1
|
Liao Z, Zhong J, Tang X, Peng Z, Xu P, Qiu P. Smartphone-assisted portable swabs for blood glucose management: A point-of-use assay for dual-mode visual detection based on bifunctional carbon dots. Talanta 2024; 278:126545. [PMID: 39002257 DOI: 10.1016/j.talanta.2024.126545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
Controlling glucose (Glu) intake is a "required course" for diabetics, thus quickly and precisely measuring the amount of Glu in food is crucial. For this purpose, a novel smartphone-assisted portable swab for the dual-mode visual detection of Glu was constructed combined the selectivity of natural enzymes with the controllable catalytic activity of nanozymes. Glu was specifically decomposed by glucose oxidase (natural enzyme) to produce H2O2, which was catalyzed by carbon dots (FeMn/N-CDs, nanozyme) to accelerate the reaction of o-phenylenediamine (OPD, colorless) to produce 2,3-diaminophenazine (DAP, yellow). As a result, the absorbance at 450 nm gradually increased with the increasing concentration of Glu, leading to a color change in the system from colorless to yellow. Meanwhile, the fluorescence of FeMn/N-CDs gradually decreased at 450 nm, while the fluorescence of DAP gradually increased at 550 nm, allowing for both ratiometric fluorescence and colorimetric dual-mode detection. Furthermore, natural enzyme and nanozyme together with OPD were co-loaded on the swabs to achieve cascade catalysis of Glu. The assembled portable swabs have detection ranges of 1-600 μM (LOD = 0.37 μM) and 4-1200 μM (LOD = 1.19 μM) for the colorimetric and fluorometric detection, respectively. The field test results on real samples demonstrated that the portable swabs have great promise for use in efficiently and accurately guiding the dietary intake of diabetics.
Collapse
Affiliation(s)
- Ziwen Liao
- Department of Chemistry, Nanchang University, Nanchang 330031, China; College of Food Science and Technology, Nanchang University, Nanchang 330031, China
| | - Jiali Zhong
- Department of Chemistry, Nanchang University, Nanchang 330031, China
| | - Xiaomin Tang
- The Fourth Affiliated Hospital, Nanchang University, Nanchang 330003, Jiangxi, China
| | - Zoujun Peng
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Peng Xu
- Center of Analysis and Testing, Nanchang University, Nanchang 330031, China.
| | - Ping Qiu
- Department of Chemistry, Nanchang University, Nanchang 330031, China; Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
2
|
Lv X, Liu H, Li Z, Cui M, Cui K, Guo Z, Dai Z, Wang B, Chen X. Critical role of zero-valent iron in the efficient activation of H 2O 2 for 4-CP degradation by bimetallic peroxidase-like. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:10838-10852. [PMID: 38214857 DOI: 10.1007/s11356-023-31754-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/23/2023] [Indexed: 01/13/2024]
Abstract
Peroxidase-like based on double transition metals have higher catalytic activity and are considered to have great potential for application in the field of pollutant degradation. First, in this paper, a novel Fe0-doped three-dimensional porous Fe0@FeMn-NC-like peroxidase was synthesized by a simple one-step thermal reduction method. The doping of manganese was able to reduce part of the iron in Fe-Mn binary oxides to Fe0 at high temperatures. In addition, Fe0@FeMn-NC has excellent peroxidase-like mimetic activity, and thus, it was used for the rapid degradation of p-chlorophenol (4-CP). During the degradation process, Fe0 was able to rapidly replenish the constantly depleted Fe2+ in the reaction system and brought in a large number of additional electrons. The ineffective decomposition of H2O2 due to the use of H2O2 as an electron donor in the reduction reactions from Fe3+ to Fe2+ and from Mn3+ to Mn2+ was avoided. Finally, based on the experimental results of LC-MS and combined with theoretical calculations, the degradation process of 4-CP was rationally analyzed, in which the intermediates were mainly p-chloro-catechol, p-chloro resorcinol, and p-benzoquinone. Fe0@FeMn-NC nano-enzymes have excellent catalytic activity as well as structural stability and perform well in the treatment of simulated wastewater containing a variety of phenolic pollutants as well as real chemical wastewater. It provides some insights and methods for the application of peroxidase-like enzymes in the degradation of organic pollutants.
Collapse
Affiliation(s)
- Xinxin Lv
- Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China
- Key Lab of Aerospace Structural Parts Forming Technology and Equipment of Anhui Province, Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei, 230009, People's Republic of China
| | - Huilai Liu
- Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China
- Key Lab of Aerospace Structural Parts Forming Technology and Equipment of Anhui Province, Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei, 230009, People's Republic of China
| | - Zhihao Li
- Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China
- Key Lab of Aerospace Structural Parts Forming Technology and Equipment of Anhui Province, Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei, 230009, People's Republic of China
| | - Minshu Cui
- Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China
| | - Kangping Cui
- Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China
| | - Zhi Guo
- Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China
| | - Zhengliang Dai
- Anqing Changhong Chemical Co., Ltd., Anqing, 246002, People's Republic of China
| | - Bei Wang
- Anqing Changhong Chemical Co., Ltd., Anqing, 246002, People's Republic of China
| | - Xing Chen
- Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China.
- Key Lab of Aerospace Structural Parts Forming Technology and Equipment of Anhui Province, Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei, 230009, People's Republic of China.
| |
Collapse
|
3
|
Miao Y, Xia M, Tao C, Zhang J, Ni P, Jiang Y, Lu Y. Iron-doped carbon nitride with enhanced peroxidase-like activity for smartphone-based colorimetric assay of total antioxidant capacity. Talanta 2024; 267:125141. [PMID: 37672985 DOI: 10.1016/j.talanta.2023.125141] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023]
Abstract
The facile detection of total antioxidant capacity (TAC) is limited by in-situ analysis, because it usually requires complex laboratory equipments. Here, a colorimetric assay for TAC detection is developed based on the peroxidase-like activity of iron-doped carbon nitride (Fe/NC) and the smartphone platform. The peroxidase-like activity of carbon nitride is greatly improved by the introduction of Fe atoms, and the active sites turn to Fe-Nx coordination groups in the Fe/NC. The inhibition mechanism of the chromogenic reaction for different kinds of antioxidants is also studied. The colorimetric assay is fabricated by the relationship of absorbance-color-antioxidant content and applied successfully to the TAC detection of several fruit juicesand commercial beverages. This work not only provides a promising approach for convenient in-situ TAC assay without the use of large instruments, but also expands the application of nanozymes in nutritional value assessment of foods.
Collapse
Affiliation(s)
- Yanrong Miao
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, PR China
| | - Mingyuan Xia
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, PR China
| | - Chenyu Tao
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, PR China
| | - Jiqing Zhang
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, PR China
| | - Pengjuan Ni
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, PR China
| | - Yuanyuan Jiang
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, PR China.
| | - Yizhong Lu
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, PR China.
| |
Collapse
|
4
|
Li Y, Li P, Chen Y, Wu Y, Wei J. Interfacial deposition of Ag nanozyme on metal-polyphenol nanosphere for SERS detection of cellular glutathione. Biosens Bioelectron 2023; 228:115200. [PMID: 36921386 DOI: 10.1016/j.bios.2023.115200] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/26/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023]
Abstract
The low polarization and low Raman cross section characteristics of glutathione (GSH) make it challenging to directly detect GSH molecules through surface enhanced Raman scattering (SERS) technology. Development of nanostructures for indirect detection of GSH applied to the SERS platform is of great interest. Herein, silver nanoparticles (Ag NPs)/copper-polyphenol colloidal spheres (denoted as CuTA@Ag) with adjustable Ag NPs coverage are prepared by deposition of Ag NPs on the metal-polyphenol colloidal spheres via an interfacial polyphenol reduction method. The size and density of the Ag NPs deposited on the out layer can be readily adjusted by tailoring the concentrations of silver precursor. It leads to activity difference for the nanozyme and SERS characteristics. The SERS properties of the obtained CuTA@Ag are studied using oxTMB, catalytic products of nanozyme, as the probing molecules. They provide satisfactory SERS performance with a low detection limit of 10-7 M (S/N = 3) and linear determination in the 1-100 μM range for GSH. Moreover, it is further able to detect the glutathione content in cancer cells with well accurate and reproducible capability, catching the signs of rising cancer marker levels. This work proposes structurally tunable nanomaterials platform for a catalytic-based SERS assay, which is expected to utilize the high sensitivity of SERS tool for GSH detection in the cellular environment.
Collapse
Affiliation(s)
- Yuxin Li
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China
| | - Ping Li
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China
| | - Yiqing Chen
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China
| | - Yue Wu
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China
| | - Jing Wei
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China.
| |
Collapse
|
5
|
Liu ZA, Zuo YN, Xia Y, Sun J, Zhu S. Enhanced detection of ascorbic acid with cascaded fluorescence recovery of a dual-nanoquencher system. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3632-3637. [PMID: 36052693 DOI: 10.1039/d2ay01019d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
An innovative strategy with target-triggered cascade fluorescence recovery of a dual-nanoquencher system was developed to detect ascorbic acid (AA). Herein, manganese dioxide (MnO2) nanosheets and gold nanoparticles (AuNPs) were used as nanoquenchers simultaneously. Owing to their synergistic effects, the fluorescence of 2,3-diaminophenazine (DAP) was decreased efficiently, thus minimizing the background fluorescence. The introduction of AA triggered the decomposition of MnO2 into Mn2+, which induced the aggregation of AuNPs. Both the decomposed MnO2 and aggregated AuNPs possess weak quenching abilities towards DAP. Such a cascade amplification strategy enhanced the detection sensitivity for AA with a LOD as low as 6.7 nM, which was two orders of magnitude lower than that of MnO2-based fluorescence assay. Furthermore, this amplification strategy was successfully applied to detect AA in food samples.
Collapse
Affiliation(s)
- Zhi-Ang Liu
- TEM Laboratory, Experimental Teaching and Equipment Management Center, Qufu Normal University, Qufu City, 273165, Shandong, China
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu City, 273165, Shandong, China.
| | - Ya-Nan Zuo
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu City, 273165, Shandong, China.
| | - Yinghui Xia
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu City, 273165, Shandong, China.
| | - Jing Sun
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining City, 810001, Qinghai, China
| | - Shuyun Zhu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu City, 273165, Shandong, China.
| |
Collapse
|
6
|
Zhang J, Li Z, Li H, Dai G, Luo F, Chu Z, Geng X, Zhang F, Wang Q. Construction of Pd Single Site Anchored on Nitrogen-Doped Porous Carbon and Its Application for Total Antioxidant Level Detection. NANOSCALE RESEARCH LETTERS 2022; 17:54. [PMID: 35596011 PMCID: PMC9123115 DOI: 10.1186/s11671-022-03693-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Natural enzymes have excellent catalytic activity. However, due to their unstable nature and high cost, current research has turned to the synthesis and development of enzyme-like nanomaterials and single-atomic nanozymes. In this study, a single-atomic palladium-loaded nitrogen-doped porous carbon catalyst (SA-Pd/NPC) was prepared and used as a mimetic peroxidase to catalyze the substrates oxidation. The catalytic capability of the SA-Pd/NPC was tested by the TMB-H2O2 system, and it expressed a superior catalytic capability owing to the plentiful catalytic centers of the single-atom Pd, its high porosity, the large specific surface area, and the strong electron transfer capability of the NPC. For the color reaction of TMB, thiol antioxidants (e.g., glutathione, GSH) and non-thiol antioxidants (e.g., ascorbic acid, AA) are suitable for different inhibition mechanisms. GSH and AA are typical substances of these two main antioxidant types, respectively. Here, we demonstrate that this prepared catalyst could be used to simultaneously determine a variety of major known physiologically relevant thiol-containing and thiol-free antioxidants, accompanied by a blue color gradient change with UV-Vis spectra at 652 nm through the SA-Pd/NPC-catalyzed TMB-H2O2 system. Linear responses to GSH and AA could be obtained in the concentration ranges of 0.01-0.10 mM and 1-13 μM (both R2 values were greater than 0.970), respectively, while the limits of detection were 3 μM and 0.3 μM, respectively. The ability of the nanozyme to detect overall antioxidant levels (TAL) was also confirmed in subsequent tests on artificial saliva and biological samples.
Collapse
Affiliation(s)
- Jingwen Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, People's Republic of China
| | - Zhi Li
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, People's Republic of China
| | - Hui Li
- School of Chemistry and Chemical Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic of China
| | - Ge Dai
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, People's Republic of China
| | - Feifei Luo
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, People's Republic of China
| | - Zhaohui Chu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, People's Republic of China
| | - Xing Geng
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, People's Republic of China
| | - Fan Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, People's Republic of China.
| | - Qingjiang Wang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, People's Republic of China.
| |
Collapse
|