1
|
Chen S, Tang Y, Li Y, Huang M, Ma X, Wang L, Wu Y, Wang Y, Fan W, Hou S. Design and application of prodrug fluorescent probes for the detection of ovarian cancer cells and release of anticancer drug. Biosens Bioelectron 2023; 236:115401. [PMID: 37257317 DOI: 10.1016/j.bios.2023.115401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/28/2023] [Accepted: 05/14/2023] [Indexed: 06/02/2023]
Abstract
Ovarian cancer is a gynecologic malignancy with high mortality. The main reason is that it is detected at an advanced stage due to a lack of early diagnosis and treatment. Therefore, it is of great interest to develop a chemical tool that can visualize ovarian cancer cells in real-time and eliminate them. Unfortunately, probes that can simultaneously monitor both modes of action for the diagnosis and treatment of ovarian cancer have not been developed. Here, we designed a novel prodrug fluorescent probe (YW-OAc) that not only visually tracks cancer cells but also enables the on-demand delivery of chemotherapeutic agents. By β-Gal-mediated glycosidic bond hydrolysis, the fluorescent signal changed from blue to green (signal 1), enabling visual tracking of ovarian cancer cells. Subsequently, the identified cancer cells were subjected to precise light irradiation to induce anticancer drug release accompanied by a fluorescence transition from green to blue (signal 2), enabling real-time information on drug release. Thus, the prodrug fluorescent probe YW-OAc provides comprehensive two-step monitoring during cancer cell recognition and clearance. Notably, YW-OAc exhibited high affinity (Km = 3.74 μM), high selectivity, and low detection limit for β-Gal (0.0035 U/mL). We also demonstrated that YW-OAc can visually trace endogenous β-Gal in different cells and exhibit high phototoxicity in ovarian cancer cells. We hope that the prodrug fluorescent probe YW-OAc, can be used as an effective tool for biomedical diagnosis and treatment.
Collapse
Affiliation(s)
- Shijun Chen
- College of Science, China Agricultural University, Beijing, 100193, PR China
| | - Yangyou Tang
- College of Science, China Agricultural University, Beijing, 100193, PR China
| | - Yiyi Li
- College of Science, China Agricultural University, Beijing, 100193, PR China
| | - Mingzhao Huang
- College of Science, China Agricultural University, Beijing, 100193, PR China
| | - Xiaodong Ma
- College of Science, China Agricultural University, Beijing, 100193, PR China
| | - Lin Wang
- College of Science, China Agricultural University, Beijing, 100193, PR China
| | - Yuanyuan Wu
- College of Science, China Agricultural University, Beijing, 100193, PR China
| | - Yaping Wang
- College of Science, China Agricultural University, Beijing, 100193, PR China
| | - Wenkang Fan
- College of Science, China Agricultural University, Beijing, 100193, PR China
| | - Shicong Hou
- College of Science, China Agricultural University, Beijing, 100193, PR China.
| |
Collapse
|
2
|
Liu F, Anton N, Niko Y, Klymchenko AS. Controlled Release and Capture of Aldehydes by Dynamic Imine Chemistry in Nanoemulsions: From Delivery to Detoxification. ACS APPLIED BIO MATERIALS 2023; 6:246-256. [PMID: 36516427 DOI: 10.1021/acsabm.2c00861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Current biomedical applications of nanocarriers are focused on drug delivery, where encapsulated cargo is released in the target tissues under the control of external stimuli. Here, we propose a very different approach, where the active toxic molecules are removed from biological tissues by the nanocarrier. It is based on the drug-sponge concept, where specific molecules are captured by the lipid nanoemulsion (NE) droplets due to dynamic covalent chemistry inside their oil core. To this end, we designed a highly lipophilic amine (LipoAmine) capable of reacting with a free cargo-aldehyde (fluorescent dye and 4-hydroxynonenal toxin) directly inside lipid NEs, yielding a lipophilic imine conjugate well encapsulated in the oil core. The formation of imine bonds was first validated using a push-pull pyrene aldehyde dye, which changes its emission color during the reaction. The conjugate formation was independently confirmed by mass spectrometry. As a result, LipoAmine-loaded NEs spontaneously loaded cargo-aldehydes, yielding formulations stable against leakage at pH 7.4, which can further release the cargo in a low pH range (4-6) in solutions and living cells. Using fluorescence microscopy, we showed that LipoAmine NEs can extract pyrene aldehyde dye from cells as well as from an epithelial tissue (chicken skin). Moreover, successful extraction from cells was also achieved for a highly toxic aliphatic aldehyde 4-hydroxynonenal, which allowed obtaining the proof of concept for detoxification of living cells. Taken together, these results show that the dynamic imine chemistry inside NEs can be used to develop detoxification platforms.
Collapse
Affiliation(s)
- Fei Liu
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, 74 route du Rhin, Illkirch 67401, France.,INSERM UMR 1260, Regenerative Nanomedicine (RNM), CRBS, Université de Strasbourg, Strasbourg 67000, France
| | - Nicolas Anton
- INSERM UMR 1260, Regenerative Nanomedicine (RNM), CRBS, Université de Strasbourg, Strasbourg 67000, France
| | - Yosuke Niko
- Research and Education Faculty, Multidisciplinary Science Cluster, Interdisciplinary Science Unit, Kochi University, 2-5-1, Akebono-cho, Kochi-shi, Kochi 780-8520, Japan
| | - Andrey S Klymchenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, 74 route du Rhin, Illkirch 67401, France
| |
Collapse
|
3
|
Wang X, Bou S, Klymchenko AS, Anton N, Collot M. Ultrabright Green-Emitting Nanoemulsions Based on Natural Lipids-BODIPY Conjugates. NANOMATERIALS 2021; 11:nano11030826. [PMID: 33807096 PMCID: PMC8005018 DOI: 10.3390/nano11030826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 01/08/2023]
Abstract
Nanoemulsions (NEs) are water-dispersed oil droplets that constitute stealth biocompatible nanomaterials. NEs can reach an impressive degree of fluorescent brightness owing to their oily core that can encapsulate a large number of fluorophores on the condition the latter are sufficiently hydrophobic and oil-soluble. BODIPYs are among the brightest green emitting fluorophores and as neutral molecules possess high lipophilicity. Herein, we synthesized three different natural lipid-BODIPY conjugates by esterification of an acidic BODIPY by natural lipids, namely: α-tocopherol (vitamin E), cholesterol, and stearyl alcohol. The new BODIPY conjugates were characterized in solvents and oils before being encapsulated in NEs at various concentrations. The physical (size, stability over time, leakage) and photophysical properties (absorption and emission wavelength, brightness, photostability) are reported and showed that the nature of the lipid anchor and the nature of the oil used for emulsification greatly influence the properties of the bright NEs.
Collapse
Affiliation(s)
- Xinyue Wang
- Faculté de Pharmacie d’Illkirch, Université de Strasbourg, CNRS, CAMB UMR 7199, F-67000 Strasbourg, France;
- INSERM (French National Institute of Health and Medical Research), Université de Strasbourg, Regenerative Nanomedicine (RNM), FMTS, UMR 1260, F-67000 Strasbourg, France
| | - Sophie Bou
- Faculté de Pharmacie d’Illkirch, Université de Strasbourg, CNRS, LPB 7021, F-67000 Strasbourg, France; (S.B.); (A.S.K.)
| | - Andrey S. Klymchenko
- Faculté de Pharmacie d’Illkirch, Université de Strasbourg, CNRS, LPB 7021, F-67000 Strasbourg, France; (S.B.); (A.S.K.)
| | - Nicolas Anton
- Faculté de Pharmacie d’Illkirch, Université de Strasbourg, CNRS, CAMB UMR 7199, F-67000 Strasbourg, France;
- INSERM (French National Institute of Health and Medical Research), Université de Strasbourg, Regenerative Nanomedicine (RNM), FMTS, UMR 1260, F-67000 Strasbourg, France
- Correspondence: (N.A.); (M.C.)
| | - Mayeul Collot
- Faculté de Pharmacie d’Illkirch, Université de Strasbourg, CNRS, LPB 7021, F-67000 Strasbourg, France; (S.B.); (A.S.K.)
- Correspondence: (N.A.); (M.C.)
| |
Collapse
|
4
|
Rehman AU, Anton N, Bou S, Schild J, Messaddeq N, Vandamme T, Akram S, Klymchenko A, Collot M. Tunable functionalization of nano-emulsions using amphiphilic polymers. SOFT MATTER 2021; 17:1788-1795. [PMID: 33398307 DOI: 10.1039/d0sm01952f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nano-emulsions are defined as stable oil droplets sizing below 300 nm. Their singular particularity lies in the loading capabilities of their oily core, much higher than other kinds of carrier. On the other hand, functionalizing the dynamic oil/water interface, to date, has remained a challenge. To ensure the best anchoring of the reactive functions onto the surface of the droplets, we have designed specific amphiphilic polymers (APs) based on poly(maleic anhydride-alt-1-octadecene), stabilizing the nano-emulsions instead of surfactants. Aliphatic C18 chains of the APs are anchored in the droplet core, while the hydrophilic parts of the APs are poly(ethylene glycol) (PEG) chains. In addition, PEG chains are terminated with reactive (i) azide functions in order to prove the concept of the droplet decoration with clickable rhodamine (Rh-DBCO, specifically synthesized for this study), or (ii) biotin functions to verify the potential droplet functionalization with fluorescent streptavidin (streptavidin-AF-488). This study describes AP synthesis, physico-chemical characterization of the functional droplets (electron microscopy), and finally fluorescence labeling and droplet decoration. To conclude, these APs constitute an interesting solution for the stable functionalization of nano-emulsion droplets, paving a new way for the applications of nano-emulsions in targeting drug delivery.
Collapse
Affiliation(s)
- Asad Ur Rehman
- Université de Strasbourg, CNRS, CAMB UMR 7199, F-67000 Strasbourg, France.
| | - Nicolas Anton
- Université de Strasbourg, CNRS, CAMB UMR 7199, F-67000 Strasbourg, France. and INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Université de Strasbourg, F-67000 Strasbourg, France
| | - Sophie Bou
- Université de Strasbourg, CNRS, LPB 7021, F-67000 Strasbourg, France
| | - Jérémy Schild
- Université de Strasbourg, CNRS, LPB 7021, F-67000 Strasbourg, France
| | - Nadia Messaddeq
- Université de Strasbourg, IGBMC, Inserm U1258, CNRS UMR7104, F-67000 Strasbourg, France.
| | - Thierry Vandamme
- Université de Strasbourg, CNRS, CAMB UMR 7199, F-67000 Strasbourg, France. and INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Université de Strasbourg, F-67000 Strasbourg, France
| | - Salman Akram
- Université de Strasbourg, CNRS, CAMB UMR 7199, F-67000 Strasbourg, France.
| | - Andrey Klymchenko
- Université de Strasbourg, CNRS, LPB 7021, F-67000 Strasbourg, France
| | - Mayeul Collot
- Université de Strasbourg, CNRS, LPB 7021, F-67000 Strasbourg, France
| |
Collapse
|
5
|
Xia J, Pei Q, Zheng M, Xie Z. An activatable fluorescent prodrug of paclitaxel and BODIPY. J Mater Chem B 2021; 9:2308-2313. [DOI: 10.1039/d0tb02510k] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A redox-activated paclitaxel prodrug (PTX-S-BDP) was synthesized. PTX-S-BDP NPs were fabricated by the coassembly of PTX-S-BDP with F-127, which can release PTX under redox conditions and exhibit superior cellular imaging and selectivity to cancer cells.
Collapse
Affiliation(s)
- Jinxiu Xia
- School of Chemistry and Life Science
- Advanced Institute of Materials Science
- Changchun University of Technology
- 2055 Yanan Street
- Changchun
| | - Qing Pei
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- 5625 Renmin Street
- Changchun
| | - Min Zheng
- School of Chemistry and Life Science
- Advanced Institute of Materials Science
- Changchun University of Technology
- 2055 Yanan Street
- Changchun
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- 5625 Renmin Street
- Changchun
| |
Collapse
|
6
|
Klymchenko AS, Liu F, Collot M, Anton N. Dye-Loaded Nanoemulsions: Biomimetic Fluorescent Nanocarriers for Bioimaging and Nanomedicine. Adv Healthc Mater 2021; 10:e2001289. [PMID: 33052037 DOI: 10.1002/adhm.202001289] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/21/2020] [Indexed: 12/16/2022]
Abstract
Lipid nanoemulsions (NEs), owing to their controllable size (20 to 500 nm), stability and biocompatibility, are now frequently used in various fields, such as food, cosmetics, pharmaceuticals, drug delivery, and even as nanoreactors for chemical synthesis. Moreover, being composed of components generally recognized as safe (GRAS), they can be considered as "green" nanoparticles that mimic closely lipoproteins and intracellular lipid droplets. Therefore, they attracted attention as carriers of drugs and fluorescent dyes for both bioimaging and studying the fate of nanoemulsions in cells and small animals. In this review, the composition of dye-loaded NEs, methods for their preparation, and emerging biological applications are described. The design of bright fluorescent NEs with high dye loading and minimal aggregation-caused quenching (ACQ) is focused on. Common issues including dye leakage and NEs stability are discussed, highlighting advanced techniques for their characterization, such as Förster resonance energy transfer (FRET) and fluorescence correlation spectroscopy (FCS). Attempts to functionalize NEs surface are also discussed. Thereafter, biological applications for bioimaging and single-particle tracking in cells and small animals as well as biomedical applications for photodynamic therapy are described. Finally, challenges and future perspectives of fluorescent NEs are discussed.
Collapse
Affiliation(s)
- Andrey S. Klymchenko
- Laboratory of Biophotonic and Pathologies CNRS UMR 7021 Université de Strasbourg Faculté de Pharmacie, 74, Route du Rhin Illkirch 67401 France
| | - Fei Liu
- Laboratory of Biophotonic and Pathologies CNRS UMR 7021 Université de Strasbourg Faculté de Pharmacie, 74, Route du Rhin Illkirch 67401 France
- Université de Strasbourg CNRS CAMB UMR 7199 Strasbourg F‐67000 France
| | - Mayeul Collot
- Laboratory of Biophotonic and Pathologies CNRS UMR 7021 Université de Strasbourg Faculté de Pharmacie, 74, Route du Rhin Illkirch 67401 France
| | - Nicolas Anton
- Université de Strasbourg CNRS CAMB UMR 7199 Strasbourg F‐67000 France
| |
Collapse
|