1
|
Hong S, Yu T, Wang Z, Lee CH. Biomaterials for reliable wearable health monitoring: Applications in skin and eye integration. Biomaterials 2025; 314:122862. [PMID: 39357154 DOI: 10.1016/j.biomaterials.2024.122862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/22/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
Recent advancements in biomaterials have significantly impacted wearable health monitoring, creating opportunities for personalized and non-invasive health assessments. These developments address the growing demand for customized healthcare solutions. Durability is a critical factor for biomaterials in wearable applications, as they must withstand diverse wearing conditions effectively. Therefore, there is a heightened focus on developing biomaterials that maintain robust and stable functionalities, essential for advancing wearable sensing technologies. This review examines the biomaterials used in wearable sensors, specifically those interfaced with human skin and eyes, highlighting essential strategies for achieving long-lasting and stable performance. We specifically discuss three main categories of biomaterials-hydrogels, fibers, and hybrid materials-each offering distinct properties ideal for use in durable wearable health monitoring systems. Moreover, we delve into the latest advancements in biomaterial-based sensors, which hold the potential to facilitate early disease detection, preventative interventions, and tailored healthcare approaches. We also address ongoing challenges and suggest future directions for research on material-based wearable sensors to encourage continuous innovation in this dynamic field.
Collapse
Affiliation(s)
- Seokkyoon Hong
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Tianhao Yu
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Ziheng Wang
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Chi Hwan Lee
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA; School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA; Center for Implantable Devices, Purdue University, West Lafayette, IN, 47907, USA; School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA; Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
2
|
Ashkarran AA, Lin Z, Rana J, Bumpers H, Sempere L, Mahmoudi M. Impact of Nanomedicine in Women's Metastatic Breast Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2301385. [PMID: 37269217 PMCID: PMC10693652 DOI: 10.1002/smll.202301385] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/16/2023] [Indexed: 06/04/2023]
Abstract
Metastatic breast cancer is responsible for 90% of mortalities among women suffering from various types of breast cancers. Traditional cancer treatments such as chemotherapy and radiation therapy can cause significant side effects and may not be effective in many cases. However, recent advances in nanomedicine have shown great promise in the treatment of metastatic breast cancer. For example, nanomedicine demonstrated robust capacity in detection of metastatic cancers at early stages (i.e., before the metastatic cells leave the initial tumor site), which gives clinicians a timely option to change their treatment process (for example, instead of endocrine therapy they may use chemotherapy). Here recent advances in nanomedicine technology in the identification and treatment of metastatic breast cancers are reviewed.
Collapse
Affiliation(s)
- Ali Akbar Ashkarran
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Zijin Lin
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Jatin Rana
- Division of Hematology and Oncology, Michigan State University, East Lansing, MI, 48824, USA
| | - Harvey Bumpers
- Department of Surgery, Michigan State University, East Lansing, MI, 48824, USA
| | - Lorenzo Sempere
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Morteza Mahmoudi
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, 48824, USA
- Connors Center for Women's Health & Gender Biology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
3
|
Mladenović M, Jarić S, Mundžić M, Pavlović A, Bobrinetskiy I, Knežević NŽ. Biosensors for Cancer Biomarkers Based on Mesoporous Silica Nanoparticles. BIOSENSORS 2024; 14:326. [PMID: 39056602 PMCID: PMC11274377 DOI: 10.3390/bios14070326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
Mesoporous silica nanoparticles (MSNs) exhibit highly beneficial characteristics for devising efficient biosensors for different analytes. Their unique properties, such as capabilities for stable covalent binding to recognition groups (e.g., antibodies or aptamers) and sensing surfaces, open a plethora of opportunities for biosensor construction. In addition, their structured porosity offers capabilities for entrapping signaling molecules (dyes or electroactive species), which could be released efficiently in response to a desired analyte for effective optical or electrochemical detection. This work offers an overview of recent research studies (in the last five years) that contain MSNs in their optical and electrochemical sensing platforms for the detection of cancer biomarkers, classified by cancer type. In addition, this study provides an overview of cancer biomarkers, as well as electrochemical and optical detection methods in general.
Collapse
Affiliation(s)
| | | | | | | | | | - Nikola Ž. Knežević
- BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia; (M.M.); (S.J.); (M.M.); (A.P.)
| |
Collapse
|
4
|
Liu Y, Zhang X, Wang Q, Song Y, Xu T. Colorimetric detection of electrolyte ions in blood based on biphasic microdroplet extraction. Anal Chim Acta 2024; 1308:342661. [PMID: 38740461 DOI: 10.1016/j.aca.2024.342661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/21/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Timely diagnosis and prevention of diseases require rapid and sensitive detection of biomarkers from blood samples without external interference. Abnormal electrolyte ion levels in the blood are closely linked to various physiological disorders, including hypertension. Therefore, accurate, interference-free, and precise measurement of electrolyte ion concentrations in the blood is particularly important. RESULTS In this work, a colorimetric sensor based on a biphasic microdroplet extraction is proposed for the detection of electrolyte ions in the blood. This sensor employs mini-pillar arrays to facilitate contact between adjacent blood microdroplets and organic microdroplets serving as sensing phases, with any color changes being monitored through a smartphone's colorimetric software. The sensor is highly resistant to interference and does not require pre-treatment of the blood samples. Remarkably, the sensor exhibits exceptional reliability and stability, allowing for rapid enrichment and detection of K+, Na+, and Cl- in the blood within 10 s (Cl-), 15 s (K+) and 40 s (Na+) respectively. SIGNIFICANCE The colorimetric sensor based on biphasic microdroplet extraction offers portability due to its compact size and ease of operation without the need for large instruments. Additionally, it is location-independent, making it a promising tool for real-time biomarker detection in body fluids such as blood.
Collapse
Affiliation(s)
- Yibiao Liu
- Longgang Central Hospital of Shenzhen, Shenzhen, 518116, PR China
| | - Xiaonan Zhang
- The Institute for Advanced Study (IAS), Shenzhen University, Shenzhen, Guangdong, 518060, PR China
| | - Qinliang Wang
- The Institute for Advanced Study (IAS), Shenzhen University, Shenzhen, Guangdong, 518060, PR China
| | - Yongchao Song
- College of Textile & Clothing, Qingdao University, Qingdao, Shandong, 266071, PR China
| | - Tailin Xu
- The Institute for Advanced Study (IAS), Shenzhen University, Shenzhen, Guangdong, 518060, PR China.
| |
Collapse
|
5
|
Liu Q, Yang M, Zhang H, Ma W, Fu X, Li H, Gao S. A colorimetric tandem combination of CRISPR/Cas12a with dual functional hybridization chain reaction for ultra-sensitive detection of Mycobacterium bovis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3220-3230. [PMID: 38717230 DOI: 10.1039/d3ay02200e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Tuberculosis caused by Mycobacterium bovis poses a global infectious threat to humans and animals. Therefore, there is an urgent need to develop a sensitive, precise, and easy-to-readout strategy. Here, a novel tandem combination of a CRISPR/Cas12a system with dual HCR (denoted as CRISPR/Cas12a-D-HCR) was constructed for detecting Mycobacterium bovis. Based on the efficient trans-cleavage activity of the active CRISPR/Cas12a system, tandem-dsDNA with PAM sites was established using two flexible hairpins, providing multiple binding sites with CRISPR/Cas12a for further amplification. Furthermore, the activation of Cas12a initiated the second hybridization chain reaction (HCR), which integrated complete G-quadruplex sequences to assemble the hemin/G-quadruplex DNAzyme. With the addition of H2O2 and ABTS, a colorimetric signal readout strategy was achieved. Consequently, CRISPR/Cas12a-D-HCR achieved a satisfactory detection linear range from 20 aM to 50 fM, and the limit of detection was as low as 2.75 aM with single mismatched recognition capability, demonstrating good discrimination of different bacterial species. Notably, the practical application performance was verified via the standard addition method, with the recovery ranging from 96.0% to 105.2% and the relative standard deviations (RSD) ranging from 0.95% to 6.45%. The proposed CRISPR/Cas12a-D-HCR sensing system served as a promising application for accurate detection in food safety and agricultural fields.
Collapse
Affiliation(s)
- Qiong Liu
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China.
| | - Mei Yang
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China.
| | - He Zhang
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China.
| | - Wenjie Ma
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China.
| | - Xin Fu
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China.
| | - Huiqing Li
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China.
| | - Sainan Gao
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China.
| |
Collapse
|
6
|
Xu J, Zhang Y, Zhu X, Ling G, Zhang P. Two-mode sensing strategies based on tunable cobalt metal organic framework active sites to detect Hg 2. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133424. [PMID: 38185088 DOI: 10.1016/j.jhazmat.2024.133424] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/20/2023] [Accepted: 01/01/2024] [Indexed: 01/09/2024]
Abstract
Heavy metal pollution poses a major threat to human health, and developing a user-deliverable heavy metal detection strategy remains a major challenge. In this work, two-mode Hg2+ sensing platforms based on the tunable cobalt metal-organic framework (Co-MOF) active site strategy are constructed, including a colorimetric, and an electrochemical assay using a personal glucose meter (PGM) as the terminal device. Specifically, thymine (T), a single, adaptable nucleotide, is chosen to replace typical T-rich DNA aptamers. The catalytic sites of Co-MOF are tuned competitively by the specific binding of T-Hg2+-T, and different signal output platforms are developed based on the different enzyme-like activities of Co-MOF. DFT calculations are utilized to analyze the interaction mechanism between T and Co-MOF with defect structure. Notably, the two-mode sensing platforms exhibit outstanding detection performance, with LOD values as low as 0.5 nM (colorimetric) and 3.69 nM (PGM), respectively, superior to recently reported nanozyme-based Hg2+ sensors. In real samples of tap water and lake water, this approach demonstrates an effective recovery rate and outstanding selectivity. Surprisingly, the method is potentially versatile and, by exchanging out T-Hg2+-T, can also detect Ag+. This simple, portable, and user-friendly Hg2+ detection approach shows plenty of promise for application in the future.
Collapse
Affiliation(s)
- Jiaqi Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Yuanke Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Xiaoguang Zhu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Guixia Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
7
|
Wang X, Kong F, Liu Y, Lv S, Zhang K, Sun S, Liu J, Wang M, Cai X, Jin H, Yan S, Luo J. 17β-estradiol biosensors based on different bioreceptors and their applications. Front Bioeng Biotechnol 2024; 12:1347625. [PMID: 38357703 PMCID: PMC10864596 DOI: 10.3389/fbioe.2024.1347625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/16/2024] [Indexed: 02/16/2024] Open
Abstract
17β-Estradiol (E2) is a critical sex steroid hormone, which has significant effects on the endocrine systems of both humans and animals. E2 is also believed to play neurotrophic and neuroprotective roles in the brain. Biosensors present a powerful tool to detect E2 because of their small, efficient, and flexible design. Furthermore, Biosensors can quickly and accurately obtain detection results with only a small sampling amount, which greatly meets the detection of the environment, food safety, medicine safety, and human body. This review focuses on previous studies of biosensors for detecting E2 and divides them into non-biometric sensors, enzyme biosensors, antibody biosensors, and aptamer biosensors according to different bioreceptors. The advantages, disadvantages, and design points of various bioreceptors for E2 detection are analyzed and summarized. Additionally, applications of different bioreceptors of E2 detection are presented and highlight the field of environmental monitoring, food and medicine safety, and disease detection in recent years. Finally, the development of E2 detection by biosensor is prospected.
Collapse
Affiliation(s)
- Xinyi Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Fanli Kong
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Yaoyao Liu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Shiya Lv
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Kui Zhang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Shutong Sun
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Juntao Liu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Mixia Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Hongyan Jin
- Obstetrics and Gynecology Department, Peking University First Hospital, Beijing, China
| | - Shi Yan
- Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jinping Luo
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Yang R, Hu J, Zhang L, Liu X, Huang Y, Zhang L, Fan Q. Recent advances in optical biosensing and imaging of telomerase activity and relevant signal amplification strategies. Analyst 2024; 149:290-303. [PMID: 38099470 DOI: 10.1039/d3an01900d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Telomerase as a new valuable biomarker for early diagnosis and prognosis evaluation of cancer has attracted much interest in the field of biosensors, cell imaging, and drug screening. In this review, we mainly focus on different optical techniques and various signal amplification strategies for telomerase activity determination. Fluorometric, colorimetry, chemiluminescence, surface-enhanced Raman scattering (SERS), and dual-mode techniques for telomerase sensing and imaging are summarized. Signal amplification strategies include two categories: one is nucleic acid-based amplification, such as rolling circle amplification (RCA), the hybridization chain reaction (HCR), and catalytic hairpin assembly (CHA); the other is nanomaterial-assisted amplification, including metal nanoclusters, quantum dots, transition metal compounds, graphene oxide, and DNA nanomaterials. Challenges and prospects are also discussed to provide new insights for future development of multifunctional strategies and techniques for in situ and in vivo analysis of biomarkers for accurate cancer diagnosis.
Collapse
Affiliation(s)
- Ruining Yang
- The State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Junbo Hu
- The State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Longsheng Zhang
- The State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Xingfen Liu
- The State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Yanqin Huang
- The State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Lei Zhang
- The State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Quli Fan
- The State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| |
Collapse
|
9
|
Zhou Z, Tian D, Yang Y, Cui H, Li Y, Ren S, Han T, Gao Z. Machine learning assisted biosensing technology: An emerging powerful tool for improving the intelligence of food safety detection. Curr Res Food Sci 2024; 8:100679. [PMID: 38304002 PMCID: PMC10831501 DOI: 10.1016/j.crfs.2024.100679] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/03/2024] Open
Abstract
Recently, the application of biosensors in food safety assessment has gained considerable research attention. Nevertheless, the evaluation of biosensors' sensitivity, accuracy, and efficiency is still ongoing. The advent of machine learning has enhanced the application of biosensors in food security assessment, yielding improved results. Machine learning has been preliminarily applied in combination with different biosensors in food safety assessment, with positive results. This review offers a comprehensive summary of the diverse machine learning methods employed in biosensors for food safety. Initially, the primary machine learning methods were outlined, and the integrated application of biosensors and machine learning in food safety was thoroughly examined. Lastly, the challenges and limitations of machine learning and biosensors in the realm of food safety were underscored, and potential solutions were explored. The review's findings demonstrated that algorithms grounded in machine learning can aid in the early detection of food safety issues. Furthermore, preliminary research suggests that biosensors could be optimized through machine learning for real-time, multifaceted analyses of food safety variables and their interactions. The potential of machine learning and biosensors in real-time monitoring of food quality has been discussed.
Collapse
Affiliation(s)
- Zixuan Zhou
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Daoming Tian
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
- Beidaihe Rest and Recuperation Center of PLA, Qinhuangdao, 066000, China
| | - Yingao Yang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Han Cui
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Yanchun Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Shuyue Ren
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Tie Han
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| |
Collapse
|
10
|
Amani MH, Rahimnejad M, Ezoji H. Smartphone-assisted quantitative colorimetric identification of thrombin based on peroxidase mimetic features of fibrinogen-gold nanozymes. Mikrochim Acta 2024; 191:83. [PMID: 38195903 DOI: 10.1007/s00604-023-06173-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 12/24/2023] [Indexed: 01/11/2024]
Abstract
Fibrinogen-modified gold nanoparticles (Fib-AuNPs) and 3,3',5,5'-tetramethylbenzidine (TMB) substrate besides hydrogen peroxide (H2O2) were applied for assessment of the biomarker thrombin. Fib-AuNPs have catalytic active sites for the oxidation of TMB besides H2O2 and cause the color change of the substrate. Moreover, they can lead to the enhancement in the absorption wavelengths of 650 and 370 nm. By the addition of thrombin to Fib-AuNPs, fibrinogen turns into fibrin, and AuNPs are surrounded by fibrin. Therefore, their active catalytic sites for the oxidation of TMB besides H2O2 are covered by fibrin and cannot cause color change and absorption increase as before. The relationship between the average variations of the color intensity and changes in the absorption wavelengths at 650 and 350 nm with different concentrations of bovine thrombin added to Fib-AuNPs was studied. In such manner, three sensitive colorimetric approaches have been developed for the identification of bovine thrombin with the linear range of 20-120 pM and the limit of detection (LOD) of 17.54 pM for the average color intensity (G + B), the linear range of 20-120 pM and the LOD of 13.41 pM for the absorption peak at 650 nm, and the linear range of 40-140 pM with the LOD of 18.85 pM for absorption peak at 370 nm. The practical application of this biosensing platform was indicated through the successful determination of bovine thrombin in bovine serum. The satisfactory RSD ( < 10%) and recovery values (99.11-107.61%) confirmed the feasibility of the fabricated sensor.
Collapse
Affiliation(s)
- Mohammad Hosein Amani
- Biofuel and Renewable Energy Research Center, Department of Chemical Engineering, Babol Noshirvani University of Technology, Babol, 47148-71167, Iran
| | - Mostafa Rahimnejad
- Biofuel and Renewable Energy Research Center, Department of Chemical Engineering, Babol Noshirvani University of Technology, Babol, 47148-71167, Iran.
| | - Hoda Ezoji
- Biofuel and Renewable Energy Research Center, Department of Chemical Engineering, Babol Noshirvani University of Technology, Babol, 47148-71167, Iran
| |
Collapse
|
11
|
Fu L, Lin CT, Karimi-Maleh H, Chen F, Zhao S. Plasmonic Nanoparticle-Enhanced Optical Techniques for Cancer Biomarker Sensing. BIOSENSORS 2023; 13:977. [PMID: 37998152 PMCID: PMC10669140 DOI: 10.3390/bios13110977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023]
Abstract
This review summarizes recent advances in leveraging localized surface plasmon resonance (LSPR) nanotechnology for sensitive cancer biomarker detection. LSPR arising from noble metal nanoparticles under light excitation enables the enhancement of various optical techniques, including surface-enhanced Raman spectroscopy (SERS), dark-field microscopy (DFM), photothermal imaging, and photoacoustic imaging. Nanoparticle engineering strategies are discussed to optimize LSPR for maximum signal amplification. SERS utilizes electromagnetic enhancement from plasmonic nanostructures to boost inherently weak Raman signals, enabling single-molecule sensitivity for detecting proteins, nucleic acids, and exosomes. DFM visualizes LSPR nanoparticles based on scattered light color, allowing for the ultrasensitive detection of cancer cells, microRNAs, and proteins. Photothermal imaging employs LSPR nanoparticles as contrast agents that convert light to heat, producing thermal images that highlight cancerous tissues. Photoacoustic imaging detects ultrasonic waves generated by LSPR nanoparticle photothermal expansion for deep-tissue imaging. The multiplexing capabilities of LSPR techniques and integration with microfluidics and point-of-care devices are reviewed. Remaining challenges, such as toxicity, standardization, and clinical sample analysis, are examined. Overall, LSPR nanotechnology shows tremendous potential for advancing cancer screening, diagnosis, and treatment monitoring through the integration of nanoparticle engineering, optical techniques, and microscale device platforms.
Collapse
Affiliation(s)
- Li Fu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; (F.C.); (S.Z.)
| | - Cheng-Te Lin
- Qianwan Institute, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China;
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd., Shijingshan District, Beijing 100049, China
| | - Hassan Karimi-Maleh
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Wenzhou 325015, China;
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, China
- School of Engineering, Lebanese American University, Byblos 13-5053, Lebanon
| | - Fei Chen
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; (F.C.); (S.Z.)
| | - Shichao Zhao
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; (F.C.); (S.Z.)
| |
Collapse
|
12
|
Wang M, Liu H, Fan K. Signal Amplification Strategy Design in Nanozyme-Based Biosensors for Highly Sensitive Detection of Trace Biomarkers. SMALL METHODS 2023; 7:e2301049. [PMID: 37817364 DOI: 10.1002/smtd.202301049] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/12/2023] [Indexed: 10/12/2023]
Abstract
Nanozymes show great promise in enhancing disease biomarker sensing by leveraging their physicochemical properties and enzymatic activities. These qualities facilitate signal amplification and matrix effects reduction, thus boosting biomarker sensing performance. In this review, recent studies from the last five years, concentrating on disease biomarker detection improvement through nanozyme-based biosensing are examined. This enhancement primarily involves the modulations of the size, morphology, doping, modification, electromagnetic mechanisms, electron conduction efficiency, and surface plasmon resonance effects of nanozymes for increased sensitivity. In addition, a comprehensive description of the synthesis and tuning strategies employed for nanozymes has been provided. This includes a detailed elucidation of their catalytic mechanisms in alignment with the fundamental principles of enhanced sensing technology, accompanied by the presentation of quantitatively analyzed results. Moreover, the diverse applications of nanozymes in strip sensing, colorimetric sensing, electrochemical sensing, and surface-enhanced Raman scattering have been outlined. Additionally, the limitations, challenges, and corresponding recommendations concerning the application of nanozymes in biosensing have been summarized. Furthermore, insights have been offered into the future development and outlook of nanozymes for biosensing. This review aims to serve not only as a reference for enhancing the sensitivity of nanozyme-based biosensors but also as a catalyst for exploring nanozyme properties and their broader applications in biosensing.
Collapse
Affiliation(s)
- Mengting Wang
- Guangdong Provincial Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou Institute of Urology, Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510230, China
| | - Hongxing Liu
- Guangdong Provincial Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou Institute of Urology, Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510230, China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
13
|
Ko A, Liao C. Paper-based colorimetric sensors for point-of-care testing. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4377-4404. [PMID: 37641934 DOI: 10.1039/d3ay00943b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
By eliminating the need for sample transportation and centralized laboratory analysis, point-of-care testing (POCT) enables on-the-spot testing, with results available within minutes, leading to improved patient management and overall healthcare efficiency. Motivated by the rapid development of POCT, paper-based colorimetric sensing, a powerful analytical technique that exploits the changes in color or absorbance of a chemical species to detect and quantify analytes of interest, has garnered increasing attention. In this review, we strive to provide a bird's eye view of the development landscape of paper-based colorimetric sensors that harness the unique properties of paper to create low-cost, easy-to-use, and disposable analytical devices, thematically covering both fundamental aspects and categorized applications. In the end, we authors summarized the review with the remaining challenges and emerging opportunities. Hopefully, this review will ignite new research endeavors in the realm of paper-based colorimetric sensors.
Collapse
Affiliation(s)
- Anthony Ko
- Renaissance Bio, New Territories, Hong Kong SAR, China.
- Medical School, Sun Yat-Sen University, Guangzhou, China
| | - Caizhi Liao
- Renaissance Bio, New Territories, Hong Kong SAR, China.
| |
Collapse
|
14
|
Liu F, Zhang C, Duan Y, Ma J, Wang Y, Chen G. A detection method for Prorocentrum minimum by an aptamer-gold nanoparticles based colorimetric assay. JOURNAL OF HAZARDOUS MATERIALS 2023; 449:131043. [PMID: 36827721 DOI: 10.1016/j.jhazmat.2023.131043] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Here, to give early waring for harmful algal blooms caused by Prorocentrum minimum, we reported a simple and rapid colorimetric assay that is named aptamer-gold nanoparticles (GNPs) based colorimetric assay (AGBCA). The GNPs maintain a dispersed state and have a strong characteristic absorption peak at 520 nm. With the addition of NaCl, the stability of the solution will be destroyed and the dispersed GNPs will aggregate. Therefore, the characteristic absorption peak of the GNPs solution will change from 520 nm to 670 nm. Aptamers can be adsorbed on the surface of GNPs, effectively preventing the aggregation of GNPs. In the presence of P. minimum, aptamers will specifically bind to P. minimum, causing the dissociation of the aptamers from GNPs. Consequently, the GNPs will aggregate in the NaCl solution, corresponding to a new absorption peak at 670 nm. A linear relationship between the absorbance ratio variation (ΔA670/A520) and the P. minimum concentration was observed in the concentration range of 1 × 102 - 1 × 107 cells mL-1, with a low detection limit of 8 cells mL-1. The developed AGBCA is characterized by simplicity, strong specificity, and high sensitivity and is thus promising for the quantitative detection of P. minimum in natural samples.
Collapse
Affiliation(s)
- Fuguo Liu
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Chunyun Zhang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China.
| | - Yu Duan
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Jinju Ma
- School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Yuanyuan Wang
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China
| | - Guofu Chen
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China
| |
Collapse
|
15
|
Qiao X, Li H, Ma H, Zhang H, Jin L. Sensitive acid phosphatase assay based on light-activated specific oxidase mimic activity. Talanta 2023; 255:124236. [PMID: 36587430 DOI: 10.1016/j.talanta.2022.124236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022]
Abstract
Acid phosphatase (ACP) is a key marker in the diagnosis of many diseases. However, exploiting a simple and sensitive sensor for the real-time quantitative analysis of ACP is still challenging. Herein, we attempted to develop a sensitive colorimetric sensing strategy for the detection of ACP based on light-activated oxidase mimic property of carbon dots (CDs). The synthesized CDs were proved to be capable of intrinsic light-activated oxidase mimic activity, which could generate reactive oxygen species to oxidize chromogenic substrate under ultraviolet light stimulation. Interestingly, this light-activated oxidase mimic behavior would be effectively suppressed by the antioxidant ascorbic acid (AA), a product from the hydrolysis of 2-phospho-L-ascorbic acid trisodium (AAP) mediated by ACP. Based on the above property, a facile and sensitive colorimetric sensing method for ACP was developed. Under the optimal conditions, the linear range for ACP 0.1-5.5 U/L, and the detection limit was 0.056 U/L. Compared with conventional nanozyme based ACP assay systems, the catalytic activity of light-activated nanozyme could be conveniently regulated by switching the light on and off, which made it easier to precisely control the extent of the reaction and ensured the accuracy of the assay. In addition, the proposed sensing system would be readout directly by the naked eye or smartphone-based RGB analysis system, and have been successfully applied to analyze diluted in diluted fetal bovine serum and urine samples spiked with ACP. All these results indicated that this approach holds good promise for future applications in clinical analysis and point-of-care (POC) biosensor platforms.
Collapse
Affiliation(s)
- Xiaohong Qiao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, China
| | - Hanmei Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, China
| | - Huijun Ma
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, China
| | - Han Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, China
| | - Lihua Jin
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
16
|
Liu JX, Xin MK, Sun X, Liu D, Li CY. NIR Photocontrolled Fluorescent Nanosensor under a Six-Branched DNA Nanowheel-Induced Nucleic Acid Confinement Effect for High-Performance Bioimaging. ACS APPLIED MATERIALS & INTERFACES 2023; 15:10529-10540. [PMID: 36802484 DOI: 10.1021/acsami.2c23165] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Although DNA nanotechnology is a promising option for fluorescent biosensors to perform bioimaging, the uncontrollable target identification during biological delivery and the spatially free molecular collision of nucleic acids may cause unsatisfactory imaging precision and sensitivity, respectively. Aiming at solving these challenges, we herein integrate some productive notions. On the one hand, the target recognition component is inserted with a photocleavage bond and a core-shell structured upconversion nanoparticle with a low thermal effect is further employed to act as the ultraviolet light generation source, under which a precise near-infrared photocontrolled sensing is achieved through a simple external 808 nm light irradiation. On the other hand, the collision of all of the hairpin nucleic acid reactants is confined by a DNA linker to form a six-branched DNA nanowheel, after which their local reaction concentrations are vastly enhanced (∼27.48 times) to induce a special nucleic acid confinement effect to guarantee highly sensitive detection. By selecting a lung cancer-associated short noncoding microRNA sequence (miRNA-155) as a model low-abundance analyte, it is demonstrated that the newly established fluorescent nanosensor not only presents good in vitro assay performance but also exhibits a high-performance bioimaging competence in live biosystems including cells and mouse body, propelling the progress of DNA nanotechnology in the biosensing field.
Collapse
Affiliation(s)
- Jun-Xian Liu
- School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, P. R. China
| | - Meng-Kun Xin
- School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, P. R. China
| | - Xiaoming Sun
- School of Basic Medical Sciences, Biomedical Research Institute, Hubei University of Medicine, Shiyan 442000, P. R. China
| | - Da Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Cheng-Yu Li
- School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, P. R. China
| |
Collapse
|
17
|
Li G, Wu S, Chen W, Duan X, Sun X, Li S, Mai Z, Wu W, Zeng G, Liu H, Chen T. Designing Intelligent Nanomaterials to Achieve Highly Sensitive Diagnoses and Multimodality Therapy of Bladder Cancer. SMALL METHODS 2023; 7:e2201313. [PMID: 36599700 DOI: 10.1002/smtd.202201313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Bladder cancer (BC) is among the most common malignant tumors of the genitourinary system worldwide. In recent years, the rate of BC incidence has increased, and the recurrence rate is high, resulting in poor quality of life for patients. Therefore, how to develop an effective method to achieve synchronous precise diagnoses and BC therapies is a difficult problem to solve clinically. Previous reports usually focus on the role of nanomaterials as drug delivery carriers, while a summary of the functional design and application of nanomaterials is lacking. Summarizing the application of functional nanomaterials in high-sensitivity diagnosis and multimodality therapy of BC is urgently needed. This review summarizes the application of nanotechnology in BC diagnosis, including the application of nanotechnology in the sensoring of BC biomarkers and their role in monitoring BC. In addition, conventional and combination therapies strategy in potential BC therapy are analyzed. Moreover, different kinds of nanomaterials in BC multimodal therapy according to pathological features of BC are also outlined. The goal of this review is to present an overview of the application of nanomaterials in the theranostics of BC to provide guidance for the application of functional nanomaterials to precisely diagnose and treat BC.
Collapse
Affiliation(s)
- Guanlin Li
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Sicheng Wu
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Wenzhe Chen
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Xiaolu Duan
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Xinyuan Sun
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Shujue Li
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Zanlin Mai
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Wenzheng Wu
- Department of Urology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, P. R. China
| | - Guohua Zeng
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Hongxing Liu
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510631, P. R. China
| | - Tianfeng Chen
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510631, P. R. China
| |
Collapse
|
18
|
Liao C, Wu Z, Lin C, Chen X, Zou Y, Zhao W, Li X, Huang G, Xu B, Briganti GE, Qi Y, Wang X, Zeng T, Wuethrich A, Zou H. Nurturing the marriages of urinary liquid biopsies and nano-diagnostics for precision urinalysis of prostate cancer. SMART MEDICINE 2023; 2:e20220020. [PMID: 39188554 PMCID: PMC11236013 DOI: 10.1002/smmd.20220020] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/04/2022] [Indexed: 08/28/2024]
Abstract
Prostate cancer remains the second-most common cancer diagnosed in men, despite the increasingly widespread use of serum prostate-specific antigen (PSA) screening. The controversial clinical implications and cost benefits of PSA screening have been highlighted due to its poor specificity, resulting in a high rate of overdiagnosis and underdiagnosis. Thus, the development of novel biomarkers for prostate cancer detection remains an intriguing challenge. Urine is emerging as a source for prostate cancer biomarker discovery. Currently, new urine biomarkers already outperform serum PSA in clinical diagnosis. Meanwhile, the advances in nanotechnology have provided a suite of diagnostic tools to study prostate cancer in more detail, sparking a new era of biomarker discoveries. In this review, we envision that future prostate cancer diagnosis will probably integrate multiplex nano-diagnostic approaches to detect novel urinary biomarkers. However, challenges remain in differentiating indolent from aggressive cancers to better inform treatment decisions, and clinical translation still needs to be overcome.
Collapse
Affiliation(s)
- Caizhi Liao
- Creative Biosciences (Guangzhou) Co., LtdGuangzhouChina
| | - Zhihao Wu
- Creative Biosciences (Guangzhou) Co., LtdGuangzhouChina
| | - Chan Lin
- Creative Biosciences (Guangzhou) Co., LtdGuangzhouChina
| | - Xiaofeng Chen
- School of Environmental and Geographical SciencesShanghai Normal UniversityShanghaiChina
- School of ChemistryNorthwestern UniversityChicagoIllinoisUSA
| | - Yaqun Zou
- Creative Biosciences (Guangzhou) Co., LtdGuangzhouChina
| | - Wan Zhao
- Creative Biosciences (Guangzhou) Co., LtdGuangzhouChina
| | - Xin Li
- Department of UrologySir Run Run Shaw HospitalZhejiang UniversityHangzhouChina
| | | | - Baisheng Xu
- Department of UrologyThe First People's Hospital of XiushuiJiujiangChina
| | | | - Yan Qi
- Creative Biosciences (Guangzhou) Co., LtdGuangzhouChina
| | - Xianshu Wang
- Creative Biosciences (Guangzhou) Co., LtdGuangzhouChina
| | - Tao Zeng
- Department of Urologythe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Alain Wuethrich
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, The University of QueenslandBrisbaneQueenslandAustralia
| | - Hongzhi Zou
- Creative Biosciences (Guangzhou) Co., LtdGuangzhouChina
- The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
19
|
Liu G, Liu J, Zhou H, Wang H. Recent advances in nanotechnology-enhanced biosensors for α-fetoprotein detection. Mikrochim Acta 2022; 190:3. [PMID: 36469175 DOI: 10.1007/s00604-022-05592-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022]
Abstract
α-Fetoprotein (AFP) is a kind of fetal protein that is related to tumor, the increasing concentration of which gives birth to a large variety of diseases, such as liver cancer. Therefore, the detection method with super sensitivity, high selectivity, and less time consumption under trace concentrations in early stage of diseases is becoming a necessity. In recent years, nanomaterials have been regarded as significant resources for the exploration of efficient biosensors with high sensitivity, selectivity, speed, as well as simple process, due to their excellent optical, electrical, and chemical properties. In this paper, we reviewed the research progress of AFP biosensors with enhanced sensitivity and selectivity by nanoparticles. Representative examples have also been displayed in this paper to expound the nanotechnologies utilized in the early detection of AFP. Furthermore, challenges of the clinical application of AFP biosensors based on nanotechnology have been elaborated, as well as the development opportunity in this field in the future. This review provides a comprehensive overview on the various nano-biosensor for AFP detection based on functional nanotechnology.
Collapse
Affiliation(s)
- Gengjun Liu
- Department of Blood Transfusion, the Affiliated Hospital of Qingdao University, Qingdao, 266042, People's Republic of China
| | - Jing Liu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, People's Republic of China
| | - Hong Zhou
- Department of Blood Transfusion, the Affiliated Hospital of Qingdao University, Qingdao, 266042, People's Republic of China. .,Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China.
| | - Haiyan Wang
- Department of Blood Transfusion, the Affiliated Hospital of Qingdao University, Qingdao, 266042, People's Republic of China.
| |
Collapse
|
20
|
Khan H, Shah MR, Barek J, Malik MI. Cancer biomarkers and their biosensors: A comprehensive review. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
21
|
Yue JY, Song LP, Wang YT, Yang P, Ma Y, Tang B. Fluorescence/Colorimetry/Smartphone Triple-Mode Sensing of Dopamine by a COF-Based Peroxidase-Mimic Platform. Anal Chem 2022; 94:14419-14425. [PMID: 36194858 DOI: 10.1021/acs.analchem.2c03179] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Simple and accurate monitoring of urinary dopamine (DA) concentration is significant, which is helpful for the assessment or exclusion of catecholamine-producing tumors, such as pheochromocytoma and paraganglioma. Herein, a fluorescence/colorimetry/smartphone triple-mode sensing platform for DA determination was constructed using copper ion (Cu2+)-modified hydrazone-linked covalent organic frameworks (Cu-BTA-COF). Cu-BTA-COF with 21.67 wt % copper content exhibited peroxidase-mimic activity. After adding H2O2 and 1,3-dihydroxynaphthalene, the Cu-BTA-COF platform can sensitively and selectively detect DA in three modes with consistent results. In fluorescence/colorimetry/smartphone modes, the linear ranges of DA were 1-10, 0.2-40, and 1-10 μM, with related detection limits of 7.2, 8.6, and 23 nM, respectively. Moreover, the Cu-BTA-COF platform can be explored for DA determination in human urine samples with satisfactory recoveries (97.6-100.4%) in all the three modes, suggesting the potential practical application of the Cu-BTA-COF platform for DA detection in urine.
Collapse
Affiliation(s)
- Jie-Yu Yue
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Li-Ping Song
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Yu-Tong Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Peng Yang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Yu Ma
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| |
Collapse
|
22
|
Liao L, Guo D, Luo X, Meng L, Wu F. Facile fabrication of iron porphyrin-based porous organic polymer with excellent oxidase-like activity for colorimetric detection of sulfide. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Wu HF, Kailasa SK. Recent advances in nanomaterials-based optical sensors for detection of various biomarkers (inorganic species, organic and biomolecules). LUMINESCENCE 2022. [PMID: 35929140 DOI: 10.1002/bio.4353] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/11/2022] [Accepted: 07/27/2022] [Indexed: 11/07/2022]
Abstract
This review briefly emphasizes the different detection approaches (electrochemical sensors, chemiluminescence, surface-enhanced Raman scattering), functional nanostructure materials (quantum dots, metal nanoparticles, metal nanoclusters, magnetic nanomaterials, metal oxide nanoparticles, polymer-based nanomaterials, and carbonaceous nanomaterials) and detection mechanisms. Further, this review emphasis on the integration of functional nanomaterials with optical spectroscopic techniques for the identification of various biomarkers (nucleic acids, glucose, uric acid, oxytocin, dopamine, ascorbic acid, bilirubin, spermine, serotonin, thiocyanate, Pb2+ , Cu2+ , Hg2+ , F- , peptides, and cancer biomarkers (mucin 1, prostate specific antigen, carcinoembryonic antigen, CA15-3, human epidermal growth factor receptor 2, C-reactive protein, and interleukin-6). Analytical characteristics of nanomaterials-based optical sensors are summarized in Tables, providing the insights of nanomaterials-based optical sensors for biomarkers detection. Finally, the opportunities and challenges of nanomaterials-based optical analytical approaches for the detection of various biomarkers (inorganic, organic, biomolecules, peptides and proteins) are discussed.
Collapse
Affiliation(s)
- Hui-Fen Wu
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung, Taiwan
- International PhD Program for Science, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Suresh Kumar Kailasa
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, India
| |
Collapse
|
24
|
Wu T, Chen K, Lai W, Zhou H, Wen X, Chan HF, Li M, Wang H, Tao Y. Bovine serum albumin-gold nanoclusters protein corona stabilized polystyrene nanoparticles as dual-color fluorescent nanoprobes for breast cancer detection. Biosens Bioelectron 2022; 215:114575. [PMID: 35868122 DOI: 10.1016/j.bios.2022.114575] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/24/2022] [Accepted: 07/12/2022] [Indexed: 11/02/2022]
Abstract
Breast cancer is the most prevalent malignancy and the first leading cause of cancer-related mortality among the female population worldwide. Approaches for precise and reliable detection of breast cancer cells, particularly in the nascent state, are desperately needed for elevating the survival rate of patients bearing the breast tumor. In this work, we successfully performed the sensitive, precise, and reliable breast cancer cell detection using facilely fabricated bovine serum albumin-gold nanocluster (BSA-AuNCs) protein corona stabilized, epithelial cell adhesion molecule (EpCAM) aptamer linked fluorescent polystyrene nanoparticle (PS NP), termed as PS-BSA-AuNCs-Apt. The rapidly adsorbed BSA-AuNCs hard protein corona without complicated covalent conjugation not only imparted excellent colloidal stability to the PS nanoparticles, but also offered numerous active anchors for the targeted EpCAM aptamers to locate. With the remarkable aid of the aptamers specifically targeting the EpCAM-positive breast cancer cells, the PS-BSA-AuNCs-Apt emitted strong and photostable dual-color fluorescent signals for precise and reliable cancer cell detection by overcoming the false signals. The specific identification potency of the PS-BSA-AuNCs-Apt system was further verified by successfully detecting the xenografted breast tumor tissue. Notably, to the best of our knowledge, the protein corona formed nanoprobes was exploited for direct tumor cell and tissue detection with high efficacy for the first time, demonstrating their promising potential in clinical tumor detection.
Collapse
Affiliation(s)
- Tingting Wu
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Keying Chen
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Wenjie Lai
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China; Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Huicong Zhou
- College of Science, Changchun Institute of Technology, Changchun, 130012, China
| | - Xingqiao Wen
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Science, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China; Guangdong Provincial Key Laboratory of Liver Disease, Guangzhou, 510630, China.
| | - Haixia Wang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China.
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China.
| |
Collapse
|
25
|
Liu Y, Deng Y, Li S, Wang-Ngai Chow F, Liu M, He N. Monitoring and detection of antibiotic residues in animal derived foods: Solutions using aptamers. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Lu H, Zada S, Yang L, Dong H. Microneedle-Based Device for Biological Analysis. Front Bioeng Biotechnol 2022; 10:851134. [PMID: 35528208 PMCID: PMC9068878 DOI: 10.3389/fbioe.2022.851134] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 03/11/2022] [Indexed: 12/14/2022] Open
Abstract
The collection and analysis of biological samples are an effective means of disease diagnosis and treatment. Blood sampling is a traditional approach in biological analysis. However, the blood sampling approach inevitably relies on invasive techniques and is usually performed by a professional. The microneedle (MN)-based devices have gained increasing attention due to their noninvasive manner compared to the traditional blood-based analysis method. In the present review, we introduce the materials for fabrication of MNs. We categorize MN-based devices based on four classes: MNs for transdermal sampling, biomarker capture, detecting or monitoring analytes, and bio-signal recording. Their design strategies and corresponding application are highlighted and discussed in detail. Finally, future perspectives of MN-based devices are discussed.
Collapse
Affiliation(s)
- Huiting Lu
- Department of Chemistry, School of Chemistry and Biological Engineering, University of Science & Technology Beijing, Beijing, China
| | - Shah Zada
- Marshall Laboratory of Biomedical Engineering Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Lingzhi Yang
- Marshall Laboratory of Biomedical Engineering Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Haifeng Dong
- Department of Chemistry, School of Chemistry and Biological Engineering, University of Science & Technology Beijing, Beijing, China
- Marshall Laboratory of Biomedical Engineering Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| |
Collapse
|
27
|
Mayoral-Peña K, González Peña OI, Orrantia Clark AM, Flores-Vallejo RDC, Oza G, Sharma A, De Donato M. Biorecognition Engineering Technologies for Cancer Diagnosis: A Systematic Literature Review of Non-Conventional and Plausible Sensor Development Methods. Cancers (Basel) 2022; 14:1867. [PMID: 35454775 PMCID: PMC9030888 DOI: 10.3390/cancers14081867] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/14/2022] [Accepted: 03/22/2022] [Indexed: 12/21/2022] Open
Abstract
Cancer is the second cause of mortality worldwide. Early diagnosis of this multifactorial disease is challenging, especially in populations with limited access to healthcare services. A vast repertoire of cancer biomarkers has been studied to facilitate early diagnosis; particularly, the use of antibodies against these biomarkers has been of interest to detect them through biorecognition. However, there are certain limitations to this approach. Emerging biorecognition engineering technologies are alternative methods to generate molecules and molecule-based scaffolds with similar properties to those presented by antibodies. Molecularly imprinted polymers, recombinant antibodies, and antibody mimetic molecules are three novel technologies commonly used in scientific studies. This review aimed to present the fundamentals of these technologies and address questions about how they are implemented for cancer detection in recent scientific studies. A systematic analysis of the scientific peer-reviewed literature regarding the use of these technologies on cancer detection was carried out starting from the year 2000 up to 2021 to answer these questions. In total, 131 scientific articles indexed in the Web of Science from the last three years were included in this analysis. The results showed that antibody mimetic molecules technology was the biorecognition technology with the highest number of reports. The most studied cancer types were: multiple, breast, leukemia, colorectal, and lung. Electrochemical and optical detection methods were the most frequently used. Finally, the most analyzed biomarkers and cancer entities in the studies were carcinoembryonic antigen, MCF-7 cells, and exosomes. These technologies are emerging tools with adequate performance for developing biosensors useful in cancer detection, which can be used to improve cancer diagnosis in developing countries.
Collapse
Affiliation(s)
- Kalaumari Mayoral-Peña
- School of Engineering and Sciences, Campus Queretaro, Tecnologico de Monterrey, Av. Epigmenio González No. 500, San Pablo, Queretaro 76130, Mexico; (K.M.-P.); (A.S.)
| | - Omar Israel González Peña
- School of Engineering and Sciences, Campus Monterrey, Tecnologico de Monterrey, Av. Eugenio Garza Sada Sur No. 2501, Tecnológico, Monterrey 64849, Mexico
- Institute for the Future of Education, Tecnologico de Monterrey, Av. Eugenio Garza Sada Sur No. 2501, Tecnológico, Monterrey 64849, Mexico
| | - Alexia María Orrantia Clark
- School of Engineering and Sciences, Campus Mexico City, Tecnologico de Monterrey, C. Puente 222, Ejidos de Huipulco, Tlalpan, Mexico City 14380, Mexico;
| | - Rosario del Carmen Flores-Vallejo
- Department of Biomedical Engineering and Mechatronics, Campus Toluca, Universidad del Valle de México (UVM), C. De Las Palmas Poniente 439, San Jorge Pueblo Nuevo, Metepec 52164, Mexico;
| | - Goldie Oza
- Laboratorio Nacional de Micro y Nanofluídica (LABMyN), Centro de Investigación y Desarrollo Tecnológico en Electroquímica (CIDETEQ), Parque San Fandila, Pedro Escobedo, Queretaro 76703, Mexico;
| | - Ashutosh Sharma
- School of Engineering and Sciences, Campus Queretaro, Tecnologico de Monterrey, Av. Epigmenio González No. 500, San Pablo, Queretaro 76130, Mexico; (K.M.-P.); (A.S.)
| | - Marcos De Donato
- School of Engineering and Sciences, Campus Queretaro, Tecnologico de Monterrey, Av. Epigmenio González No. 500, San Pablo, Queretaro 76130, Mexico; (K.M.-P.); (A.S.)
| |
Collapse
|
28
|
Chen D, Shao S, Zhang W, Zhao J, Lian M. Nitrogen and sulfur co-doping strategy to trigger the peroxidase-like and electrochemical activity of Ti3C2 nanosheets for sensitive uric acid detection. Anal Chim Acta 2022; 1197:339520. [DOI: 10.1016/j.aca.2022.339520] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/20/2021] [Accepted: 01/17/2022] [Indexed: 01/08/2023]
|
29
|
Dong Y, Wan L, Lv S, Zhu D, Su S, Chao J, Wang L. Construction of a Molybdenum Disulfide-Based Colorimetric Sensor for Label-Free Infectious Disease Analysis Coupled with a Catalyzed Hairpin Assembly Reaction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1791-1796. [PMID: 35084864 DOI: 10.1021/acs.langmuir.1c02891] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The simple and accurate determination of pathogenic infectious diseases is very beneficial to public health prevention and control. For this purpose, we designed a colorimetric sensor for label-free avian influenza A (H7N9) virus gene sequence detection based on gold@platinum core-shell bimetallic-nanoparticle-decorated molybdenum disulfide (MoS2-Au@Pt) nanocomposites. MoS2-Au@Pt nanocomposites were used as nanoenzymes to catalyze 3,3',5,5'-tetramethylbenzidine (TMB) by hydrogen peroxide (H2O2) because of their intrinsic peroxidase-mimicking activity. Coupled with different affinities of MoS2-Au@Pt nanocomposites toward single-stranded (ss) and double-stranded (ds) DNA and the target-triggered catalyzed hairpin assembly (CHA) reaction, the proposed sensor can qualitatively and quantitatively determine H7N9 by the naked eye. Experimental results showed that this sensor can detect H7N9 in buffer and real samples because of its high sensitivity, selectivity, and repeatability.
Collapse
Affiliation(s)
- Yan Dong
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Ling Wan
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Suo Lv
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Dan Zhu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Shao Su
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Jie Chao
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Lianhui Wang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
30
|
Idili A, Montón H, Medina-Sánchez M, Ibarlucea B, Cuniberti G, Schmidt OG, Plaxco KW, Parolo C. Continuous monitoring of molecular biomarkers in microfluidic devices. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 187:295-333. [PMID: 35094779 DOI: 10.1016/bs.pmbts.2021.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The ability to monitor molecular targets is crucial in fields ranging from healthcare to industrial processing to environmental protection. Devices employing biomolecules to achieve this goal are called biosensors. Over the last half century researchers have developed dozens of different biosensor approaches. In this chapter we analyze recent advances in the biosensing field aiming at adapting these to the problem of continuous molecular monitoring in complex sample streams, and how the merging of these sensors with lab-on-a-chip technologies would be beneficial to both. To do so we discuss (1) the components that comprise a biosensor, (2) the challenges associated with continuous molecular monitoring in complex sample streams, (3) how different sensing strategies deal with (or fail to deal with) these challenges, and (4) the implementation of these technologies into lab-on-a-chip architectures.
Collapse
Affiliation(s)
- Andrea Idili
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, United States; Department of Chemical Science and Technologies, University of Rome, Tor Vergata, Rome, Italy
| | - Helena Montón
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, United States
| | | | - Bergoi Ibarlucea
- Institute for Materials Science and Max Bergmann Center for Biomaterials, Technische Universität Dresden, Dresden, Germany; Center for Advancing Electronics Dresden (CFAED), Technische Universität Dresden, Dresden, Germany
| | - Gianaurelio Cuniberti
- Institute for Materials Science and Max Bergmann Center for Biomaterials, Technische Universität Dresden, Dresden, Germany; Center for Advancing Electronics Dresden (CFAED), Technische Universität Dresden, Dresden, Germany
| | - Oliver G Schmidt
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Dresden, Germany; Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz, Germany; School of Science, TU Dresden, Dresden, Germany
| | - Kevin W Plaxco
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, United States; Interdepartmental Program in Biomolecular Science and Engineering University of California, Santa Barbara, CA, United States
| | - Claudio Parolo
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, United States; Barcelona Institute for Global Health (ISGlobal) Hospital Clínic, Barcelona, Spain.
| |
Collapse
|
31
|
Hu Y, Lv S, Wan J, Zheng C, Shao D, Wang H, Tao Y, Li M, Luo Y. Recent advances in nanomaterials for prostate cancer detection and diagnosis. J Mater Chem B 2022; 10:4907-4934. [PMID: 35712990 DOI: 10.1039/d2tb00448h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite the significant progress in the discovery of biomarkers and the exploitation of technologies for prostate cancer (PCa) detection and diagnosis, the initial screening of these PCa-related biomarkers using current...
Collapse
Affiliation(s)
- Yongwei Hu
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Shixian Lv
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Jiaming Wan
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Chunxiong Zheng
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Dan Shao
- Institutes of Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Haixia Wang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
- Guangdong Provincial Key Laboratory of Liver Disease, Guangzhou 510630, China
| | - Yun Luo
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| |
Collapse
|
32
|
Yang YJ, Gao ZF. Bio-inspired Superwettable Surface for the Detection of Cancer Biomarker: A Mini Review. Technol Cancer Res Treat 2022; 21:15330338221110670. [PMID: 35790461 PMCID: PMC9340408 DOI: 10.1177/15330338221110670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Inspired by nature, superwettable material-based biosensors have aroused wide interests due to their potential in cancer biomarker detection. This mini review mainly summarized the superwettable materials as novel biosensing substrates for the development of evaporation-induced enrichment-based signal amplification and visual biosensing method. Biosensing applications based on the superhydrophobic surfaces, superwettable micropatterned surfaces, and slippery lubricant-infused porous surfaces for various cancer biomarker detections were described in detail. Finally, an insight of remaining challenges and perspectives of superwettable biosensor is proposed.
Collapse
Affiliation(s)
- Yun Jun Yang
- Advanced Research Institute for Multidisciplinary Science, 12689Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China
| | - Zhong Feng Gao
- Advanced Materials Institute, 12689Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China.,Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, 165082Linyi University, Linyi, People's Republic of China
| |
Collapse
|
33
|
Shi X, Zhang G, Liu W, Jin Y, Li B. Rhombic dodecahedral gold nanoparticles: chiral sensing probes for naked-eye recognition of histidine enantiomers. Chem Commun (Camb) 2021; 58:427-430. [PMID: 34897305 DOI: 10.1039/d1cc06127e] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Rhombic dodecahedral gold nanoparticles (GNPs) are found to have inherent chirality and can be used as colorimetric probes for naked-eye recognition of histidine enantiomers. Our findings are helpful for developing new GNP-based chiral sensing systems through tuning of nanoparticle morphology.
Collapse
Affiliation(s)
- Xiaoyu Shi
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Guiping Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Wei Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Yan Jin
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Baoxin Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
34
|
Fan Q, Gao Y, Mazur F, Chandrawati R. Nanoparticle-based colorimetric sensors to detect neurodegenerative disease biomarkers. Biomater Sci 2021; 9:6983-7007. [PMID: 34528639 DOI: 10.1039/d1bm01226f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neurodegenerative disorders (NDDs) are progressive, incurable health conditions that primarily affect brain cells, and result in loss of brain mass and impaired function. Current sensing technologies for NDD detection are limited by high cost, long sample preparation, and/or require skilled personnel. To overcome these limitations, optical sensors, specifically colorimetric sensors, have garnered increasing attention towards the development of a cost-effective, simple, and rapid alternative approach. In this review, we evaluate colorimetric sensing strategies of NDD biomarkers (e.g. proteins, neurotransmitters, bio-thiols, and sulfide), address the limitations and challenges of optical sensor technologies, and provide our outlook on the future of this field.
Collapse
Affiliation(s)
- Qingqing Fan
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia.
| | - Yuan Gao
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia.
| | - Federico Mazur
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia.
| | - Rona Chandrawati
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia.
| |
Collapse
|
35
|
Xie Y, Wang H, Yuwen X, Lai G. Exo III-Catalyzed Release of a Zn 2+-Ligation DNAzyme to Drive the Strand Displacement Reaction and Gold Aggregation for the Homogeneous Bioassay of Kanamycin Antibiotics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10371-10378. [PMID: 34436884 DOI: 10.1021/acs.jafc.1c04030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Herein, we combine the exonuclease III (Exo III)-catalyzed release of a Zn2+-dependent ligation DNAzyme with the DNAzyme-driven strand displacement reaction (SDR) to develop a novel homogeneous colorimetric bioassay method for kanamycin (Kana) antibiotic detection. Upon the biorecognition reaction between Kana and a designed hairpin DNA, the DNAzyme-containing strand can be catalytically released by Exo III. Then, this DNAzyme will catalyze the ligation of two oligonucleotides to cause a SDR and the aggregation of gold nanoparticles (Au NPs) labeled by two linker DNA strands. Due to the aggregation of Au NPs for colorimetric signal transduction and the Exo III and SDR-assisted dual signal amplification, this method shows a wide linear range of 5 orders of magnitude and a very low detection limit down to 8.1 fg mL-1. Together with its excellent selectivity, repeatability, reliability, and convenient manipulation, the proposed method shows a great potential for the food quality monitoring application.
Collapse
Affiliation(s)
- Yiming Xie
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| | - Haiyan Wang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| | - Xinyue Yuwen
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| | - Guosong Lai
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China
| |
Collapse
|
36
|
Shen M, Wang Y, Kan X. Dual-recognition colorimetric sensing of thrombin based on surface-imprinted aptamer-Fe 3O 4. J Mater Chem B 2021; 9:4249-4256. [PMID: 34008694 DOI: 10.1039/d1tb00565k] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Thrombin plays an essential role in blood coagulation and some physiological and pathological processes. The convenient, rapid, sensitive, and specific detection of thrombin is of great significance in clinical research and diagnosis. Herein, surface molecularly imprinted polymer (MIP) was modified on aptamer-functionalized Fe3O4 nanoparticles (MIP-aptamer-Fe3O4 NP) for thrombin colorimetric assay by taking advantage of the peroxidase-like activity of Fe3O4 NP. With the adsorption of thrombin into imprinted cavities, the exposed surface area of Fe3O4 NP decreased, causing a decrease in its peroxidase-like activity toward 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of H2O2. On the other hand, the reductive amino acids on the thrombin surface also impeded the oxidation of TMB. Both phenomena caused the light blue color of the sensing solution. Thus, a specifically sensitive colorimetric approach for the visual detection of thrombin was proposed with a linear range and limit of detection of 108.1 pmol L-1-2.7 × 10-5 mol L-1 and 27.8 pmol L-1, respectively. Moreover, due to the double recognition elements of MIP and aptamer, the prepared MIP-aptamer-Fe3O4 NP showed higher selectivity to thrombin than that based on only one recognition element. It is worth noting that no special property (e.g. electrochemical or fluorescence activity) of the template was required in this work. Thus, more template molecules can be easily, selectively, and sensitively detected based on the proposed MIP-aptamer-mimic enzyme colorimetric sensing strategy.
Collapse
Affiliation(s)
- Mingmei Shen
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China. and The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Chemo-Biosensing, Anhui Normal University, Wuhu 241000, P. R. China
| | - Yuanyuan Wang
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China. and The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Chemo-Biosensing, Anhui Normal University, Wuhu 241000, P. R. China
| | - Xianwen Kan
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China. and The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Chemo-Biosensing, Anhui Normal University, Wuhu 241000, P. R. China
| |
Collapse
|
37
|
Zhu D, Liu B, Wei G. Two-Dimensional Material-Based Colorimetric Biosensors: A Review. BIOSENSORS 2021; 11:bios11080259. [PMID: 34436061 PMCID: PMC8392748 DOI: 10.3390/bios11080259] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 05/09/2023]
Abstract
Two-dimensional (2D) materials such as graphene, graphene oxide, transition metal oxide, MXene and others have shown high potential for the design and fabrication of various sensors and biosensors due to their 2D layered structure and unique properties. Compared to traditional fluorescent, electrochemical, and electrical biosensors, colorimetric biosensors exhibit several advantages including naked-eye determination, low cost, quick response, and easy fabrication. In this review, we present recent advances in the design, fabrication, and applications of 2D material-based high-performance colorimetric biosensors. Potential colorimetric sensing mechanisms and optimal material selection as well as sensor fabrication are introduced in brief. In addition, colorimetric biosensors based on different 2D materials such as graphene, transition metal dichalcogenide/oxide, MXenes, metal-organic frameworks, and metal nanoplates for the sensitive detection of DNA, proteins, viruses, small molecules, metallic ions, and others are presented and discussed in detail. This work will be helpful for readers to understand the knowledge of 2D material modification, nanozymes, and the synthesis of hybrid materials; meanwhile, it could be valuable to promote the design, fabrication, and applications of 2D material-based sensors and biosensors in quick bioanalysis and disease diagnostics.
Collapse
Affiliation(s)
| | | | - Gang Wei
- Correspondence: ; Tel.: +86-150-6624-2101
| |
Collapse
|
38
|
Tao Y, Lao YH, Yi K, Xu Y, Wang H, Shao D, Wang J, Li M. Noble metal-molybdenum disulfide nanohybrids as dual fluorometric and colorimetric sensor for hepatitis B virus DNA detection. Talanta 2021; 234:122675. [PMID: 34364475 DOI: 10.1016/j.talanta.2021.122675] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/24/2021] [Accepted: 06/27/2021] [Indexed: 12/11/2022]
Abstract
Hepatitis B virus (HBV) infection is one of the global healthcare burdens, and its early diagnosis is crucial for the prevention of HBV-induced chronic hepatitis, liver fibrosis, cirrhosis, and hepatocellular carcinoma. Although different detection approaches have been reported, most of these methods either rely on sophisticated machines or procedures, which limit their use particularly in the high endemic, developing countries. In this work, we report a dual-sensing nanoplatform built on noble metal-molybdenum disulfide (MoS2) nanohybrids, and this platform can detect the HBV DNA target through either fluorometric or colorimetric readouts. The design with the silver nanocluster (AgNC)-MoS2 nanohybrid enables multiplex fluorescent detection, while the HBV DNA-regulated growth of platinum nanoparticles (PtNPs) on the MoS2 nanosheets offers signal-on colorimetric detection. Both AgNC-MoS2 and PtNP-MoS2 nanohybrids show high sensitivity with pico-molar detection limit and single nucleotide specificity, even with the spiked human serum. Collectively, the proposed nanohybrids possess their potential in the use of early HBV diagnosis, particularly suitable for the high endemic areas with limited medical and instrumental supports.
Collapse
Affiliation(s)
- Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Yeh-Hsing Lao
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Ke Yi
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Yanteng Xu
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Haixia Wang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Dan Shao
- Institutes of Life Sciences, School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Jiasi Wang
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, 518107, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China; Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, China.
| |
Collapse
|
39
|
Chen W, Zhang Z, Zhang S, Zhu P, Ko JKS, Yung KKL. MUC1: Structure, Function, and Clinic Application in Epithelial Cancers. Int J Mol Sci 2021; 22:ijms22126567. [PMID: 34207342 PMCID: PMC8234110 DOI: 10.3390/ijms22126567] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 12/18/2022] Open
Abstract
The transmembrane glycoprotein mucin 1 (MUC1) is a mucin family member that has different functions in normal and cancer cells. Owing to its structural and biochemical properties, MUC1 can act as a lubricant, moisturizer, and physical barrier in normal cells. However, in cancer cells, MUC1 often undergoes aberrant glycosylation and overexpression. It is involved in cancer invasion, metastasis, angiogenesis, and apoptosis by virtue of its participation in intracellular signaling processes and the regulation of related biomolecules. This review introduces the biological structure and different roles of MUC1 in normal and cancer cells and the regulatory mechanisms governing these roles. It also evaluates current research progress and the clinical applications of MUC1 in cancer therapy based on its characteristics.
Collapse
Affiliation(s)
- Wenqing Chen
- Division of Teaching and Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China;
| | - Zhu Zhang
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong, China; (Z.Z.); (S.Z.); (P.Z.)
| | - Shiqing Zhang
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong, China; (Z.Z.); (S.Z.); (P.Z.)
| | - Peili Zhu
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong, China; (Z.Z.); (S.Z.); (P.Z.)
| | - Joshua Ka-Shun Ko
- Division of Teaching and Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China;
- Correspondence: (J.K.-S.K.); (K.K.-L.Y.); Tel.: +852-3411-2907 (J.K.-S.K.); +852-3411-7060 (K.K.-L.Y.); Fax: +852-3411-2461 (J.K.-S.K.); +852-3411-5995 (K.K.-L.Y.)
| | - Ken Kin-Lam Yung
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong, China; (Z.Z.); (S.Z.); (P.Z.)
- Correspondence: (J.K.-S.K.); (K.K.-L.Y.); Tel.: +852-3411-2907 (J.K.-S.K.); +852-3411-7060 (K.K.-L.Y.); Fax: +852-3411-2461 (J.K.-S.K.); +852-3411-5995 (K.K.-L.Y.)
| |
Collapse
|
40
|
Li X, Jian M, Sun Y, Zhu Q, Wang Z. The Peptide Functionalized Inorganic Nanoparticles for Cancer-Related Bioanalytical and Biomedical Applications. Molecules 2021; 26:3228. [PMID: 34072160 PMCID: PMC8198790 DOI: 10.3390/molecules26113228] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 02/08/2023] Open
Abstract
In order to improve their bioapplications, inorganic nanoparticles (NPs) are usually functionalized with specific biomolecules. Peptides with short amino acid sequences have attracted great attention in the NP functionalization since they are easy to be synthesized on a large scale by the automatic synthesizer and can integrate various functionalities including specific biorecognition and therapeutic function into one sequence. Conjugation of peptides with NPs can generate novel theranostic/drug delivery nanosystems with active tumor targeting ability and efficient nanosensing platforms for sensitive detection of various analytes, such as heavy metallic ions and biomarkers. Massive studies demonstrate that applications of the peptide-NP bioconjugates can help to achieve the precise diagnosis and therapy of diseases. In particular, the peptide-NP bioconjugates show tremendous potential for development of effective anti-tumor nanomedicines. This review provides an overview of the effects of properties of peptide functionalized NPs on precise diagnostics and therapy of cancers through summarizing the recent publications on the applications of peptide-NP bioconjugates for biomarkers (antigens and enzymes) and carcinogens (e.g., heavy metallic ions) detection, drug delivery, and imaging-guided therapy. The current challenges and future prospects of the subject are also discussed.
Collapse
Affiliation(s)
- Xiaotong Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (X.L.); (M.J.); (Y.S.)
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Minghong Jian
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (X.L.); (M.J.); (Y.S.)
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yanhong Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (X.L.); (M.J.); (Y.S.)
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Qunyan Zhu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (X.L.); (M.J.); (Y.S.)
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (X.L.); (M.J.); (Y.S.)
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|