 16.04%, 6.63%-11.26%, 4.76%-9.92%, and 7.41%-15.03%, respectively. Additionally, we provide the HemoDL with a user-friendly graphical interface available at https://github.com/abcair/HemoDL. In summary, the HemoDL model, leveraging CTD, BPF, Charge, AAC, GDPC, ATC, QSO and transformer-based encoding features within a double LightGBM learning framework, achieves high accuracy in predicting the hemolytic activity of peptides.
Collapse
Affiliation(s)
- Sen Yang
- School of Computer Science and Artificial Intelligence Aliyun School of Big Data School of Software, Changzhou University, Changzhou, 213164, China; The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, 213164, China
| | - Piao Xu
- College of Economics and Management, Nanjing Forestry University, China.
| |
Collapse
|
4
|
Xu Z, Wang B, Huang R, Guo M, Han D, Yin L, Zhang X, Huang Y, Li X. Efforts to promote osteogenesis-angiogenesis coupling for bone tissue engineering. Biomater Sci 2024; 12:2801-2830. [PMID: 38683241 DOI: 10.1039/d3bm02017g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Repair of bone defects exceeding a critical size has been always a big challenge in clinical practice. Tissue engineering has exhibited great potential to effectively repair the defects with less adverse effect than traditional bone grafts, during which how to induce vascularized bone formation has been recognized as a critical issue. Therefore, recently many studies have been launched to attempt to promote osteogenesis-angiogenesis coupling. This review summarized comprehensively and explored in depth current efforts to ameliorate the coupling of osteogenesis and angiogenesis from four aspects, namely the optimization of scaffold components, modification of scaffold structures, loading strategies for bioactive substances, and employment tricks for appropriate cells. Especially, the advantages and the possible reasons for every strategy, as well as the challenges, were elaborated. Furthermore, some promising research directions were proposed based on an in-depth analysis of the current research. This paper will hopefully spark new ideas and approaches for more efficiently boosting new vascularized bone formations.
Collapse
Affiliation(s)
- Zhiwei Xu
- College of Lab Medicine, Hebei North University, Zhangjiakou 075000, China
| | - Bingbing Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Rd, Haidian District, Beijing, 100083, China.
| | - Ruoyu Huang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Rd, Haidian District, Beijing, 100083, China.
| | - Mengyao Guo
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Rd, Haidian District, Beijing, 100083, China.
| | - Di Han
- College of Lab Medicine, Hebei North University, Zhangjiakou 075000, China
| | - Lan Yin
- Key Laboratory of Advanced Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Xiaoyun Zhang
- College of Lab Medicine, Hebei North University, Zhangjiakou 075000, China
| | - Yong Huang
- College of Lab Medicine, Hebei North University, Zhangjiakou 075000, China
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Rd, Haidian District, Beijing, 100083, China.
| |
Collapse
|
5
|
Mamidi N, Ijadi F, Norahan MH. Leveraging the Recent Advancements in GelMA Scaffolds for Bone Tissue Engineering: An Assessment of Challenges and Opportunities. Biomacromolecules 2024; 25:2075-2113. [PMID: 37406611 DOI: 10.1021/acs.biomac.3c00279] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
The field of bone tissue engineering has seen significant advancements in recent years. Each year, over two million bone transplants are performed globally, and conventional treatments, such as bone grafts and metallic implants, have their limitations. Tissue engineering offers a new level of treatment, allowing for the creation of living tissue within a biomaterial framework. Recent advances in biomaterials have provided innovative approaches to rebuilding bone tissue function after damage. Among them, gelatin methacryloyl (GelMA) hydrogel is emerging as a promising biomaterial for supporting cell proliferation and tissue regeneration, and GelMA has exhibited exceptional physicochemical and biological properties, making it a viable option for clinical translation. Various methods and classes of additives have been used in the application of GelMA for bone regeneration, with the incorporation of nanofillers or other polymers enhancing its resilience and functional performance. Despite promising results, the fabrication of complex structures that mimic the bone architecture and the provision of balanced physical properties for both cell and vasculature growth and proper stiffness for load bearing remain as challenges. In terms of utilizing osteogenic additives, the priority should be on versatile components that promote angiogenesis and osteogenesis while reinforcing the structure for bone tissue engineering applications. This review focuses on recent efforts and advantages of GelMA-based composite biomaterials for bone tissue engineering, covering the literature from the last five years.
Collapse
Affiliation(s)
- Narsimha Mamidi
- Department of Chemistry and Nanotechnology, School of Engineering and Science, Tecnológico de Monterrey, Monterrey, Nuevo León 64849, México
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Fatemeh Ijadi
- Department of Chemistry and Nanotechnology, School of Engineering and Science, Tecnológico de Monterrey, Monterrey, Nuevo León 64849, México
| | - Mohammad Hadi Norahan
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey, Nuevo León 64849, México
| |
Collapse
|
6
|
Rutherford KA, McManus KJ. PROTACs: Current and Future Potential as a Precision Medicine Strategy to Combat Cancer. Mol Cancer Ther 2024; 23:454-463. [PMID: 38205881 PMCID: PMC10985480 DOI: 10.1158/1535-7163.mct-23-0747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/20/2023] [Accepted: 01/05/2024] [Indexed: 01/12/2024]
Abstract
Proteolysis targeting chimeras (PROTAC) are an emerging precision medicine strategy, which targets key proteins for proteolytic degradation to ultimately induce cancer cell killing. These hetero-bifunctional molecules hijack the ubiquitin proteasome system to selectively add polyubiquitin chains onto a specific protein target to induce proteolytic degradation. Importantly, PROTACs have the capacity to target virtually any intracellular and transmembrane protein for degradation, including oncoproteins previously considered undruggable, which strategically positions PROTACs at the crossroads of multiple cancer research areas. In this review, we present normal functions of the ubiquitin regulation proteins and describe the application of PROTACs to improve the efficacy of current broad-spectrum therapeutics. We subsequently present the potential for PROTACs to exploit specific cancer vulnerabilities through synthetic genetic approaches, which may expedite the development, translation, and utility of novel synthetic genetic therapies in cancer. Finally, we describe the challenges associated with PROTACs and the ongoing efforts to overcome these issues to streamline clinical translation. Ultimately, these efforts may lead to their routine clinical use, which is expected to revolutionize cancer treatment strategies, delay familial cancer onset, and ultimately improve the lives and outcomes of those living with cancer.
Collapse
Affiliation(s)
- Kailee A. Rutherford
- Paul Albrechtsen Research Institute CancerCare Manitoba, Winnipeg, Manitoba, Canada
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciencs, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kirk J. McManus
- Paul Albrechtsen Research Institute CancerCare Manitoba, Winnipeg, Manitoba, Canada
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciencs, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
7
|
Guo S, Wang J, Wang Q, Wang J, Qin S, Li W. Advances in peptide-based drug delivery systems. Heliyon 2024; 10:e26009. [PMID: 38404797 PMCID: PMC10884816 DOI: 10.1016/j.heliyon.2024.e26009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/29/2024] [Accepted: 02/06/2024] [Indexed: 02/27/2024] Open
Abstract
Drug delivery systems (DDSs) are designed to deliver drugs to their specific targets to minimize their toxic effects and improve their susceptibility to clearance during targeted transport. Peptides have high affinity, low immunogenicity, simple amino acid composition, and adjustable molecular size; therefore, most peptides can be coupled to drugs via linkers to form peptide-drug conjugates (PDCs) and act as active pro-drugs. PDCs are widely thought to be promising DDSs, given their ability to improve drug bio-compatibility and physiological stability. Peptide-based DDSs are often used to deliver therapeutic substances such as anti-cancer drugs and nucleic acid-based drugs, which not only slow the degradation rate of drugs in vivo but also ensure the drug concentration at the targeted site and prolong the half-life of drugs in vivo. This article provides an profile of the advancements and future development in functional peptide-based DDSs both domestically and internationally in recent years, in the expectation of achieving targeted drug delivery incorporating functional peptides and taking full advantage of synergistic effects.
Collapse
Affiliation(s)
- Sijie Guo
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong, 266112, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Jing Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Qi Wang
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong, 266112, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Jinxin Wang
- College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Song Qin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Wenjun Li
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, Shandong, 266112, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| |
Collapse
|
8
|
Zhong W, Wan C, Zhou Z, Dai C, Zhang Y, Lu F, Yin F, Li Z. 4-Iodine N-Methylpyridinium-Mediated Peptide Synthesis. Org Lett 2023; 25:8661-8665. [PMID: 38009639 DOI: 10.1021/acs.orglett.3c03539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Through systematic optimization of halopyridinium compounds, we established a peptide coupling protocol utilizing 4-iodine N-methylpyridinium (4IMP) for solid-phase peptide synthesis (SPPS). The 4IMP coupling reagent is easily prepared, bench stable, and cost-effective. Employing 4IMP in the SPPS process has showcased remarkable chemoselectivity and efficiency, effectively eliminating racemization and epimerization. This achievement has been substantiated through the successful synthesis of a range of peptides via the direct utilization of commercially available amino acid substrates for SPPS.
Collapse
Affiliation(s)
- Wanjin Zhong
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Chuan Wan
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118, China
| | - Ziyuan Zhou
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Chuan Dai
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Yichi Zhang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Fei Lu
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Feng Yin
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518118, China
| | - Zigang Li
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518118, China
| |
Collapse
|
9
|
Li B, Huang Y, Bao J, Xu Z, Yan X, Zou Q. Supramolecular Nanoarchitectonics Based on Antagonist Peptide Self-Assembly for Treatment of Liver Fibrosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304675. [PMID: 37433983 DOI: 10.1002/smll.202304675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Indexed: 07/13/2023]
Abstract
Therapeutic peptides have attracted increasing attention as anti-fibrotic drug candidates. However, the rapid degradation and insufficient liver accumulation of therapeutic peptides have seriously hampered their clinical translation. Here, the use of supramolecular nanoarchitectonics is reported to fabricate nanodrugs from therapeutic peptides for treating liver fibrosis. Self-assembling antagonist peptides are rationally designed and manipulated into uniform peptide nanoparticles with well-defined nanostructures and uniform sizes. Significantly, the peptide nanoparticles show enhanced accumulation in liver sites and limited distribution in other tissues. In vivo results show that the peptide nanoparticles exhibit greatly enhanced anti-fibrotic activity compared to the pristine antagonist along with good biocompatibility. These results indicate that self-assembly is a promising nanoarchitectonics approach to enhance the anti-fibrotic activity of therapeutic peptides for treating liver fibrosis.
Collapse
Affiliation(s)
- Bowen Li
- School of Pharmacy, Anhui Medical University, Hefei, 230032, P. R. China
| | - Yan Huang
- School of Pharmacy, Anhui Medical University, Hefei, 230032, P. R. China
| | - Jianwei Bao
- School of Pharmacy, Anhui Medical University, Hefei, 230032, P. R. China
| | - Zixuan Xu
- School of Pharmacy, Anhui Medical University, Hefei, 230032, P. R. China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Qianli Zou
- School of Pharmacy, Anhui Medical University, Hefei, 230032, P. R. China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, 230000, P. R. China
| |
Collapse
|
10
|
Kaltbeitzel J, Wich PR. Protein-based Nanoparticles: From Drug Delivery to Imaging, Nanocatalysis and Protein Therapy. Angew Chem Int Ed Engl 2023; 62:e202216097. [PMID: 36917017 DOI: 10.1002/anie.202216097] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/16/2023]
Abstract
Proteins and enzymes are versatile biomaterials for a wide range of medical applications due to their high specificity for receptors and substrates, high degradability, low toxicity, and overall good biocompatibility. Protein nanoparticles are formed by the arrangement of several native or modified proteins into nanometer-sized assemblies. In this review, we will focus on artificial nanoparticle systems, where proteins are the main structural element and not just an encapsulated payload. While under natural conditions, only certain proteins form defined aggregates and nanoparticles, chemical modifications or a change in the physical environment can further extend the pool of available building blocks. This allows the assembly of many globular proteins and even enzymes. These advances in preparation methods led to the emergence of new generations of nanosystems that extend beyond transport vehicles to diverse applications, from multifunctional drug delivery to imaging, nanocatalysis and protein therapy.
Collapse
Affiliation(s)
- Jonas Kaltbeitzel
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Peter R Wich
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
11
|
Barman P, Joshi S, Sharma S, Preet S, Sharma S, Saini A. Strategic Approaches to Improvise Peptide Drugs as Next Generation Therapeutics. Int J Pept Res Ther 2023; 29:61. [PMID: 37251528 PMCID: PMC10206374 DOI: 10.1007/s10989-023-10524-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2023] [Indexed: 05/31/2023]
Abstract
In recent years, the occurrence of a wide variety of drug-resistant diseases has led to an increase in interest in alternate therapies. Peptide-based drugs as an alternate therapy hold researchers' attention in various therapeutic fields such as neurology, dermatology, oncology, metabolic diseases, etc. Previously, they had been overlooked by pharmaceutical companies due to certain limitations such as proteolytic degradation, poor membrane permeability, low oral bioavailability, shorter half-life, and poor target specificity. Over the last two decades, these limitations have been countered by introducing various modification strategies such as backbone and side-chain modifications, amino acid substitution, etc. which improve their functionality. This has led to a substantial interest of researchers and pharmaceutical companies, moving the next generation of these therapeutics from fundamental research to the market. Various chemical and computational approaches are aiding the production of more stable and long-lasting peptides guiding the formulation of novel and advanced therapeutic agents. However, there is not a single article that talks about various peptide design approaches i.e., in-silico and in-vitro along with their applications and strategies to improve their efficacy. In this review, we try to bring different aspects of peptide-based therapeutics under one article with a clear focus to cover the missing links in the literature. This review draws emphasis on various in-silico approaches and modification-based peptide design strategies. It also highlights the recent progress made in peptide delivery methods important for their enhanced clinical efficacy. The article would provide a bird's-eye view to researchers aiming to develop peptides with therapeutic applications. Graphical Abstract
Collapse
Affiliation(s)
- Panchali Barman
- Institute of Forensic Science and Criminology (UIEAST), Panjab University, Sector 14, Chandigarh, 160014 India
| | - Shubhi Joshi
- Energy Research Centre, Panjab University, Sector 14, Chandigarh, 160014 India
| | - Sheetal Sharma
- Department of Biophysics, Panjab University, Sector 25, Chandigarh, U.T 160014 India
| | - Simran Preet
- Department of Biophysics, Panjab University, Sector 25, Chandigarh, U.T 160014 India
| | - Shweta Sharma
- Institute of Forensic Science and Criminology (UIEAST), Panjab University, Sector 14, Chandigarh, 160014 India
| | - Avneet Saini
- Department of Biophysics, Panjab University, Sector 25, Chandigarh, U.T 160014 India
| |
Collapse
|
12
|
Chen Y, Pal S, Hu Q. Cell-based Relay Delivery Strategy in Biomedical Applications. Adv Drug Deliv Rev 2023; 198:114871. [PMID: 37196699 DOI: 10.1016/j.addr.2023.114871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/14/2023] [Accepted: 05/11/2023] [Indexed: 05/19/2023]
Abstract
The relay delivery strategy is a two-step targeting approach based on two distinct modules in which the first step with an initiator is to artificially create a target/environment which can be targeted by the follow-up effector. This relay delivery concept creates opportunities to amplify existing or create new targeted signals through deploying initiators to enhance the accumulation efficiency of the following effector at the disease site. As the "live" medicines, cell-based therapeutics possess inherent tissue/cell homing abilities and favorable feasibility of biological and chemical modifications, endowing them the great potential in specifically interacting with diverse biological environments. All these unique capabilities make cellular products great candidates that can serve as either initiators or effectors for relay delivery strategies. In this review, we survey recent advances in relay delivery strategies with a specific focus on the roles of various cells in developing relay delivery systems.
Collapse
Affiliation(s)
- Yu Chen
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States; Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, United States; Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Samira Pal
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States; Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, United States; Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States.
| |
Collapse
|
13
|
Li Q, Zhou L, Qin S, Huang Z, Li B, Liu R, Yang M, Nice EC, Zhu H, Huang C. Proteolysis-targeting chimeras in biotherapeutics: Current trends and future applications. Eur J Med Chem 2023; 257:115447. [PMID: 37229829 DOI: 10.1016/j.ejmech.2023.115447] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/02/2023] [Accepted: 05/02/2023] [Indexed: 05/27/2023]
Abstract
The success of inhibitor-based therapeutics is largely constrained by the acquisition of therapeutic resistance, which is partially driven by the undruggable proteome. The emergence of proteolysis targeting chimera (PROTAC) technology, designed for degrading proteins involved in specific biological processes, might provide a novel framework for solving the above constraint. A heterobifunctional PROTAC molecule could structurally connect an E3 ubiquitin ligase ligand with a protein of interest (POI)-binding ligand by chemical linkers. Such technology would result in the degradation of the targeted protein via the ubiquitin-proteasome system (UPS), opening up a novel way of selectively inhibiting undruggable proteins. Herein, we will highlight the advantages of PROTAC technology and summarize the current understanding of the potential mechanisms involved in biotherapeutics, with a particular focus on its application and development where therapeutic benefits over classical small-molecule inhibitors have been achieved. Finally, we discuss how this technology can contribute to developing biotherapeutic drugs, such as antivirals against infectious diseases, for use in clinical practices.
Collapse
Affiliation(s)
- Qiong Li
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Li Zhou
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, PR China
| | - Siyuan Qin
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Zhao Huang
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Bowen Li
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Ruolan Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Mei Yang
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Huili Zhu
- Department of Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, 610041, PR China.
| | - Canhua Huang
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, and West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, PR China; School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| |
Collapse
|
14
|
Sivagnanam S, Das K, Pan I, Barik A, Stewart A, Maity B, Das P. Functionalized Fluorescent Nanostructures Generated from Self-Assembly of a Cationic Tripeptide Direct Cell-Selective Chemotherapeutic Drug Delivery. ACS APPLIED BIO MATERIALS 2023; 6:836-847. [PMID: 36757106 DOI: 10.1021/acsabm.2c00996] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Nanodrug delivery systems (NDDs) capable of conveying chemotherapeutics directly into malignant cells without harming healthy ones are of significant interest in the field of cancer therapy. However, the development of nanostructures with the requisite biocompatibility, inherent optical properties, cellular penetration ability, encapsulation capability, and target selectivity has remained elusive. In an effort to develop cell-selective NDDs, we have synthesized a cationic tripeptide Boc-Arg-Trp-Phe-OMe (PA1), which self-assembles into well-ordered spheres in 100% aqueous medium. The inherent fluorescence properties of the peptide PA1 were shifted from the ultraviolet to the visible region by the self-assembly. These fluorescent nanostructures are proteolytically stable, photostable, and biocompatible, with characteristic blue fluorescence signals that permit us to monitor their intracellular entry in real time. We also demonstrate that these tripeptide spherical structures (TPSS) have the capacity to entrap the chemotherapeutic drug doxorubicin (Dox), shuttle the encapsulated drug within cancerous cells, and initiate the DNA damage signaling cascade, which culminates in apoptosis. Next, we functionalized the TPSS with an epithelial-cell-specific epithelial cell adhesion molecule aptamer. Aptamer-conjugated PA1 (PA1-Apt) facilitated efficient Dox delivery into the breast cancer epithelial cell line MCF7, resulting in cell death. However, cells of the human cardiomyocyte cell line AC16 were resistant to the cell killing actions of PA1-Apt. Together, these data demonstrate that not only can the self-assembly of cationic tripeptides like PA1 be exploited for efficient drug encapsulation and delivery but their unique chemistry also allows for functional modifications, which can improve the selectivity of these versatile NDDs.
Collapse
Affiliation(s)
- Subramaniyam Sivagnanam
- Department of Chemistry, SRM Institute of Science and Technology, SRM Nagar, Potheri, Kattankulathur 603203, Tamil Nadu, India
| | - Kiran Das
- Department of Systems Biology, Centre of Biomedical Research (CBMR), SGPGI Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Ieshita Pan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, Tamil Nadu, India
| | - Atanu Barik
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, Maharashtra, India
| | - Adele Stewart
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, Florida 33458, United States
| | - Biswanath Maity
- Department of Systems Biology, Centre of Biomedical Research (CBMR), SGPGI Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Priyadip Das
- Department of Chemistry, SRM Institute of Science and Technology, SRM Nagar, Potheri, Kattankulathur 603203, Tamil Nadu, India
| |
Collapse
|
15
|
Li R, Zhou C, Chen J, Luo H, Li R, Chen D, Zou X, Wang W. Synergistic osteogenic and angiogenic effects of KP and QK peptides incorporated with an injectable and self-healing hydrogel for efficient bone regeneration. Bioact Mater 2022; 18:267-283. [PMID: 35387156 PMCID: PMC8961307 DOI: 10.1016/j.bioactmat.2022.02.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/26/2022] [Accepted: 02/10/2022] [Indexed: 12/11/2022] Open
Abstract
Irregular defects generated by trauma or surgery in orthopaedics practice were usually difficult to be fitted by the preformed traditional bone graft substitute. Therefore, the injectable hydrogels have attracted an increasing interest for bone repair because of their fittability and mini-invasivity. However, the uncontrollable spreading or mechanical failures during its manipulation remain a problem to be solved. Moreover, in order to achieve vascularized bone regeneration, alternatives of osteogenic and angiogenic growth factors should be adopted to avoid the problem of immunogenicity and high cost. In this study, a novel injectable self-healing hydrogel system (GMO hydrogel) loaded with KP and QK peptides had been developed for enhancing vascularized regeneration of small irregular bone defect. The dynamic imine bonds between gelatin methacryloyl and oxidized dextran provided the GMO hydrogel with self-healing and shear-thinning abilities, which led to an excellent injectability and fittability. By photopolymerization of the enclosed GelMA, GMO hydrogel was further strengthened and thus more suitable for bone regeneration. Besides, the osteogenic peptide KP and angiogenic peptide QK were tethered to GMO hydrogel by Schiff base reaction, leading to desired releasing profiles. In vitro, this composite hydrogel could significantly improve the osteogenic differentiation of BMSCs and angiogenesis ability of HUVECs. In vivo, KP and QK in the GMO hydrogel demonstrated a significant synergistic effect in promoting new bone formation in rat calvaria. Overall, the KP and QK loaded GMO hydrogel was injectable and self-healing, which can be served as an efficient approach for vascularized bone regeneration via a minimally invasive approach.
Collapse
Affiliation(s)
- Runze Li
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 56 Lingyuanxi Road, Guangzhou, 510055, China
| | - Chen Zhou
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 56 Lingyuanxi Road, Guangzhou, 510055, China
| | - Jun Chen
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- The Key Laboratory of Imflammation and Autoimmune Diseases, Guangzhou, 510280, China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Haotian Luo
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 56 Lingyuanxi Road, Guangzhou, 510055, China
| | - Ruoyu Li
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 56 Lingyuanxi Road, Guangzhou, 510055, China
| | - Danying Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 56 Lingyuanxi Road, Guangzhou, 510055, China
| | - Xuenong Zou
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Weicai Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 56 Lingyuanxi Road, Guangzhou, 510055, China
| |
Collapse
|
16
|
Pathade V, Nene S, Ratnam S, Khatri DK, Raghuvanshi RS, Singh SB, Srivastava S. Emerging insights of peptide-based nanotherapeutics for effective management of rheumatoid arthritis. Life Sci 2022; 312:121257. [PMID: 36462722 DOI: 10.1016/j.lfs.2022.121257] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic, prevalent, immune-mediated, inflammatory, joint disorder affecting millions of people worldwide. Despite current treatment options, many patients remain unable to achieve remission and suffer from comorbidities. Because of several comorbidities as well as its chronic nature, it diminishes the quality of patients' life and intensifies socioeconomic cargo. Consolidating peptides with immensely effective drug delivery systems has the ability to alleviate adverse effects associated with conventional treatments. Peptides are widely used as targeting moieties for the delivery of nanotherapeutics. The use of novel peptide-based nanotherapeutics may open up new avenues for improving efficacy by promoting drug accumulation in inflamed joints and reducing off-target cytotoxicity. Peptide therapeutics have grabbed significant attention due to their advantages over small drug molecules as well as complex targeting moieties. In light of this, the market for peptide-based medications is growing exponentially. Peptides can provide the versatility required for the successful delivery of drugs due to their structural diversity and their capability to lead drugs at the site of inflammation while maintaining optimum therapeutic efficacy. This comprehensive review aims to provide an enhanced understanding of recent advancements in the arena of peptide-based nanotherapeutics to strengthen targeted delivery for the effective management of rheumatoid arthritis. Additionally, various peptides having therapeutic roles in rheumatoid arthritis are summarized along with regulatory considerations for peptides.
Collapse
Affiliation(s)
- Vrushali Pathade
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Shweta Nene
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Shreya Ratnam
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dharmendra Kumar Khatri
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Rajeev Singh Raghuvanshi
- Indian Pharmacopoeia Commission, Ministry of Health & Family Welfare, Government of India, India
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
17
|
Rafiemanzelat F, Tafazoli S, Hairi AA, Varshosaz J, Mirian M, Khodarahmi G, Hassanzadeh F, Rostami M. Peptide-based pegylated polyurethane nanoparticles for paclitaxel delivery in HeLa cancer cells: the art of the architecture design in nanocarriers. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04569-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Recent developments of nanomedicine delivery systems for the treatment of pancreatic cancer. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Komuro H, Aminova S, Lauro K, Harada M. Advances of engineered extracellular vesicles-based therapeutics strategy. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:655-681. [PMID: 36277506 PMCID: PMC9586594 DOI: 10.1080/14686996.2022.2133342] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 05/09/2023]
Abstract
Extracellular vesicles (EVs) are a heterogeneous population of lipid bilayer membrane-bound vesicles which encapsulate bioactive molecules, such as nucleic acids, proteins, and lipids. They mediate intercellular communication through transporting internally packaged molecules, making them attractive therapeutics carriers. Over the last decades, a significant amount of research has implied the potential of EVs servings as drug delivery vehicles for nuclear acids, proteins, and small molecular drugs. However, several challenges remain unresolved before the clinical application of EV-based therapeutics, including lack of specificity, stability, biodistribution, storage, large-scale manufacturing, and the comprehensive analysis of EV composition. Technical development is essential to overcome these issues and enhance the pre-clinical therapeutic effects. In this review, we summarize the current advancements in EV engineering which demonstrate their therapeutic potential.
Collapse
Affiliation(s)
- Hiroaki Komuro
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
| | - Shakhlo Aminova
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
| | - Katherine Lauro
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
| | - Masako Harada
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
20
|
de Lima CSA, Varca JPRO, Alves VM, Nogueira KM, Cruz CPC, Rial-Hermida MI, Kadłubowski SS, Varca GHC, Lugão AB. Mucoadhesive Polymers and Their Applications in Drug Delivery Systems for the Treatment of Bladder Cancer. Gels 2022; 8:gels8090587. [PMID: 36135300 PMCID: PMC9498303 DOI: 10.3390/gels8090587] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/01/2022] [Accepted: 09/08/2022] [Indexed: 11/23/2022] Open
Abstract
Bladder cancer (BC) is the tenth most common type of cancer worldwide, affecting up to four times more men than women. Depending on the stage of the tumor, different therapy protocols are applied. Non-muscle-invasive cancer englobes around 70% of the cases and is usually treated using the transurethral resection of bladder tumor (TURBIT) followed by the instillation of chemotherapy or immunotherapy. However, due to bladder anatomy and physiology, current intravesical therapies present limitations concerning permeation and time of residence. Furthermore, they require several frequent catheter insertions with a reduced interval between doses, which is highly demotivating for the patient. This scenario has encouraged several pieces of research focusing on the development of drug delivery systems (DDS) to improve drug time residence, permeation capacity, and target release. In this review, the current situation of BC is described concerning the disease and available treatments, followed by a report on the main DDS developed in the past few years, focusing on those based on mucoadhesive polymers as a strategy. A brief review of methods to evaluate mucoadhesion properties is also presented; lastly, different polymers suitable for this application are discussed.
Collapse
Affiliation(s)
- Caroline S. A. de Lima
- Nuclear and Energy Research Institute, IPEN-CNEN/SP—University of São Paulo, Av. Prof. Lineu Prestes, No. 2242, Cidade Universitária, São Paulo 05508-000, Brazil
- Correspondence:
| | - Justine P. R. O. Varca
- Nuclear and Energy Research Institute, IPEN-CNEN/SP—University of São Paulo, Av. Prof. Lineu Prestes, No. 2242, Cidade Universitária, São Paulo 05508-000, Brazil
| | - Victória M. Alves
- Nuclear and Energy Research Institute, IPEN-CNEN/SP—University of São Paulo, Av. Prof. Lineu Prestes, No. 2242, Cidade Universitária, São Paulo 05508-000, Brazil
| | - Kamila M. Nogueira
- Nuclear and Energy Research Institute, IPEN-CNEN/SP—University of São Paulo, Av. Prof. Lineu Prestes, No. 2242, Cidade Universitária, São Paulo 05508-000, Brazil
| | - Cassia P. C. Cruz
- Nuclear and Energy Research Institute, IPEN-CNEN/SP—University of São Paulo, Av. Prof. Lineu Prestes, No. 2242, Cidade Universitária, São Paulo 05508-000, Brazil
| | - M. Isabel Rial-Hermida
- I+D Farma Group (GI-1645), Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Sławomir S. Kadłubowski
- Institute of Applied Radiation Chemistry (IARC), Lodz University of Technology, Wroblewskiego No. 15, 93-590 Lodz, Poland
| | - Gustavo H. C. Varca
- Nuclear and Energy Research Institute, IPEN-CNEN/SP—University of São Paulo, Av. Prof. Lineu Prestes, No. 2242, Cidade Universitária, São Paulo 05508-000, Brazil
| | - Ademar B. Lugão
- Nuclear and Energy Research Institute, IPEN-CNEN/SP—University of São Paulo, Av. Prof. Lineu Prestes, No. 2242, Cidade Universitária, São Paulo 05508-000, Brazil
| |
Collapse
|
21
|
Zhang X, Wang Z, Lyu Y, Li J, Song K, Xing N, Ng DH. NIR light-powered halloysite-based nanomotors for CT imaging diagnosis and synergistic chemo-photothermal cancer therapy. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
22
|
Tam LKB, He L, Ng DKP, Cheung PCK, Lo P. A Tumor‐Targeting Dual‐Stimuli‐Activatable Photodynamic Molecular Beacon for Precise Photodynamic Therapy. Chemistry 2022; 28:e202201652. [DOI: 10.1002/chem.202201652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Leo K. B. Tam
- Department of Chemistry The Chinese University of Hong Kong Shatin, N. T. Hong Kong China
| | - Lin He
- Department of Biomedical Sciences City University of Hong Kong Tat Chee Avenue, Kowloon Hong Kong China
| | - Dennis K. P. Ng
- Department of Chemistry The Chinese University of Hong Kong Shatin, N. T. Hong Kong China
| | - Peter C. K. Cheung
- School of Life Sciences The Chinese University of Hong Kong Shatin, N. T. Hong Kong China
| | - Pui‐Chi Lo
- Department of Biomedical Sciences City University of Hong Kong Tat Chee Avenue, Kowloon Hong Kong China
| |
Collapse
|
23
|
Zhang Y, Kim I, Lu Y, Xu Y, Yu DG, Song W. Intelligent poly(l-histidine)-based nanovehicles for controlled drug delivery. J Control Release 2022; 349:963-982. [PMID: 35944751 DOI: 10.1016/j.jconrel.2022.08.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 12/11/2022]
Abstract
Stimuli-responsive drug delivery systems based on polymeric nanovehicles are among the most promising treatment regimens for malignant cancers. Such intelligent systems that release payloads in response to the physiological characteristics of tumor sites have several advantages over conventional drug carriers, offering, in particular, enhanced therapeutic effects and decreased toxicity. The tumor microenvironment (TME) is acidic, suggesting the potential of pH-responsive nanovehicles for enhancing treatment specificity and efficacy. The synthetic polypeptide poly(l-histidine) (PLH) is an appropriate candidate for the preparation of pH-responsive nanovehicles because the pKa of PLH (approximately 6.0) is close to the pH of the acidic TME. In addition, the pendent imidazole rings of PLH yield pH-dependent hydrophobic-to-hydrophilic phase transitions in the acidic TME, triggering the destabilization of nanovehicles and the subsequent release of encapsulated chemotherapeutic agents. Herein, we highlight the state-of-the-art design and construction of pH-responsive nanovehicles based on PLH and discuss the future challenges and perspectives of this fascinating biomaterial for targeted cancer treatment and "benchtop-to-clinic" translation.
Collapse
Affiliation(s)
- Yu Zhang
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China.
| | - Il Kim
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea.
| | - Yiming Lu
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China
| | - Yixin Xu
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, PR China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| | - Wenliang Song
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| |
Collapse
|
24
|
Chen Y, Tandon I, Heelan W, Wang Y, Tang W, Hu Q. Proteolysis-targeting chimera (PROTAC) delivery system: advancing protein degraders towards clinical translation. Chem Soc Rev 2022; 51:5330-5350. [PMID: 35713468 PMCID: PMC9382890 DOI: 10.1039/d1cs00762a] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Proteolysis Targeting Chimeras (PROTACs), an emerging therapeutic entity designed to degrade target proteins by hijacking the ubiquitin-proteasome system, have the potential to revolutionize the healthcare industry. The broad applicability of this protein degradation strategy has been verified with a few E3 ligases and a variety of distinct targets through the construction of modular chimeric structures. Despite recent efforts to promote the use of PROTACs for clinical applications, most PROTACs do not make it beyond the preclinical stage of drug development. There are several reasons that prevent PROTACs from reaching the market, and the inadequate delivery to the target site is one of the most challenging hurdles. With the increasing need for accelerating the translational process, combining the concepts of PROTACs and delivery systems has been explored to enhance the in vivo performance of PROTACs. These improved delivery strategies can eliminate unfavorable physicochemical properties of PROTACs, improve their targetability, and decrease their off-target side effects. The integration of powerful PROTACs and versatile delivery systems will inaugurate a burgeoning orientation for the field of targeted protein degradation. In this review, we will survey the latest progress in improving the in vivo degradation efficacy of PROTACs through delivery strategies, outline design principles for PROTAC-based delivery systems, discuss the current challenges with PROTACs, and outlook future opportunities in this field.
Collapse
Affiliation(s)
- Yu Chen
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Ira Tandon
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - William Heelan
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Yixin Wang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Weiping Tang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
25
|
Ruan L, Chen J, Du C, Lu H, Zhang J, Cai X, Dou R, Lin W, Chai Z, Nie G, Hu Y. Mitochondrial temperature-responsive drug delivery reverses drug resistance in lung cancer. Bioact Mater 2022; 13:191-199. [PMID: 35224301 PMCID: PMC8844157 DOI: 10.1016/j.bioactmat.2021.10.045] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/12/2021] [Accepted: 10/29/2021] [Indexed: 12/12/2022] Open
Abstract
Reversal of cancer drug resistance remains a critical challenge in chemotherapy. Mitochondria-targeted drug delivery has been suggested to mitigate drug resistance in cancer. To overcome the intrinsic limitations in conventional mitochondrial targeting strategies, we develop mitochondrial temperature-responsive drug delivery to reverse doxorubicin (DOX) resistance in lung cancer. Results demonstrate that the thermoresponsive nanocarrier can prevent DOX efflux and facilitate DOX accumulation and mitochondrial targeting in DOX-resistant tumors. As a consequence, thermoresponsive nanocarrier enhances the cytotoxicity of DOX and reverses the drug resistance in tumor-bearing mice. This work represents the first example of mitochondrial temperature-responsive drug delivery for reversing cancer drug resistance.
Collapse
Affiliation(s)
- Lifo Ruan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, 100049, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jun Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, 100049, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Chuanchao Du
- Peking University Third Hospital, Beijing, 100191, PR China
| | - Huiru Lu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, 100049, PR China
| | - Jiayu Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, 100049, PR China
| | - Xiaomeng Cai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, 100049, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Rui Dou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, 100049, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Wenchu Lin
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, PR China
- University of Science and Technology of China, Hefei, 230026, Anhui, PR China
| | - Zhifang Chai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, 100049, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Guangjun Nie
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, PR China
| | - Yi Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing, 100049, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| |
Collapse
|
26
|
Cong X, Chen J, Xu R. Recent Progress in Bio-Responsive Drug Delivery Systems for Tumor Therapy. Front Bioeng Biotechnol 2022; 10:916952. [PMID: 35845404 PMCID: PMC9277442 DOI: 10.3389/fbioe.2022.916952] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 06/09/2022] [Indexed: 12/24/2022] Open
Abstract
Spatially- and/or temporally-controlled drug release has always been the pursuit of drug delivery systems (DDSs) to achieve the ideal therapeutic effect. The abnormal pathophysiological characteristics of the tumor microenvironment, including acidosis, overexpression of special enzymes, hypoxia, and high levels of ROS, GSH, and ATP, offer the possibility for the design of stimulus-responsive DDSs for controlled drug release to realize more efficient drug delivery and anti-tumor activity. With the help of these stimulus signals, responsive DDSs can realize controlled drug release more precisely within the local tumor site and decrease the injected dose and systemic toxicity. This review first describes the major pathophysiological characteristics of the tumor microenvironment, and highlights the recent cutting-edge advances in DDSs responding to the tumor pathophysiological environment for cancer therapy. Finally, the challenges and future directions of bio-responsive DDSs are discussed.
Collapse
Affiliation(s)
- Xiufeng Cong
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jun Chen
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ran Xu
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Ran Xu,
| |
Collapse
|
27
|
Wheeler TT, Cao P, Ghouri MD, Ji T, Nie G, Zhao Y. Nanotechnological strategies for prostate cancer imaging and diagnosis. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1271-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
28
|
Wang X, Zhao X, Zhong Y, Shen J, An W. Biomimetic Exosomes: A New Generation of Drug Delivery System. Front Bioeng Biotechnol 2022; 10:865682. [PMID: 35677298 PMCID: PMC9168598 DOI: 10.3389/fbioe.2022.865682] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/21/2022] [Indexed: 12/18/2022] Open
Abstract
Most of the naked drugs, including small molecules, inorganic agents, and biomacromolecule agents, cannot be used directly for disease treatment because of their poor stability and undesirable pharmacokinetic behavior. Their shortcomings might seriously affect the exertion of their therapeutic effects. Recently, a variety of exogenous and endogenous nanomaterials have been developed as carriers for drug delivery. Among them, exosomes have attracted great attention due to their excellent biocompatibility, low immunogenicity, low toxicity, and ability to overcome biological barriers. However, exosomes used as drug delivery carriers have significant challenges, such as low yields, complex contents, and poor homogeneity, which limit their application. Engineered exosomes or biomimetic exosomes have been fabricated through a variety of approaches to tackle these drawbacks. We summarized recent advances in biomimetic exosomes over the past decades and addressed the opportunities and challenges of the next-generation drug delivery system.
Collapse
|
29
|
Shang Q, Su Y, Leslie F, Sun M, Wang F. Advances in peptide drug conjugate-based supramolecular hydrogel systems for local drug delivery. MEDICINE IN DRUG DISCOVERY 2022. [DOI: 10.1016/j.medidd.2022.100125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
30
|
Multifunctional building elements for the construction of peptide drug conjugates. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
31
|
He R, Zang J, Zhao Y, Liu Y, Ruan S, Zheng X, Chong G, Xu D, Yang Y, Yang Y, Zhang T, Gu J, Dong H, Li Y. Nanofactory for metabolic and chemodynamic therapy: pro-tumor lactate trapping and anti-tumor ROS transition. J Nanobiotechnology 2021; 19:426. [PMID: 34922541 PMCID: PMC8684183 DOI: 10.1186/s12951-021-01169-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/28/2021] [Indexed: 12/22/2022] Open
Abstract
Lactate plays a critical role in tumorigenesis, invasion and metastasis. Exhausting lactate in tumors holds great promise for the reversal of the immunosuppressive tumor microenvironment (TME). Herein, we report on a “lactate treatment plant” (i.e., nanofactory) that can dynamically trap pro-tumor lactate and in situ transformation into anti-tumor cytotoxic reactive oxygen species (ROS) for a synergistic chemodynamic and metabolic therapy. To this end, lactate oxidase (LOX) was nano-packaged by cationic polyethyleneimine (PEI), assisted by a necessary amount of copper ions (PLNPCu). As a reservoir of LOX, the tailored system can actively trap lactate through the cationic PEI component to promote lactate degradation by two-fold efficiency. More importantly, the byproducts of lactate degradation, hydrogen peroxide (H2O2), can be transformed into anti-tumor ROS catalyzing by copper ions, mediating an immunogenic cell death (ICD). With the remission of immunosuppressive TME, ICD process effectively initiated the positive immune response in 4T1 tumor model (88% tumor inhibition). This work provides a novel strategy that rationally integrates metabolic therapy and chemodynamic therapy (CDT) for combating tumors. ![]()
Collapse
Affiliation(s)
- Ruiqing He
- Shanghai Skin Disease Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, 200092, Shanghai, China
| | - Jie Zang
- Shanghai Skin Disease Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, 200092, Shanghai, China
| | - Yuge Zhao
- Shanghai Skin Disease Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, 200092, Shanghai, China
| | - Ying Liu
- Shanghai Skin Disease Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, 200092, Shanghai, China
| | - Shuangrong Ruan
- Shanghai Skin Disease Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, 200092, Shanghai, China
| | - Xiao Zheng
- Shanghai Skin Disease Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, 200092, Shanghai, China
| | - Gaowei Chong
- Shanghai Skin Disease Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, 200092, Shanghai, China
| | - Dailin Xu
- Shanghai Skin Disease Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, 200092, Shanghai, China
| | - Yan Yang
- Shanghai Skin Disease Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, 200092, Shanghai, China
| | - Yushan Yang
- Shanghai Skin Disease Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, 200092, Shanghai, China
| | - Tingting Zhang
- Shanghai Skin Disease Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, 200092, Shanghai, China
| | - Jingjing Gu
- Shanghai Skin Disease Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, 200092, Shanghai, China
| | - Haiqing Dong
- Shanghai East hospital, School of Medicine, Tongji University, 200092, Shanghai, China.
| | - Yongyong Li
- Shanghai Skin Disease Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, 200092, Shanghai, China.
| |
Collapse
|
32
|
Chugh V, Vijaya Krishna K, Pandit A. Cell Membrane-Coated Mimics: A Methodological Approach for Fabrication, Characterization for Therapeutic Applications, and Challenges for Clinical Translation. ACS NANO 2021; 15:17080-17123. [PMID: 34699181 PMCID: PMC8613911 DOI: 10.1021/acsnano.1c03800] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 10/13/2021] [Indexed: 05/04/2023]
Abstract
Cell membrane-coated (CMC) mimics are micro/nanosystems that combine an isolated cell membrane and a template of choice to mimic the functions of a cell. The design exploits its physicochemical and biological properties for therapeutic applications. The mimics demonstrate excellent biological compatibility, enhanced biointerfacing capabilities, physical, chemical, and biological tunability, ability to retain cellular properties, immune escape, prolonged circulation time, and protect the encapsulated drug from degradation and active targeting. These properties and the ease of adapting them for personalized clinical medicine have generated a significant research interest over the past decade. This review presents a detailed overview of the recent advances in the development of cell membrane-coated (CMC) mimics. The primary focus is to collate and discuss components, fabrication methodologies, and the significance of physiochemical and biological characterization techniques for validating a CMC mimic. We present a critical analysis of the two main components of CMC mimics: the template and the cell membrane and mapped their use in therapeutic scenarios. In addition, we have emphasized on the challenges associated with CMC mimics in their clinical translation. Overall, this review is an up to date toolbox that researchers can benefit from while designing and characterizing CMC mimics.
Collapse
Affiliation(s)
| | | | - Abhay Pandit
- CÚRAM, SFI Research
Centre for Medical Devices, National University
of Ireland Galway, Galway H91 W2TY, Ireland
| |
Collapse
|
33
|
Berillo D, Yeskendir A, Zharkinbekov Z, Raziyeva K, Saparov A. Peptide-Based Drug Delivery Systems. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:medicina57111209. [PMID: 34833427 PMCID: PMC8617776 DOI: 10.3390/medicina57111209] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022]
Abstract
Peptide-based drug delivery systems have many advantages when compared to synthetic systems in that they have better biocompatibility, biochemical and biophysical properties, lack of toxicity, controlled molecular weight via solid phase synthesis and purification. Lysosomes, solid lipid nanoparticles, dendrimers, polymeric micelles can be applied by intravenous administration, however they are of artificial nature and thus may induce side effects and possess lack of ability to penetrate the blood-brain barrier. An analysis of nontoxic drug delivery systems and an establishment of prospective trends in the development of drug delivery systems was needed. This review paper summarizes data, mainly from the past 5 years, devoted to the use of peptide-based carriers for delivery of various toxic drugs, mostly anticancer or drugs with limiting bioavailability. Peptide-based drug delivery platforms are utilized as peptide–drug conjugates, injectable biodegradable particles and depots for delivering small molecule pharmaceutical substances (500 Da) and therapeutic proteins. Controlled drug delivery systems that can effectively deliver anticancer and peptide-based drugs leading to accelerated recovery without significant side effects are discussed. Moreover, cell penetrating peptides and their molecular mechanisms as targeting peptides, as well as stimuli responsive (enzyme-responsive and pH-responsive) peptides and peptide-based self-assembly scaffolds are also reviewed.
Collapse
Affiliation(s)
- Dmitriy Berillo
- Department of Pharmaceutical and Toxicological Chemistry, Pharmacognosy and Botany School of Pharmacy, Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan
- Correspondence: (D.B.); (A.S.)
| | - Adilkhan Yeskendir
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (A.Y.); (Z.Z.); (K.R.)
| | - Zharylkasyn Zharkinbekov
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (A.Y.); (Z.Z.); (K.R.)
| | - Kamila Raziyeva
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (A.Y.); (Z.Z.); (K.R.)
| | - Arman Saparov
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (A.Y.); (Z.Z.); (K.R.)
- Correspondence: (D.B.); (A.S.)
| |
Collapse
|
34
|
Ren E, Liu C, Lv P, Wang J, Liu G. Genetically Engineered Cellular Membrane Vesicles as Tailorable Shells for Therapeutics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100460. [PMID: 34494387 PMCID: PMC8564451 DOI: 10.1002/advs.202100460] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/20/2021] [Indexed: 05/04/2023]
Abstract
Benefiting from the blooming interaction of nanotechnology and biotechnology, biosynthetic cellular membrane vesicles (Bio-MVs) have shown superior characteristics for therapeutic transportation because of their hydrophilic cavity and hydrophobic bilayer structure, as well as their inherent biocompatibility and negligible immunogenicity. These excellent cell-like features with specific functional protein expression on the surface can invoke their remarkable ability for Bio-MVs based recombinant protein therapy to facilitate the advanced synergy in poly-therapy. To date, various tactics have been developed for Bio-MVs surface modification with functional proteins through hydrophobic insertion or multivalent electrostatic interactions. While the Bio-MVs grow through genetically engineering strategies can maintain binding specificity, sort orders, and lead to strict information about artificial proteins in a facile and sustainable way. In this progress report, the most current technology of Bio-MVs is discussed, with an emphasis on their multi-functionalities as "tailorable shells" for delivering bio-functional moieties and therapeutic entities. The most notable success and challenges via genetically engineered tactics to achieve the new generation of Bio-MVs are highlighted. Besides, future perspectives of Bio-MVs in novel bio-nanotherapy are provided.
Collapse
Affiliation(s)
- En Ren
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
| | - Chao Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
| | - Peng Lv
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
| | - Junqing Wang
- School of Pharmaceutical Sciences (Shenzhen)Sun Yat‐sen UniversityGuangzhou510275China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
| |
Collapse
|
35
|
Li S, Pang X, Zhao J, Zhang Q, Shan Y. Evaluating the single-molecule interactions between targeted peptides and the receptors on living cell membrane. NANOSCALE 2021; 13:17318-17324. [PMID: 34642724 DOI: 10.1039/d1nr05547j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
As potential ligands, targeted peptides have become an important part in the construction of intelligent drug delivery systems (DDSs). The targeting interaction of peptides with receptors is a key point affecting the efficacy of targeted nano-drugs. Herein, three common peptides (HAIYPRH (T7), YHWYGYTPQNVI (GE11), and RGD) that have been widely used in cancer targeted therapy and tumor diagnostics, targeting the corresponding receptors (transferrin receptor (TfR), epidermal growth factor receptor (EGFR), and ανβ3 integrin receptor), were selected as examples to study the targeting interacton on living cell surface at the single-molecule level by using single-molecule force spectroscopy (SMFS) based on atomic force microscopy (AFM). The dissociation activation energy in the absence of an external force (ΔGβ,0) of T7-TfR, GE11-EGFR, and RGD-ανβ3 integrin is evaluated at single-molecule level. Among these three peptide-receptor pairs, the T7-TfR bond is the most stable with a smaller dissociation kinetic rate constant at zero force (Koff), larger kinetic on-rate constant (Kon), and shorter interaction time (τ). Furthermore, T7 can target TfR even more effectively on A549 cell membrane after treatment with drugs. Our methodology can also be applicable to the study of other ligand targeted DDSs.
Collapse
Affiliation(s)
- Siying Li
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
| | - Xuelei Pang
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Jing Zhao
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Qingrong Zhang
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Yuping Shan
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| |
Collapse
|
36
|
Rodríguez AA, Otero-González A, Ghattas M, Ständker L. Discovery, Optimization, and Clinical Application of Natural Antimicrobial Peptides. Biomedicines 2021; 9:1381. [PMID: 34680498 PMCID: PMC8533436 DOI: 10.3390/biomedicines9101381] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022] Open
Abstract
Antimicrobial peptides (AMPs) are widespread in multicellular organisms. These structurally diverse molecules are produced as the first line of defense against pathogens such as bacteria, viruses, fungi, and parasites. Also known as host defense peptides in higher eukaryotic organisms, AMPs display immunomodulatory and anticancer activities. During the last 30 years, technological advances have boosted the research on antimicrobial peptides, which have also attracted great interest as an alternative to tackling the antimicrobial resistance scenario mainly provoked by some bacterial and fungal pathogens. However, the introduction of natural AMPs in clinical trials faces challenges such as proteolytic digestion, short half-lives, and cytotoxicity upon systemic and oral application. Therefore, some strategies have been implemented to improve the properties of AMPs aiming to be used as effective therapeutic agents. In the present review, we summarize the discovery path of AMPs, focusing on preclinical development, recent advances in chemical optimization and peptide delivery systems, and their introduction into the market.
Collapse
Affiliation(s)
- Armando A. Rodríguez
- Core Facility for Functional Peptidomics, Ulm University Medical Center, 89081 Ulm, Germany
- Core Unit of Mass Spectrometry and Proteomics, Ulm University Medical Center, 89081 Ulm, Germany
| | | | - Maretchia Ghattas
- Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11511, Egypt;
| | - Ludger Ständker
- Core Facility for Functional Peptidomics, Ulm University Medical Center, 89081 Ulm, Germany
| |
Collapse
|
37
|
Rozhin P, Charitidis C, Marchesan S. Self-Assembling Peptides and Carbon Nanomaterials Join Forces for Innovative Biomedical Applications. Molecules 2021; 26:4084. [PMID: 34279424 PMCID: PMC8271590 DOI: 10.3390/molecules26134084] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 02/07/2023] Open
Abstract
Self-assembling peptides and carbon nanomaterials have attracted great interest for their respective potential to bring innovation in the biomedical field. Combination of these two types of building blocks is not trivial in light of their very different physico-chemical properties, yet great progress has been made over the years at the interface between these two research areas. This concise review will analyze the latest developments at the forefront of research that combines self-assembling peptides with carbon nanostructures for biological use. Applications span from tissue regeneration, to biosensing and imaging, and bioelectronics.
Collapse
Affiliation(s)
- Petr Rozhin
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy;
| | - Costas Charitidis
- School of Chemical Engineering, National Technical University of Athens, Iroon Polytechneiou 9, Zografou, 157 80 Athens, Greece;
| | - Silvia Marchesan
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy;
- INSTM, Unit of Trieste, 34127 Trieste, Italy
| |
Collapse
|
38
|
Yu F, Zhang Y, Yang C, Li F, Qiu B, Ding W. Enhanced transdermal efficiency of curcumin-loaded peptide-modified liposomes for highly effective antipsoriatic therapy. J Mater Chem B 2021; 9:4846-4856. [PMID: 34047333 DOI: 10.1039/d1tb00557j] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Psoriasis is one of the most influential and fastest-growing inflammatory diseases of the skin. Curcumin (CRC) is an effective antipsoriatic drug that is often carried by nanoparticles or liposomes mainly administered via the skin. However, the therapeutic effectiveness and bioavailability of this drug are restricted due to the functions of the skin barrier to liposomes. Herein, we proposed a peptide-modified curcumin-loaded liposome (CRC-TD-Lip) to expedite the transdermal delivery of curcumin and enhance the inhibition of psoriasis. CRC-TD-Lip was prepared and dispersed uniformly with high stability and high curcumin encapsulation efficiency. We confirmed the improved intracellular uptake of CRC-TD-Lip, the increased inhibitory effect of CRC-TD-Lip on HaCaT cells, and the heightened transdermal ability of CRC-TD-Lip. Then, the enhanced antipsoriatic ability of CRC-TD-Lip was evaluated in vivo using an imiquimod-induced psoriasis mouse model. The results indicated that the developed CRC-TD-Lip can effectively improve the delivery of curcumin across the skin and enhance the antipsoriasis efficiency. This work can provide a strategy for enhancing the transdermal delivery efficiency of drugs for various skin diseases.
Collapse
Affiliation(s)
- Fan Yu
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | | | | | | | | | | |
Collapse
|
39
|
Chu JCH, Fong WP, Wong CTT, Ng DKP. Facile Synthesis of Cyclic Peptide-Phthalocyanine Conjugates for Epidermal Growth Factor Receptor-Targeted Photodynamic Therapy. J Med Chem 2021; 64:2064-2076. [PMID: 33577327 DOI: 10.1021/acs.jmedchem.0c01677] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A facile procedure for in situ peptide cyclization and phthalocyanine conjugation was developed by utilizing a bifunctional linker incorporated with a bis(bromomethyl)benzene unit and a cyclopentadiene moiety. These functional groups facilitated the nucleophilic substitution with the two cysteine residues of the linear peptides followed by the Diels-Alder reaction with the maleimide moiety attached to a zinc(II) phthalocyanine. With this approach, three cyclic peptide-phthalocyanine conjugates were prepared in 20-26% isolated yield via a one-pot procedure. One of the conjugates containing a cyclic form of the epidermal growth factor receptor (EGFR)-binding peptide sequence CMYIEALDKYAC displayed superior features as an advanced photosensitizer. It showed preferential uptake by two EGFR-positive cancer cell lines (HT29 and HCT116) compared with two EGFR-negative counterparts (HeLa and HEK293), resulting in significantly higher photocytotoxicity. Intravenous administration of this conjugate into HT29 tumor-bearing nude mice resulted in selective localization in tumor and effective inhibition of tumor growth upon photodynamic treatment.
Collapse
Affiliation(s)
- Jacky C H Chu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Wing-Ping Fong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Clarence T T Wong
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Dennis K P Ng
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| |
Collapse
|
40
|
Wang Q, Cheng S, Qin F, Fu A, Fu C. Application progress of RVG peptides to facilitate the delivery of therapeutic agents into the central nervous system. RSC Adv 2021; 11:8505-8515. [PMID: 35423368 PMCID: PMC8695342 DOI: 10.1039/d1ra00550b] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 12/14/2022] Open
Abstract
The incidence of central nervous system (CNS) diseases is increasing with the aging population. However, it remains challenging to deliver drugs into the CNS because of the existence of a blood-brain barrier (BBB). Notably, rabies virus glycoprotein (RVG) peptides have been developed as delivery ligands for CNS diseases. So far, massive RVG peptide modified carriers have been reported, such as liposomes, micelles, polymers, exosomes, dendrimers, and proteins. Moreover, these drug delivery systems can encapsulate almost all small molecules and macromolecule drugs, including siRNA, microRNAs, DNA, proteins, and other nanoparticles, to treat various CNS diseases with efficient and safe drugs. In this review, targeted delivery systems with RVG peptide modified carriers possessing favorable biocompatibility and delivery efficiency are summarized.
Collapse
Affiliation(s)
- Qinghua Wang
- Immunology Research Center of Medical Research Institute, College of Animal Medicine, Southwest University Chongqing 402460 China
| | - Shang Cheng
- Animal Husbandry Technology, Popularization Master Station of Chongqing Chongqing 401121 China
| | - Fen Qin
- The Ninth People's Hospital of Chongqing Chongqing 400702 China
| | - Ailing Fu
- College of Pharmaceutical Science, Southwest University Chongqing 400715 China +86-23-68251225 +86-23-68251225
| | - Chen Fu
- College of Pharmaceutical Science, Southwest University Chongqing 400715 China +86-23-68251225 +86-23-68251225
| |
Collapse
|
41
|
Romero-Montero A, Aguirre-Díaz IS, Puiggalí J, del Valle LJ, Gimeno M. Self-assembly of supramolecular chemoenzymatic poly- l-phenylalanine. Polym Chem 2021. [DOI: 10.1039/d0py01659d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The self-assembly behavior of chemoenzymatic high molecular weight (ca. 30 000 Da) poly-l-phenylalanine (ePLP) and the nano-morphologies thereof are investigated.
Collapse
Affiliation(s)
- Alejandra Romero-Montero
- Depto. de Alimentos y Biotecnología
- Facultad de Química
- Universidad Nacional Autónoma de México
- 04510 CDMX
- Mexico
| | - Isabel S. Aguirre-Díaz
- Depto. de Alimentos y Biotecnología
- Facultad de Química
- Universidad Nacional Autónoma de México
- 04510 CDMX
- Mexico
| | - Jordi Puiggalí
- Chemical Engineering Department
- Escola d'Enginyeria de Barcelona Est-EEBE
- 08019 Barcelona
- Spain
- Institute for Bioengineering of Catalonia (IBEC)
| | - Luis J. del Valle
- Chemical Engineering Department
- Escola d'Enginyeria de Barcelona Est-EEBE
- 08019 Barcelona
- Spain
| | - Miquel Gimeno
- Depto. de Alimentos y Biotecnología
- Facultad de Química
- Universidad Nacional Autónoma de México
- 04510 CDMX
- Mexico
| |
Collapse
|
42
|
Zhang W, Yu L, Ji T, Wang C. Tumor Microenvironment-Responsive Peptide-Based Supramolecular Drug Delivery System. Front Chem 2020; 8:549. [PMID: 32775317 PMCID: PMC7388741 DOI: 10.3389/fchem.2020.00549] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 05/28/2020] [Indexed: 12/22/2022] Open
Abstract
Physical and biochemical differences between tumor tissues and normal tissues provide promising triggering factors that can be utilized to engineer stimuli-responsive drug delivery platforms for cancer treatment. Rationally designed peptide-based supramolecular architectures can perform structural conversion by responding to the tumor microenvironment and achieve the controlled release of antitumor drugs. This mini review summarizes recent approaches for designing internal trigger-responsive drug delivery platforms using peptide-based materials. Peptide assemblies that exhibit a stimuli-responsive structural conversion upon acidic pH, high temperature, high oxidative potential, and the overexpressed proteins in tumor tissues are emphatically introduced. We also discuss the challenges of current peptide-based supramolecular delivery platforms against cancer.
Collapse
Affiliation(s)
- Wenbo Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Biophysics and Structural Biology, Peking Union Medical College, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Lanlan Yu
- State Key Laboratory of Medical Molecular Biology, Department of Biophysics and Structural Biology, Peking Union Medical College, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Tianjiao Ji
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Chenxuan Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biophysics and Structural Biology, Peking Union Medical College, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|